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Abstract

This work is concerned with (n-component) hyperbolic systems of bal-
ance laws in m space dimensions. First we consider linear systems with
constant coefficients and analyze the possible behavior of solutions as
t → ∞. Using Fourier transform we exhibit the role that control theo-
retical tools, such as the classical Kalman rank condition, play. We build
Lyapunov functionals allowing to establish explicit decay rates depending
on the frequency variable. In this way we extend the previous analy-
sis by Shizuta and Kawashima under the so-called algebraic condition
(SK). In particular we show the existence of systems exhibiting a more
complex behavior than the one that the (SK) condition allows. We also
discuss the link of this analysis with previous literature in the context of
damped wave equations, hypoellipticity and hypocoercivity. To conclude
we analyze the existence of global solutions around constant equilibria for
nonlinear systems of balance laws. Our analysis of the linear case allows
proving existence results in situations that the previously existing theory
does not cover.
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1 Introduction and main results

1.1 Problem formulation
This work is concerned with the following n-component hyperbolic system of
balance laws in m space dimensions:

∂w

∂t
+

m∑

j=1

∂Fj(w)
∂xj

= Q(w). (1)

Here m,n ∈ N∗, w : R × Rm → Rn, w = w(t, x) is the unknown and Q,Fj :
Rn → Rn are smooth functions.

Such nonlinear systems typically govern non equilibrium processes in physics,
for media with hyperbolic response, as, for example, in gas dynamics. They also
arise in the numerical simulation of conservation laws by relaxation schemes (see
[1], [3], [8], [24] and references cited therein). In many applications, the source
term Q(w) has, or can be transformed by a linear transformation into the form

Q(w) =
(

0
q(w)

)
(2)

with 0 ∈ Rn1 , q(w) ∈ Rn2 , where n1, n2 ∈ N, n1 + n2 = n.
It is well known that (1) has local (in time) smooth solutions (see [15], [19]),

but these solutions may develop singularities (i.e. shock waves) in finite time,
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even when the initial data are smooth and small (see [7], [19]). However, in many
physical examples, thanks to the interplay between the source term and the flux,
there exist global smooth solutions for a suitable set of initial conditions. Total
dissipation, which consists in requiring the source damping term to enter in each
of the equations of the system distributed all over the space, is a well known
assumption for global existence for suitable classes of initial data (see [14]). But
this condition is too strong and it is not satisfied by systems (1)-(2) with n1 $= 0
(in which the dissipation is not present in all the components of the system)
and more general systems with relaxation (see [6], [16]). This is the case for the
isentropic Euler system with damping

∂u

∂t
− ∂v

∂x
= 0,

∂v

∂t
+

∂f(u)
∂x

= −v, (3)

with f ′(u) < 0 which has been considered in [17] and [13]. In this case, the
damping term, even if it enters only in the second equation, may prevent shock
formation. We also refer to [18] where similar issues are addressed for systems
with linear principal part, which correspond, in particular, to damped wave
equations involving nonlinear convective terms.

The existence of global smooth solutions for system (1)-(2) is one of the
two main topics of this article. In fact, the study of the nonlinear systems (1)
we shall develop relies on a linearization principle, around constant equilibria,
and this requires analyzing partially dissipative linear hyperbolic systems of the
form

∂w

∂t
+

m∑

j=1

Aj
∂w

∂xj
= −Bw (4)

where A1, ..., Am, B are n∗n real matrices, Aj := (a(j)
k,l)1!k,l!n being symmetric,

for j = 1, ...,m, and B such that

B =
(

0 0
0 D

)
, D ∈ Rn2×n2 , XtDX > 0,∀X ∈ Rn2 − {0}. (5)

Note that D is not assumed to be symmetric.
The analysis of linear systems of the form (4) is relevant, as mentioned above,

to understand the behavior of nonlinear systems and, as we shall see, they may
exhibit a very rich behavior. Its analysis is the first goal of this article.

The solutions of (4) with initial conditions w0 ∈ L2(Rm, Rn) are explicit.
Indeed, applying the Fourier transform in the x variable, system (4) can be
rewritten as

∂ŵ

∂t
+ i

m∑

j=1

Ajξjŵ = −Bŵ, (6)

or
∂ŵ

∂t
(t, ξ) = E(ξ)ŵ(t, ξ) (7)

where

E(ξ) := −B − iA(ξ), A(ξ) :=
m∑

j=1

ξjAj . (8)

Solving this first order ordinary differential equation, we get

ŵ(t, ξ) = exp[E(ξ)t]ŵ0(ξ). (9)
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Note that, when n2 $= n, the matrix −E(ξ) is not coercive. Indeed, with the
notation

X =
(

X1

X2

)
∈ Cn, X1 ∈ Cn1 , X2 ∈ Cn2 , n1 + n2 = n,

we have
XtE(ξ)X = −Xt

2DX2.

Thus, this quadratic form does not provide any information on the X1 compo-
nent.

However, it is by now well known, in the context of linear finite-dimensional
systems, that this fact is not an obstacle for the solutions of (6) to decay as
t → ∞. Indeed, the interaction of the dissipative operator B with the time-
dynamics generated by (6) may eventually dissipate all components of solutions.
This can be viewed, for instance, through the Kalman rank condition for the
control of finite-dimensional systems (see [4] and [25]) that we shall discuss in
detail in Section 2.

This fact is also well known in several other contexts, and in particular, for
dissipative wave equations [10] which are particular instances of (4), and par-
tially diffusive partial differential equations where the notions of hypoellipticity
[11] and hypocoercivity [22] have been introduced to measure the global effect of
partial diffusion in the regularity and the time decay of solutions, respectively.

As we shall see, under rather general assumptions on the matrices A1, ..., Am

and B, and, more precisely, under the so called Kalman rank condition for the
pair (A(ξ), B), it can be proved that

∃C > 0, λ(ξ) > 0 : exp[E(ξ)t] ! Ce−λ(ξ)t. (10)

This decay property, together with explicit estimates on the positivity and de-
pendence of λ(ξ) with respect to ξ, allows describing accurately the asymptotic
behavior of solutions of (4) as t → ∞, and deriving a decomposition of solu-
tions in which various terms decaying with different rates can be distinguished.
Obviously, the overall picture depends in a critical way on the properties of the
function ξ → λ(ξ). The analysis of this function is a complex issue to which we
will devote a significant part of this article.

There is in fact an extensive literature on the subject. For instance, in [20],
the authors study systems (4) under the so-called Shizuta-Kawashima condition:

(SK) ∀ξ ∈ Rm,Ker(B) ∩ {eigenvectors of A(ξ)} = {0}, (11)

and prove that

∃C, c > 0 s. t. ∀ξ ∈ Rm, exp[E(ξ)t] ! Ce−c min{1,|ξ|2}t. (12)

Thanks to (9) and (12), the authors deduce that any solution w of (4) associated
to an initial condition w0 ∈ L1 ∩ L2(Rm, Rn) can be decomposed as

w = w1 + w2 (13)

where
‖w1(t)‖L2(Rm,Rn) ! Ce−λt‖w0‖L2(Rm,Rn),∀t ∈ (0,+∞),
‖w2(t)‖L∞(Rm,Rn) ! Ct−

m
2 ‖w0‖L1(Rm,Rn),∀t ∈ (0,+∞), (14)
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and C, λ are positive constants depending only on A1, ..., Am, B. The two com-
ponents w1 and w2 correspond, respectively, to the high and low frequency
components. The high frequency component decays exponentially while the
low frequency one decays polynomially with the decay rate of the heat kernel.
We refer to [18] for similar results for damped wave equations with nonlinear
convection.

This result has motivated many others. For instance, in [2], the authors
proved more precise decay rates for the high frequency component w1 under
(SK), and extended the analysis for non linear systems.

Estimate (12) is equivalent to saying that λ(ξ) ≥ cmin{1, |ξ|2} in (10). In
particular, (SK) implies that λ(ξ) may only degenerate quadratically at ξ = 0.
Roughly speaking, (SK) is a natural sufficient condition to guarantee that the
damping term affects all the components of the system and the L2-decay of the
solutions of (4) as t → +∞. But it is not sharp. Indeed, as we shall see, there
are many situations in which λ(ξ) degenerates on other points than ξ = 0, but
still the L2-decay of solutions holds, together with decompositions in the spirit
of (13), but involving extra terms, decaying more slowly than the m-dimensional
heat kernel. To do that we develop a careful analysis of the finite-dimensional
behavior of system (6) in terms of the multi-dimensional parameter ξ. This
analysis is inspired by control theoretical tools. Indeed, our approach starts
from the observation that (SK) holds if the pair of matrices (A(ξ), B) satisfies
the Kalman rank condition:

rk[B,A(ξ)B, ..., A(ξ)n−1B] = n.

The key ingredient to obtain a complete decomposition of solutions is the
obtention of a careful measure of the decay rate λ(ξ) of solutions of (6) as a
function of ξ. To do this we construct explicit Lyapunov functionals, taking
advantage of the interaction of the matrix B with the dynamics generated by
A(ξ). This kind of Lyapunov function is similar to those introduced by C.
Villani (see [22]) for the analysis of the decay of partially diffusive systems and
is also linked, as we mentioned above, to the extensive literature on damped
wave equations (see [10] and [18], for instance).

The approach we develop here, in addition of being more systematic, has
also the added advantage of being simpler to be carried out from a technical
viewpoint since we avoid some of the long developments in [20] for proving the
sufficiency of (SK) to achieve the decomposition above.

Let us now return to the nonlinear systems of balance laws (1). The existence
of global smooth solutions in a neighborhood of a constant equilibrium We ∈ Rn

and Q(We) = 0 was proved in [23], under a suitable dissipation assumption,
when the linearized system around We satisfies (SK).

Let us also mention [9] for the same result in one space dimension (m = 1)
with many examples of application. We also refer to [5], where the authors con-
sider the multidimensional isothermal Euler equations with a strong relaxation
and study the asymptotic behavior of the solutions when the relaxation time
tends to zero. They use the arguments of [23] in order to prove the existence
of global smooth solutions in a neighborhood of a constant equilibrium, whose
size is uniform with respect to the relaxation time.

The techniques we develop in this article, in the frame of [23], allow us
to obtain explicit estimates of the size of the neighborhood of We where the
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existence of global smooth solutions holds. As a consequence of this, using an
argument inspired in Coron’s return method ([4]), we are able to prove a global
existence result around a constant equilibrium that does not fulfill the (SK)
condition.

1.2 Main results
Let us now describe the content of the article in more detail. Sections 2, 3, 4 and
5 are devoted to the analysis of partially dissipative linear hyperbolic systems
and section 6 to the nonlinear systems of balance laws.

More precisely, section 2, is concerned with the Kalman rank condition, the
(SK) condition, the notion of hypocoercivity and the decay rates. Subsection 2.1
is devoted to a preliminary discussion in which we show that (SK) is equivalent
to the classical Kalman rank condition in control theory for the pairs (A(ξ), B)
and all ξ $= 0. Then we develop the proof of decay (10) using Lyapunov function-
als (see subsection 2.2). In particular, this yields a more systematic approach
and a simpler way to get the decomposition (13)-(14) in [20] under the condition
(SK) (see subsection 2.3).

In section 3, using the tools developed in section 2, we investigate the asymp-
totic behavior for (4) without the (SK) condition. More precisely, we study the
L2-stability and the non dissipated solutions of (4). For doing that we introduce
the set of degeneracy

D(A1, ..., Am, B) := {ξ ∈ Rm : Ker(B) ∩ {eigenvectors of A(ξ)} $= {0}}, (15)

i. e. the set of values of ξ for which (SK) fails.
Under the (SK) condition this set is the trivial one {0}. But, of course,

this is false in general and, as we shall see, the structure of this set determines
the asymptotic behavior of solutions. In subsection 3.2, using the fact that the
Kalman condition fails on the set of degeneracy when (SK) does not hold, we
prove that, either

• D(A1, ..., Am, B) is a strict algebraic submanifold of Rm,
or

• D(A1, ..., Am, B) = Rm.

In subsection 3.3, we prove that, in the first case, (4) is strongly stable in L2, i.
e. all L2 solutions tend to zero in L2 as t →∞. In subsection 3.4, we prove that,
in the second case, there exist non dissipated solutions of constant L2-norm.

In subsection 3.5, we study the 1D case m = 1 whatever the size n of the
system is. We show that, in this case, the (SK) condition is sharp in the sense
that it characterizes completely the behavior of the solutions :

• (SK) is a necessary and sufficient condition for the strong stability in
L2(R, Rn),

• (SK) is a necessary and sufficient condition for the decomposition (14),
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• without (SK), any solution associated to an L2 initial condition can be
decomposed as w = w1 + w2 + wtrw where w1, w2 satisfy (14) and wtrw is
the sum of a finite number of traveling waves.

This shows, in particular, that in 1D we may not have a third component
decaying at infinity with a slower decay rate. The latter may only arise in the
multi-dimensional case.

Subsection 3.6 is devoted to analyze the most degenerate case in which
D(A1, ..., Am, B) = Rm. We show that this is a necessary condition for the
existence of traveling waves with L2 profiles. However, contrary to the case
n = 1, this condition fails to be sufficient when m " 2. Indeed, the solutions
of constant energy may, in general, have a more complex structure that being
sums of traveling waves.

In section 4, we investigate the analogue of the decomposition (13)-(14) for
the solutions of (4), when (SK) is not fulfilled and when the measure of the
set of degeneracy D(A1, ..., Am, B) vanishes. We answer this question in some
particular cases where the set of degeneracy is the union of a finite number of
vector subspaces.

In subsection 4.1, we prove a general statement giving a decomposition for
the solutions of (4) when the set of degeneracy D(A1, ..., Am, B) is the union of
a finite number of vector subspaces and under an assumption of the following
type

N∗(ω) " Cdist(ω,D(A1, ..., Am, B))α,∀ω ∈ Sm−1, (16)

for some constants C > 0 and α " 2, where

N∗(ω) := min{
n−1∑

k=0

εmk |BA(ω)kx|2;x ∈ Sn−1}, (17)

for a suitable small enough ε and suitable exponents mk (see Proposition 1).
Note that the value of N∗(ω) provides a quantitative version of the (SK) prop-
erty, or the Kalman rank property, in the sense that, when it fails on an isolated
point ω, it holds in the neighboring ones (that do not belong toD(A1, ..., Am, B)),
with an explicit lower bound on N∗ as a power of the distance function.

This decomposition is of the form w = w1 + w2 + w3 + w4 where w1 and
w2 satisfy (14) and w3 (resp. w4) contains some (but not all) high (resp. low)
frequencies and decays like t−1/α (resp. t−r/α where r ∈ N∗).

In this way we see that, in dimension m ≥ 2, there is a whole class of
phenomena that do not arise under the condition (SK). Note that we already
got a complete classification of the possible decompositions for the solutions of
(4) when m = 1 in subsection 3.5.

In subsection 4.2, we study the particular case n1 = 1 (i.e. Ker(B) =
Span(e1)) in which the condition on the set of degeneracy being the union of
vector subspaces is automatically satisfied. In that case, (16) holds with a
smaller exponent α = 2. This leads to a decomposition for the solutions of (4),
in this particular case n1 = 1.

In subsection 4.3, considering explicit examples, we show that there are
situations in which α = 4 is the smallest exponent one can have in (16), and
the parameter r may take any positive value.
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In subsection 4.4, we deduce from the previous analysis a complete classifi-
cation in the case n = 2, whatever the space dimension m is.

In section 5, we recapitulate the various results obtained in the previous
sections, presenting them in a table. This classification is still incomplete in
the sense that not all possible values of m and n are covered by our analysis.
Indeed, we do not provide a decomposition

• in the general case where the set of degeneracy is the union of a finite
number of vector subspaces because we only study particular examples,

• when the set of degeneracy D(A1, ..., Am, B) is an algebraic submanifold
that is not a union of vector subspaces,

• or when D(A1, ..., Am, B) is the whole space.

We also make precise some open questions and some conjectures about the cases
that our partial classification does not cover.

In Section 6, we study the existence of global (in time) smooth solutions for
the non linear system (1), locally around a constant equilibrium We ∈ Rn. In
subsection 6.1 we make precise the context of our work. The novelty of our study
with respect to [23] is that we do not impose the (SK) condition on the linearized
system around We. To do that we proceed in two steps. We first assume that
(SK) holds and taking advantage of the explicit Lyapunov function introduced
in subsection 2.2, we make the result in [23] more precise by giving an explicit
estimate on the size for the neighborhood of We on which global existence holds.
Then, in subsection 6.3, using these explicit estimates and under some suitable
assumptions on the nonlinearities, we prove the existence of global solutions
for (1), around a constant equilibrium We that does not satisfy (SK). This is
done assuming the existence of a family of constant equilibria fulfilling (SK)
converging to We. This approach is inspired by Coron’s return method for the
controllability of nonlinear systems (see [4] for an introduction and examples
of applications), that takes advantage of the nonlinearity of the system. We
conclude subsection 6.3 with an example of application of the previous theorem.

At this point, it is convenient to note that the fact that (SK) was not neces-
sary for the existence of global smooth solutions around a constant equilibrium
was already known. Indeed, Zeng proved in [24] the existence of global 1D
(m = 1) smooth solutions for an equation of gas dynamics, around a constant
state, without the (SK) condition, splitting the system in two parts, one of them
being linearly degenerate. But, to our knowledge, there were no general result
of global existence for partially dissipative hyperbolic systems without (SK) (for
arbitrary m,n). Our result is the first one in that direction. One may expect
that a further analysis of the linearized systems along the lines we do in sections
2, 3, 4 together with this way of approaching the nonlinear one, will allow to
generalize further the result we are presenting here.

Notations: In this article, -(.), .(.) denote the real and imaginary parts of
complex numbers, (e1, ..., en) is the canonical basis of Rn and 〈., .〉 denotes the
hermitian product in Cn, 〈X, Y 〉 = XtY .

The notations given in this introduction (m, n, n1, n2, Aj = (a(j)
k,l)1!k,l!n,

B, D, D(A1, ..., Am, B)) will be used all along the paper.
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2 Rank conditions, (SK), hypocoercivity and de-
cay rates

In subsection 2.1, we show the equivalence between the (SK) condition for hyper-
bolic systems and the Kalman rank condition in control theory. In subsection
2.2, taking advantage of this equivalence, we prove an explicit decay rate for
λ(ξ) in (10), by means of a Lyapunov functional. Finally, in subsection 2.3, we
recover Shizuta-Kawashima’s decomposition (13)-(14) for the solutions of (4)
under the (SK) condition.

2.1 (SK) and Kalman rank conditions
The following lemma is one of the key ingredients of this section.

Lemma 1 Let n ∈ N∗, A,B be n ∗ n matrices with real coefficients, such that
B has the form (5). The following statements are equivalent

• (1) A and B satisfy (SK) : {eigenvectors of A}∩ Ker(B) = {0},

• (2) ∀y ∈ Cn − {0}, t 1→ B exp(At)y does not vanish on R,

• (3) ∀y ∈ Cn − {0}, there exists k ∈ {0, 1, ..., n− 1} such that BAky $= 0,

• (4) for every a0, ..., an−1 > 0, the expression

N(y) :=

(
n−1∑

k=0

ak|BAky|2
)1/2

defines a norm on Cn

• (5) (A,B) satisfies the Kalman rank condition : the (n2) ∗ n Kalman
matrix

K :=





B
BA
...

BAn−1



 (18)

has rank n.

These equivalences are classical (see for example [4, Chapter 1.3], [21, The-
orem 2.2.1]). We give a proof for the sake of completeness.

Proof of Lemma 1: Let us prove “(1) ⇒ (2)". We assume that (2) is false.
Then, there exists y ∈ Cn − {0} such that

B exp(At)y ≡ 0. (19)

Let

det(A−XIn) :=
ν∏

j=1

(X − λj)rj
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be the characteristic polynomial of A. We have

Cn =
ν⊕

j=1
Ker[(A− λj)rj ]

y =
∑ν

j=1 yj .

The equality (19) gives

ν∑

j=1

eλjt

rj−1∑

k=0

tk

k!
B(A− λj)kyj ≡ 0.

Thanks to the linear independence of the family

{tkeλjt; 0 ! k ! rj − 1, 1 ! j ! ν}

we deduce that

B(A− λj)kyj = 0,∀k ∈ {0, ..., rj − 1},∀j ∈ {1, ..., ν}.

Let j ∈ {1, ..., ν} be such that yj $= 0 and k ∈ {0, ..., rj − 1} be the largest
integer such that (A− λj)kyj $= 0. Then, (A− λj)kyj is an eigenvector of A in
the null space of B. Thus, (1) is false.

Let us prove now that “(2)⇒(3)". We assume that (3) is false. Then, there
exists y ∈ Cn − {0} such that BAky = 0 for k = 0, ..., n − 1 and thanks to the
Cayley-Hamilton theorem, BAky = 0 for every k ∈ N. Thus B exp(At)y ≡ 0
and (2) is false.

The implication “(3)⇒(4)" is clear.
Let us prove “(4)⇒(5)". We assume (4). If y ∈ Ker(K), then BAky = 0

for k = 0, ..., n−1. Thus N(y) = 0 and so y = 0. This proves that K is injective
and thus rk(K) = n.

Finally, let us prove “(5)⇒(1)". We assume (1) is false. Let v ∈ Sn−1 be
an eigenvector of A in the null space of B. Then Ky = 0 and, thus, K is not
injective. Therefore rk(K) < n, i.e. (5) is false. #

2.2 Lyapunov functionals and explicit decay rates
According to the results of the previous section there is a very explicit connection
between the (SK) condition, which arises naturally in the analysis of the decay
of partially dissipative hyperbolic systems, and the Kalman rank condition in
finite dimensional control theory.

In this subsection we develop one of the key elements of this article which
consists in deriving explicit decay rates for the finite-dimensional system (6) in
terms of ξ. To do this we construct explicit Lyapunov functionals, which are
inspired on those rank conditions and more precisely in the statement (4) of
Lemma 1.

We set ξ = ρω, with ρ > 0 and ω ∈ Sm−1, and, consequently, rewrite (6) in
the form:

ẋ = −(B + iρA(ω))x, x(0) = x0 ∈ Cn. (20)
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Proposition 1 We fix a family of non-negative real numbers (mk)0!k!n such
that

0 = m0 < m1 < ... < mn, (21)

mk −
mk−1 + mk+1

2
" δ > 0,∀k = 1, ..., n− 1, (22)

for some δ > 0.
Let A1, ..., Am, B be n ∗ n real matrices such that B has form (5). For

ω ∈ Sm−1, ε > 0 we define the symmetric non-negative matrix

Mε(ω) :=
n−1∑

k=0

εmk(A(ω)t)kBtBA(ω)k (23)

and its minimal eigenvalue

N∗,ε(ω) := min{〈x, Mε(ω)x〉;x ∈ Sn−1} = min{
n−1∑

k=0

εmk |BA(ω)kx|2;x ∈ Sn−1}.

(24)
Then, there exist ε∗ = ε∗(A1, ..., Am, B) ∈ (0, 1) and c̃ = c̃(A1, ..., Am, B) > 0
such that, for every ε ∈ (0, ε∗), x0 ∈ Cn, ρ ∈ (0,+∞) and ω ∈ Sm−1, the
solution of (20) satisfies

|x(t)| !
√

3|x0|e−c̃N∗,ε(ω) min{1,ρ2}t,∀t ∈ (0,+∞). (25)

Remark 1 This result provides an exponential decay rate for exp[E(ρω)t], which
is explicit in terms of ρ and ω, and more precisely on N∗,ε(ω). As we will see
in sections 2.3 and 4, the main interest of this Proposition is that it reduces the
problem of the asymptotic behavior of the solutions of (4) to the study of the
real valued map ω ∈ Sm−1 1→ N∗,ε(ω) ∈ R+.

Note that Proposition 1 holds without assuming the (SK) condition, which,
in fact, only enters when trying to obtain a uniform lower bound on N∗,ε(ω) for
ω ∈ Sm−1, in section 2.3. In particular, it could be that, for some value ω∗ of
ω, N∗,ε(ω∗) = 0. In that case, to get explicit decay rates for (4), one has to
analyze the behavior of N∗,ε(ω) for values ω close to ω∗. This fact will play an
important role when deriving decompositions of solutions in the absence of the
(SK) condition and analyzing their decay rates as t →∞ in section 4.

Remark 2 The constant
√

3 in (25) can be replaced by any constant C̃ > 1.
Indeed, an easy adaptation of the proof below provides the following more general
statement: for every C̃ > 1, there exist ε∗ = ε∗(A1, ..., Am, B) > 0 and c̃ =
c̃(C̃, A1, ..., Am, B) > 0 such that the same conclusion holds with

√
3 replaced by

C̃.
On the other hand, C̃ being fixed, it is natural to raise the issue of finding

the value of ε that maximizes the decay rate. This is an open problem.

Remark 3 Notice that Proposition 1 holds without assuming the symmetry of
the matrices A1, ..., Am. This will be used in section 6.

Proof of Proposition 1: First, let us introduce some notations. Since B has
the form (5), there exists C1 = C1(B) > 0 such that

-〈Bx, x〉 " C1|Bx|2,∀x ∈ Cn. (26)
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We consider the characteristic polynomial

det(XIn −A(ω)) = Xn +
n−1∑

k=0

ak(ω)Xk,

ak(ω) being the coefficient of its k − th order term. We also set

M1 := max{‖BA(ω)k‖ : 0 ! k ! n− 1, ω ∈ Sm−1}, (27)

M2 := max{|ak(ω)| : 0 ! k ! n− 1, ω ∈ Sm−1}. (28)
Let ε∗ = ε∗(A1, ..., Am, B) > 0 be small enough so that, for every ω ∈ Sm−1,

n−1∑

k=1

εmk
∗ ‖(A(ω)t)kBtBA(ω)k−1‖ <

1
2
, (29)

M1ε
m1
∗ + εδ

∗ + nM2
2ε

δ
∗ <

C1

2
, (30)

M2
1(n− 1)
C1

εm1
∗ + εδ

∗(1 + nM2
2) <

1
2
. (31)

For ε ∈ (0, ε∗), ρ ∈ (0,+∞), ω ∈ Sm−1 and x ∈ Cn we consider

Lρ,ω,ε(x) := |x|2 + min{ρ,
1
ρ
}

n−1∑

k=1

εmk.〈BA(ω)k−1x, BA(ω)kx〉. (32)

Thanks to (29), one has
1
2
|x|2 ! Lρ,ω,ε(x) ! 3

2
|x|2,∀x ∈ Cn,∀ρ ∈ (0,+∞),∀ω ∈ Sm−1,∀ε ∈ (0, ε∗).

(33)
Let ε ∈ (0, ε∗). In order to simplify the notations and since ε is fixed, in the

sequel, we will rather write N∗(ω) and Lρ,ω instead of N∗,ε(ω) and Lρ,ω,ε.
When x solves (20), one has
d
dt [Lρ,ω(x)] = −2-(〈(B + iρAω)x, x〉)

−min{ρ, 1
ρ}

∑n−1
k=1 εmk.(〈BAk−1

ω (B + iρAω)x, BAk
ωx〉)

−min{ρ, 1
ρ}

∑n−1
k=1 εmk.(BAk−1

ω x,BAk
ω(B + iρAω)x〉)

(34)
where Aω := A(ω).

We now distinguish two cases: 0 < ρ < 1 and ρ > 1.
The case ρ ∈ (0, 1): Using (26), we get
d
dt [Lρ,ω(x)] ! −2C1|Bx|2 − ρ2

∑n−1
k=1 εmk |BAk

ωx|2
+ρ

∑n−1
k=1 εmk |Bx|[‖BAk−1

ω ‖|BAk
ωx|+ ‖BAk

ω‖|BAk−1
ω x|]

+ρ2
∑n−1

k=1 εmk |BAk−1
ω x||BAk+1

ω x|.
(35)

Moreover, by (27) and (21) we get

ρ
∑n−1

k=1 εmk |Bx|[‖BAk−1
ω ‖|BAk

ωx|+ ‖BAk
ω‖|BAk−1

ω x|]
! M1ρ

∑n−1
k=1 εmk |Bx|[|BAk

ωx|+ |BAk−1
ω x|]

! M1ρεm1 |Bx|2 +
∑n−1

k=1 2M1ρεmk |Bx||BAk
ωx|

! M1ρεm1 |Bx|2 +
∑n−1

k=1

(
C1

n−1 |Bx|2 + ρ2M2
1(n−1)
C1

ε2mk |BAk
ωx|2

)

! (C1 +M1ρεm1)|Bx|2 + ρ2M2
1(n−1)
C1

∑n−1
k=1 ε2mk |BAk

ωx|2.

(36)
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Using (22), we get

ρ2
∑n−1

k=1 εmk |BAk−1
ω x||BAk+1

ω x|
! ρ2εδ

∑n−1
k=1 ε

mk−1+mk+1
2 |BAk−1

ω x||BAk+1
ω x|

! 1
2ρ2εδ

∑n−1
k=1 εmk−1 |BAk−1

ω x|2 + εmk+1 |BAk+1
ω x|2

! ρ2εδ
∑n

k=0 εmk |BAk
ωx|2.

(37)

Thanks to Cayley-Hamilton theorem, Cauchy-Schwartz inequality, (28) and
(21), the last term of the right hand side in the previous inequality satisfies

ρ2εδ+mn |BAn
ωx|2 = ρ2εδ+mn |

∑n−1
k=0 ak(ω)BAk

ωx|2
! nM2

2ρ
2εδ+mn

∑n−1
k=0 |BAk

ωx|2
! nM2

2ρ
2εδ

∑n−1
k=0 εmk |BAk

ωx|2.
(38)

Finally, using (36), (37) and (38) in (35) and thanks to (30), (31), we get

d

dt
[Lρ,ω(x)] ! −C1

2
|Bx|2 − ρ2

2

n−1∑

k=1

εmk |BAk
ωx|2.

Therefore, using (24) and (33) we get

d

dt
[Lρ,ω(x(t))] ! −2c̃N∗(ω)ρ2Lρ,ω(x(t)) (39)

where
c̃ :=

1
6

min{C1, 1}.

Finally, thanks to (33), we get

|x(t)| !
√

3|x0|e−c̃N∗(ω)ρ2t.

The case ρ ∈ (1,+∞) : Now, let us justify the decay estimate in Proposition
1 for ρ ∈ (1,+∞). Let ρ ∈ (1,+∞) and ω ∈ Sm−1. When x solves (20), with
the same arguments as in the previous case, we get

d
dt [Lρ,ω(x(t))] ! −2C1|Bx|2 −

∑n−1
k=1 εmk |BAk

ωx|2
+ 1

ρ

∑n−1
k=1 εmk |Bx|[‖BAk−1

ω ‖|BAk
ωx|+ ‖BAk

ω‖|BAk−1
ω x|]

+
∑n−1

k=1 εmk |BAk−1
ω x||BAk+1

ω x|
(40)

and
d

dt
[Lρ,ω(x(t))] ! −C1

2
|Bx|2 − 1

2

n−1∑

k=1

εmk |BAk
ωx|2.

Note that the estimates we get are very close to those of the case ρ ∈ (0, 1)
except for the fact that, due to the weight 1/ρ on the second term in (32), all
terms in which ρ appears have to be divided by ρ.

Finally, with the same computations as in the first case, we get

|x(t)| !
√

3|x0|e−c̃N∗(ω)t.#
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Remark 4 The explicit Lyapunov function (32) is inspired by those introduced
by Villani in [22] to derive decay estimates for partially diffusive systems. In
[22] the operators under consideration are of the form L = A∗A+B where B is
antisymmetric. In our case the operator has rather the form L = B + iρA(ω)
where iρA(ω) is antisymmetric but B does not necessarily have any symmetry
property.

The Lyapunov functional we use is also similar to those used in the analysis
of the decay properties of dissipative wave equations, as, for instance, vtt−∆v+
vt = 0. There the systems under consideration are second order (in time), and
in the Fourier setting they take the form of the following dissipated harmonic
oscillator x̂′′ + |ξ|2x̂ + x̂′ = 0. The energy of the system is then given by

e(t) =
1
2

[
|x̂|2 + |x̂′|2

]
,

while the Lyapunov functional to be used to derive the decay is of the form

L(t) =
1
2

[
|x̂|2 + |x̂′|2

]
+ εx̂x̂′.

This corresponds precisely to functionals of the form (32) in the particular case
in which n = 2.

2.3 A new proof for Shizuta and Kawashima’s decompo-
sition

As a consequence of Proposition 1, the decomposition (14) is straightforward.

Theorem 1 We assume that B has form (5), A1, ..., Am are symmetric and
(SK) is satisfied. Then, there exist

C = C(A1, ..., Am, B), λ = λ(A1, ..., Am, B) > 0

such that, for every w0 ∈ L1 ∩ L2(Rm, Rn), the solution w(t, x) of (4) can be
decomposed as in (13) where (14) holds.

Proof of Theorem 1 : Let ε∗ > 0 be as in Proposition 1 and ε ∈ (0, ε∗).
Thanks to the implication “(1) ⇒ (4)" in Lemma 1, and in view of the (SK)
assumption, we have N∗,ε(ω) > 0 for every ω ∈ Sm−1. Moreover, the function
ω 1→ N∗,ε(ω) is continuous on the compact set Sm−1 and, therefore, there exists
N∗ > 0 such that N∗,ε(ω) " N∗, for every ω ∈ Sm−1. We define w1 and w2 by

ŵ1(t, ξ) := ŵ1(t, ξ)1|ξ|>1 and ŵ2(t, ξ) := ŵ1(t, ξ)1|ξ|<1.

Tanks to Proposition 20, one has,

|ŵ1(t, ξ)| !
√

3|ŵ0(ξ)|e−c̃N∗t, |ŵ2(t, ξ)| !
√

3|ŵ0(ξ)|e−c̃N∗|ξ|2t,

for all ξ ∈ Rm and t ∈ (0,+∞). Thus, one has

‖w1(t)‖L2(Rm,Rn) !
√

3‖w0‖L2(Rm,Rn)e
−c̃N∗t,

‖w2(t)‖L∞(Rm,Rn) ! ‖ŵ2(t)‖L1(Rm,Rn)

!
√

3
∫

Rm |ŵ0(ξ)|e−c̃N∗|ξ|2tdξ
! Ct−m/2‖w0‖L1(Rm,Rn). #
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Remark 5 Let us compare the tools developed here with those in [20]. In [20],
the authors use algebraic tools to justify the equivalence between (SK) and the
existence of a compensating function (notion defined below) for (4). Then, they
use this compensating function to prove the decomposition of Proposition 1 with
an energy approach.

Definition 1 A C∞ map ω ∈ Sm−1 1→ K(ω) ∈ Cn∗n is a compensating func-
tion for (4) if

• K(−ω) = −K(ω), ∀ω ∈ Sm−1,

• K(ω) is a skew-symmetric matrix, for every ω ∈ Sm−1,

• B∗+B
2 + 1

2 (K(ω)A(ω) + (K(ω)A(ω))t) is positive definite for every ω ∈
Sm−1.

The proof of Proposition 1 contains the arguments to justify that, when εδ(1+
nM2

2) < 1/2, the expression

K(ω) :=
n−1∑

k=1

εmk [(A(ω)t)kBtBA(ω)k−1 − (A(ω)t)k−1BtBA(ω)k]

defines a compensating function and that

B∗ + B

2
+

1
2
(K(ω)A(ω) + (K(ω)A(ω))∗) " 1

2
min{C1, 1}N∗,ε(ω).

Notice that, once a compensating function K(ω) is known, the expression

L̃ε(x) := |x|2 + ε min{1, ρ}.〈K(ω)x, x〉

for ε > 0 small enough, provides a Lyapunov function for the proof of Proposi-
tion 1.

Our proof is however much more direct and yields the desired decay rate by
means of an explicit Lyapunov function, inspired by Lemma 1.

3 L2-stability and non dissipated solutions
This section is devoted to the study of the L2-stability and the non dissipated
solutions of (4) when (SK) does not hold i.e. D(A1, ..., Am, B) $= {0}.

In subsection 3.1, we show that there are many situations in which (SK)
does not hold, which is a motivation for the analysis developed in the following
subsections. In subsection 3.2 we prove that, either D(A1, ..., Am, B) is a strict
algebraic submanifold of Rm, or, D(A1, ..., Am, B) = Rm. In subsection 3.3, we
prove that, in the first case, (4) is strongly stable in L2, i. e. all L2 solutions
tend to zero in L2 as t → ∞. In subsection 3.4, we prove that, in the second
one, there exist non dissipated solutions of constant L2-norm. In subsection 3.5,
we deduce a complete classification of the decomposition of the solutions in 1D
(m = 1). In subsection 3.6, we prove that D(A1, ..., Am, B) = Rm is a necessary
condition for the existence of traveling waves with L2 profiles but this condition
fails to be sufficient when m " 2.
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3.1 (SK) is rarely satisfied
The goal of this section is to emphasize that there are many situations in which
(SK) does no hold. This fact motivates the analysis developed in the following
subsections.

The first case is when m > n and B has form (5) with n2 < n. Indeed, in
that case the set

{ξ ∈ Rm;
m∑

j=1

a(j)
k,1ξj = 0 for k = 2, ..., n}

is a non empty vector subspace of Rm. It is contained in D(A1, ..., Am, B).
Indeed, for every ξ in this set, we have A(ξ)e1 = (

∑m
j=1 a(j)

1,1ξj)e1, thus e1 is an
eigenvector of A(ξ) that belongs to Ker(B).

As a consequence, the property (SK) may only be satisfied when m ! n.
However, for any pair (m,n) with m ! n, and any value of n1 there are examples
for which (SK) does not hold. Indeed, let m,n ∈ N∗ with m ! n, n1 ∈ {1, ..., n−
1} and n∗n real matrices A1, ..., Am, B with A1, ..., Am symmetric and B of the
form (5). We assume that a(1)

2,1 $= 0, a(j)
2,1 = 0 for j = 2, ...,m, and a(j)

k,1 = 0 for
j = 1, ...,m and k = 3, ..., n. Then A(ξ)e1 = (

∑m
j=1 a(j)

1,1ξj)e1 + a(1)
2,1ξ1e2. Thus,

for every ξ in the hyperplane

{ξ ∈ Rm; ξ1 = 0},

e1 is a eigenvector of A(ξ) that belongs to Ker(B). Therefore, D(A1, ..., Am, B)
contains this hyperplane and (SK) is not fulfilled.

3.2 The set of degeneracy
Proposition 2 Let A1, ..., Am, B be n ∗ n real matrices such that A1, ..., Am

are symmetric and B has form (5). The set of degeneracy D(A1, ..., Am, B) is
an algebraic submanifold of Rm. In other words, there exists a finite family of
polynomials (Pj)j∈J ⊂ R[X] such that

D(A1, ..., Am, B) = {ξ ∈ Rm;Pj(ξ) = 0,∀j ∈ J}. (41)

Thus, either D(A1, ..., Am, B) = Rm, or D(A1, ..., Am, B) has zero measure.
Moreover, D(A1, ..., Am, B) is stable by homotheties.

Remark 6 Note that it can happen that D(A1, ..., Am, B) = Rm, the dissipation
matrix B being non-trivial. Indeed, the fact that D(A1, ..., Am, B) = Rm means
only that, for each ξ, there is a direction in which the dissipation mechanism is
not effective but this is compatible, as we shall see, with B being non-trivial (see
Section 3.6).

Proof of Proposition 2 : Thanks to Lemma 1, one may characterize the
set of degeneracy D(A1, ..., Am, B) as the set of those ξ ∈ Rm such that any
n ∗n subdeterminant of the Kalman matrix K defined in (18) (with A replaced
by A(ξ)) vanishes. The polynomials Pj in the statement of Proposition 2 are
precisely those corresponding to these subdeterminants.
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Then, either all the polynomials vanish identically, and then

D(A1, ..., Am, B) = Rm,

or, if some of them do not, the measure of D(A1, ..., Am, B) vanishes.
With the definition (15) of the set of degeneracy, it is clear that, when

ξ ∈ D(A1, ..., Am, B) and α ∈ R, then, αξ ∈ D(A1, ..., Am, B).
#

According to the previous propositions, there are therefore only two possi-
ble cases, depending on the size of the set of degeneracy. Of course, smaller
D(A1, ..., Am, B) is, better decay properties we expect. The case in which (SK)
holds is a very particular instance where the measure of D(A1, ..., Am, B) van-
ishes, since, in that case, actually, D(A1, ..., Am, B) is reduced to the trivial set
{0}. One of the main goals of this section is to describe what happens when the
measure of the set of degeneracy vanishes, but (SK) does not hold.

To do that it is first convenient to consider some examples. The first con-
clusion is that, in some cases, D(A1, ..., Am, B) is a vector subspace. But, this
is not necessarily always the case. This makes the analysis of the decay rate of
(7) as a function of ξ more delicate.

We introduce the notation

αk,l = αk,l(ξ) :=
m∑

j=1

a(j)
k,lξj ,

for ξ ∈ Rm, 1 ! k, l ! n, where Aj = (a(j)
k,l)1!k,l!n. Then A(ξ) = (αk,l)1!k,l!n.

Obviously, αk,l = αl,k, 1 ! k, l ! n. In the following examples, it is easier to
use the definition (15) of D(A1, ..., Am, B) in order to compute the polynomials
than using the minors of the Kalman matrix.

Example 1 : Let us consider the case n1 = 1. The definition gives

D(A1, ..., Am, B) = {ξ ∈ Rm;αk,1 = 0,∀k ∈ {2, ..., n}}.

Thus, D(A1, ..., Am, B) is a vector subspace.

Example 2 : Let us consider the case n1 = 2. The definition allows char-
acterizing D(A1, ..., Am, B) as the set of those ξ ∈ Rm for which there exists
α, β, γ ∈ R such that

(
α1,1 α1,2

α1,2 α2,2

) (
α
β

)
= γ

(
α
β

)
and ααk,1 + βαk,2 = 0,∀k " 3.

Computing explicitly α, β as functions of α1,1, α1,2, α2,2, distinguishing the
cases (α, β) = (1, 0), (α, β) = (0, 1) and (α $= 0 and β $= 0), we get

D = D1 ∪ D2 ∪ D3+ ∪ D3−,

where

Dj(A1, ...Am, B) := {ξ ∈ Rm;αk,j = 0,∀k $= j} for j ∈ {1, 2},

and D3±(A1, ...Am, B) are the sets of those ξ ∈ Rm such that, for every k " 3,

2α1,2αk,1 =
(
α1,1 − α2,2 ±

√
(α1,1 − α2,2)2 + 4α2

1,2

)
αk,2.
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Now, we distinguish two cases.

Example 2.a : Let us consider matrices A1, ..., Am such that a(j)
1,1 − a(j)

2,2 =
δa(j)

1,2 for j = 1, ...,m, for some δ ∈ R∗. Then α1,1 − α2,2 = δα1,2 and

D3+ ∪ D3−(A1, ...Am, B) = {ξ ∈ Rm; 2αk,1 = [δ ±
√

δ2 + 4]αk,2,∀3 ! k ! n}.

Thus D(A1, ..., Am, B) is the union of a finite number of vector subspaces of Rm.

Example 2.b : Now, let us take n = 3, m = 5 and A1, ..., A5 defined by

A1 :=




1 0 0
0 0 0
0 0 ∗



 , A2 :=




0 0 0
0 1 0
0 0 ∗



 , A3 :=




0 1 0
1 0 0
0 0 ∗



 ,

A4 :=




0 0 1
0 0 0
1 0 ∗



 , A5 :=




0 0 0
0 0 1
0 1 ∗



 ,

where the notation ∗ means that the corresponding coefficient may have any
real value. Then, α1,1 = ξ1, α2,2 = ξ2, α1,2 = ξ3, α3,1 = ξ4, α3,2 = ξ5. Thus

D3±(A1, ...A5, B) = {ξ ∈ R5; 2ξ3ξ4 + (ξ2 − ξ1)ξ5 = ±ξ5

√
(ξ1 − ξ2)2 + 4ξ2

3}.

Obviously, D3± are not vector subspaces and, consequently, the set of degener-
acy can not be written as the union of a finite number of vector subspaces of
Rm neither.

3.3 A NSC for strong L2 stability
Proposition 3 Let A1, ..., Am, B be n ∗n real matrices with B of the form (5),
A1, ..., Am being symmetric. The following statements are equivalent

• (1) the measure of D(A1, ..., Am, B) vanishes,

• (2) any solution of (4) with L2(Rm, Rn) initial condition converges to zero
strongly in L2(Rm, Rn) as t →∞.

Proof: First, we prove that “(1)⇒(2)". We assume that the measure of
D(A1, ..., Am, B) vanishes. Let w0 ∈ L2(Rm, Rn) and w be the solution of
(4) with initial condition w0. Applying Proposition 1, we get, for ε > 0 small
enough,

|ŵ(t, ξ)| !
√

3|ŵ0(ξ)|e−c̃ min{|ξ|2,1}N∗,ε(ω)t

where ω := ξ/|ξ|. Thanks to the implication “(1) ⇒ (4)" in Lemma 1 and since
the measure of D(A1, ..., Am, B) vanishes, then, for almost every ω ∈ Sm−1,
N∗,ε(ω) > 0. Thus ŵ(t, ξ) → 0 when t → +∞ for almost every ξ ∈ Rm.
Moreover, |ŵ(t, .)| ! |ŵ0(.)| ∈ L2(Rm, Rn). Thus, the dominated convergence
theorem implies that ŵ(t) converges to zero in L2(Rm, Rn) when t → +∞.

Now, we prove “(2) ⇒ (1)". Let us assume (2) holds. Let ϕ ∈ S(Rm, R) be
such that ϕ > 0 on Rm. Let w(1)

0 ∈ L2(Rm, Rn) be defined by ŵ(1)
0 (ξ) := ϕ(ξ)e1

and w(1) be the solution of (4) with initial condition w(1)
0 . One has

ŵ(1)(t, ξ) = exp[E(ξ)t]e1ϕ(ξ).
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Since w(1)(t) → 0 strongly in L2(Rm, Rn), there exists an increasing sequence
(t(1)p )p∈N ⊂ R+ such that

exp[E(ξ)t(1)p ]e1 → 0 when [p → +∞] for almost every ξ ∈ Rm.

Let w(2)
0 ∈ L2(Rm, Rn) be defined by ŵ(2)

0 (ξ) := ϕ(ξ)e2 and w(2) be the solution
of (4) with initial condition w(2)

0 . The sequence (w(2)(t(1)p ))p∈N tends to zero
strongly in L2(Rm, Rn). Thus, there exists a subsequence (t(2)p )p∈N of (t(1)p )p∈N
such that

exp[E(ξ)t(2)p ]e2 → 0 when [p → +∞] for almost every ξ ∈ Rm.

Iterating this process for k = 1, ..., n, one gets an increasing sequence (tp)p∈N ⊂
R+ and a subset N of Rm of zero measure such that

exp[E(ξ)tp] → 0 in Rn∗n,∀ξ ∈ Rm −N . (42)

Let ξ ∈ Rm − N . The convergence (42) implies that the real part of any
eigenvalue of E(ξ) has a negative real part. Thus, A(ξ) has no eigenvector in
Ker(B) since, otherwise, one would get an eigenvalue λ of E(ξ) with -(λ) = 0.
In conclusion D(A1, ..., Am, B) is contained in N and, consequently, its measure
vanishes. #

Remark 7 As a consequence of this result, and in view of Proposition 2 which
classifies the possible structures for the set of degeneracy, we deduce that, when-
ever D(A1, ..., Am, B) is a strict subset of Rm, all solutions tend to zero in L2

strongly as t → ∞. In the following section we show that, in the other case, i.
e. when D(A1, ..., Am, B) coincides with Rm, there are non-trivial solutions of
constant L2-norm.

3.4 A NSC for the existence of non dissipated solutions
Proposition 4 Let A1, ..., Am, B be n ∗ n real matrices with B of the form (5)
and A1, ..., Am symmetric. The following statements are equivalent

• (1) D(A1, ..., Am, B) = Rm,

• (2) there exists a non dissipated solution of (4), i.e. with a constant L2-
norm.

The following Lemma will be important in the proof of Proposition 4.

Lemma 2 Let A1, ..., Am, B be n ∗ n real matrices with B of the form (5) and
A1, ..., Am symmetric. Let w0 ∈ L2(Rm, Rn) and w be the solution of (4) with
initial condition w0. The following statements are equivalent

• (1) w is not dissipated i.e. ‖w(t)‖L2 ≡ ‖w0‖L2 ,

• (2) for almost every ξ ∈ Rm, ŵ0(ξ) belongs to

V (ξ) := {v ∈ Cn, BA(ξ)kv = 0,∀k ∈ N}.
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Proof of Lemma 2 : Let us prove (1) ⇒ (2). We assume w is not
dissipated. We have

d

dt

∫

Rm

|w(t, x)|2dx = −2
∫

Rm

〈Bw(t, x), w(t, x)〉dx ≡ 0,

thus Bw ≡ 0, which implies Bŵ ≡ 0. Thus the expression (9) can be written

ŵ(t, ξ) = exp[−iA(ξ)t]ŵ0(ξ).

The equality Bŵ ≡ 0 implies

B exp[−iA(ξ)t]ŵ0(ξ), for every t ∈ R+, for almost every ξ ∈ Rm.

Differentiating k times this equality with respect to time at t = 0, we get (2).
Now, let us prove (2) ⇒ (1). We assume that, for almost every ξ ∈ Rm,

ŵ0(ξ) ∈ V (ξ). By definition, V (ξ) is a vector subspace of Ker(B) stable by
A(ξ), thus (9) gives

ŵ(t, ξ) =
∞∑

k=0

tk

k!
[−B−iA(ξ)]kŵ0(ξ) =

∞∑

k=0

tk

k!
[−iA(ξ)]kŵ0(ξ) = exp[−iA(ξ)t]ŵ0(ξ).

Therefore ‖w(t)‖L2 = ‖ŵ(t)‖L2 ≡ ‖w0‖L2 , i.e. (1) holds. #

Proof of Proposition 4 : Let us prove (2)⇒ (1). We assume there exists
a non dissipated solution w, associated to an initial condition w0 ∈ L2(Rm, Rn)
with w0 $= 0. Thanks to Lemma 2, we know that, for almost every ξ ∈ Rm,
ŵ0(ξ) ∈ V (ξ). So, for almost every ξ ∈ Supp(w0) (the support of w0), V (ξ)
is a non empty vector subspace of Ker(B) stable by A(ξ), moreover A(ξ)|V (ξ)

is symmetric, thus it has an eigenvector. We have proved that Supp(w0) ⊂
D(A1, ..., Am, B), thus the measure of D(A1, ..., Am, B) does not vanish and
Proposition 2 implies that (1) holds.

Now, let us prove (1) ⇒ (2). We assume D(A1, ..., Am, B) = Rm. Then
for every ξ ∈ Rm, V (ξ) $= {0} because V (ξ) contains at least an eigenvector
of A(ξ) that belongs to Ker(B). In order to prove that (2) holds, we build
an L2(Rm, Rn) initial condition w0 such that ŵ0(ξ) ∈ V (ξ), for every ξ ∈ Rm,
which gives the conclusion thanks to Lemma 2.

The Cayley-Hamilton theorem justifies that

V (ξ) = {v ∈ Cn;BA(ξ)kv = 0 for k = 0, ..., n− 1} = Ker(M1(ξ)),

where M1(ξ) =
∑n−1

k=0 A(ξ)kBtBA(ξ)k depends polynomially in ξ. For ξ ∈ Rm,
let P (ξ) be the orthogonal projection Rn → Ker(M1(ξ)). Let ξ∗ ∈ Rm and
z∗ ∈ Sn−1 ∩ Ker(M1(ξ∗)). The map ξ ∈ Rm 1→ P (ξ)z∗ is continuous at ξ∗

because M1(ξ) is an analytic perturbation of M1(ξ∗) (see, for example [12,
Chapter 2, Section 1.4]). Thus, there exists a neighborhood Ω1 of ξ∗ in Rm

with a positive finite measure such that ‖P (ξ)z∗‖ > 1/2, for every ξ ∈ Ω1. We
define

ŵ0(ξ) := P (ξ)z∗1Ω1∪(−Ω1)(ξ).

Then w0 ∈ L2(Rm, Rn) because |ŵ0(ξ)| ! 1Ω1∪(−Ω1)(ξ) and ŵ0(−ξ) = ŵ0(ξ).
Moreover, w0 $= 0 because ‖ŵ0(ξ)‖ " 1/2,∀ξ ∈ Ω1 ∪ (−Ω1). #
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Remark 8 According to the results in this section and the previous one, we
deduce that there are only two possibilities for the set of degeneracy which lead
to different asymptotic properties as t →∞:

• Whenever D(A1, ..., Am, B) is a strict subset of Rm, its measure vanishes,
and all solutions tend to zero in L2 strongly as t →∞.

• When D(A1, ..., Am, B) coincides with Rm, there are non-trivial solutions
of constant L2-norm.

3.5 Complete classification in the case m = 1

In this section we consider the 1D problem

wt + Awx = Bw. (43)

where A,B ∈ Rn∗n, w ∈ Rn and x ∈ R. Note that this simple case can be
treated directly and without the analysis developed in the previous subsections.
However, it is clarifying to treat it in the framework of the general theory we
have developed.

When m = 1, A(ξ) = ξA, since ξ is now scalar. Therefore, the (SK) condition
does not involve the Fourier variable ξ and can be written simply as

(SK) : Ker(B) ∩ {eigenvectors of A} = {0}.

Obviously, this is equivalent to requiring that the pair (A,B) satisfies the
Kalman rank condition

In 1D (m = 1), the (SK) condition characterizes completely the asymptotic
behavior of the solutions of (43).

Proposition 5 We assume that A is symmetric and B has the form (5). The
following holds:

• The following statements are equivalent

– (1) A and B satisfy (SK) : {eigenvectors of A}∩ Ker(B) = {0},
– (2) there exist C, λ > 0 such that, for every w0 ∈ L1 ∩ L2(R, Rn),

the solution of (43) can be decomposed as w = w1 + w2 where (14)
holds with m = 1.

• Moreover, if (SK) is not satisfied, any solution of (43) with initial condi-
tion in L2(R, Rn) may be decomposed as w = w1 + w2 + wtrw where w1,
w2 satisfy the previous estimates and wtrw is a pure transport term consti-
tuted by a finite sum of traveling waves, wtrw(t, x) =

∑r
j=1 wtrw,j(x−λjt),

where r ! n, λj ∈ R and wtrw,j ∈ L2(R, Rn) for j = 0, ..., r.

Proof of Proposition 5 : First, the implication “(1)⇒(2)" was proved
in Theorem 1.

Now, we prove the second statement, that also gives “(2)⇒(1)".
Assume that (SK) is false. Let V be the subspace of Ker(B) which is stable

by A (AV ⊂ V ) with maximal dimension constituted by the sum of all subspaces
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of Ker(B) stable by A. Let r :=dim(V ). The endomorphism A|V is symmetric
thus, there exists an orthonormal basis (v1, ..., vr) of V made of eigenvectors of
A : Avj = λjvj , j = 1, ..., r. Let V ⊥ be the orthogonal supplementary of V
in Ker(B) (i.e. Ker(B) = V + V ⊥) and (vr+1, ..., vn1) be an orthonormal basis
of V ⊥. Then, (v1, ..., vn1) is an orthonormal basis of Ker(B). Since Ker(B) =
Span(e1, ..., en1), then V := (v1, ..., vn1 , en1+1, ..., en) is an orthonormal basis of
Rn. Let P be the basis change matrix from the canonical basis (e1, ..., en) to
the basis V (the columns of P are the components of the vectors of V in the
canonical basis (e1, ..., en)). Then P−1BP = B,

〈Avj , vi〉 = 〈vj , Avi〉 = λi〈vj , vi〉 = 0,∀j ∈ {r + 1, ..., n1},∀i ∈ {1, ..., r},

〈Aej , vi〉 = 〈ej , Avi〉 = λi〈ej , vi〉 = 0,∀j ∈ {n1 + 1, ..., n},∀i ∈ {1, ..., r}.

Thus

Ã := P−1AP =





λ1 0 ... 0 0 ... 0
... ... ... ... ... ... ...

λr 0 ... 0 0 ... 0
0 ... 0 ∗ ... ∗ ∗ ... ∗
0 ... 0 ∗ ... ∗ ∗ ... ∗
0 ... 0 ∗ ... ∗ ∗ ... ∗
0 ... 0 ∗ ... ∗ ∗ ... ∗
0 ... 0 ∗ ... ∗ ∗ ... ∗
0 ... 0 ∗ ... ∗ ∗ ... ∗





where the first diagonal block is of dimension r∗r, the second one is of dimension
(n1 − r) ∗ (n1 − r) and the third one is of dimension n2 ∗ n2. Then w̃ := P−1w
solves

w̃t + Ãw̃x = −Bw̃

and w̃j(t, x) = w̃j(0, x − λjt) for j = 1, ..., r. These components are pure
transport terms. We define

wtrw := P





w̃1

...
w̃r

0
...
0




.

The (n − r) latest components of w̃ solve an hyperbolic system fulfilling the
(SK) condition. Thus, it may be decomposed as w̃1 + w̃2 with (14) for m = 1.
Finally, we take w1 := Pw̃1 and w2 := Pw̃2. This completes the decomposition
in three terms of the second statement.

Note that this argument shows that “(2) ⇒ (1)", as claimed. Indeed, if (1)
is not satisfied, i. e. the (SK) is not fulfilled, the argument above shows that,
then, there is a traveling wave component that does not decay, thus showing
that (2) does not hold either. #

3.6 The case D(A1, ..., Am, B) = Rm : traveling waves?
Obviously, the case D(A1, ..., Am, B) = Rm is the most degenerate one. Propo-
sition 4 shows that, in this case, there exist non dissipated solutions. In 1D
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(m = 1), any non dissipated solution is a finite sum of traveling waves (see
Proposition 5). Thus, it is natural to ask whether this is also true for m " 2.
As we shall see, this is not the case.

Proposition 6 We assume m " 2. The equality D(A1, ..., Am, B) = Rm is
necessary for the existence of a non trivial traveling wave solution of (4) with
an L2(Rm, Rn)-profile but it is not sufficient.

Remark 9 As a consequence, when m " 2, the non dissipated solutions exhibit
more complex structures that being sums of traveling waves.

Proof : First, we prove that D(A1, ..., Am, B) = Rm is necessary for the
existence of traveling waves solutions. Indeed, any non trivial traveling wave
solution is a non dissipated solution. Thus Proposition 4 gives the result.

Now, we prove that D(A1, ..., Am, B) = Rm is not sufficient for the existence
of traveling waves.

Let us remark that, when (4) has a traveling wave solution, then there exists
c ∈ Rm and Ω ⊂ Rm with positive measure, such that, for almost every ξ ∈ Ω,
A(ξ) has an eigenvalue λ(ξ) of the form

λ(ξ) =
m∑

j=1

cjξj (44)

associated to an eigenvector v(ξ) that belongs to Ker(B). As we will see, one can
easily build examples of matrices A1, ..., Am, B for which the later is impossible,
but D(A1, ..., Am, B) = Rm.

We consider the system (4) with m = 2 and

A1 :=




a1 a1,2 ∗
a1,2 a2 ∗
0 0 ∗



 , A2 :=




c1 c1,2 ∗
c1,2 c2 ∗
0 0 ∗



 , B :=




0 0 0
0 0 0
0 0 1





with a1,2 $= 0, c1,2 $= 0 and
δa

a1,2
$= δc

c1,2
, (45)

4δaδca1,2c1,2 $= (δac1,2)2 + (δca1,2)2, (46)

where δa := a2 − a1 and δc := c2 − c1. The notation “∗" means that the
corresponding coefficient may have any value. We claim that, for this choice
of the parameters a1, a1,2, a2, c1, c1,2, c2, one has D(A1, A2, B) = R2 but the
eigenvalues of (ξ1A1 + ξ2A2)|Ker(B) cannot have the form (44) on a subset of R2

with positive measure.
For (ξ1, ξ2) ∈ R2 − {0}, the subspace Ker(B) is stable by A(ξ) = ξ1A1 +

ξ2A2, and the restriction A(ξ)|Ker(B) is symmetric. Thus it has an eigenvector.
Therefore D(A1, A2, B) = R2.

The eigenvalues of (ξ1A1 + ξ2A2)|Ker(B) are

λ±(ξ1, ξ2) :=
1
2

(
(a1 + a2)ξ1 + (c1 + c2)ξ2 ±

√
∆(ξ1, ξ2)

)
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where
∆(ξ1, ξ2) = [δaξ1 + δcξ2]2 + 4[a1,2ξ1 + c1,2ξ2]2.

Thanks to (45), we have ∆(ξ1, ξ2) > 0 and there does not exist any α, β ∈ R
such that

∆(ξ1, ξ2) = (αξ1 + βξ2)2

on a subset of Rm with positive measure because of (46). Thus, non trivial
traveling wave solutions may not exist. #

Remark 10 The structure of the non dissipated solutions in a general context
needs to be further investigated.

4 Decomposition of the solutions when D is the
union of vector subspaces

As proved in previous sections, whenever the measure of D(A1, ..., Am, B) van-
ishes, all solutions tend to zero in L2 as t → ∞. This section is devoted to
analyze the asymptotic behavior in some more detail. As emphasized in Re-
mark 1, the asymptotic behavior of the solutions of (4) reduces to the study of
the real valued function ω ∈ Sm−1 1→ N∗,ε(ω), defined in Proposition 1. This
study is the key point of this section.

In all this section, we will consider situations in which the set of degeneracy
D(A1, ..., Am, B) has zero measure and is the union of vector subspaces. This as-
sumption is restrictive because, in general, when the measure ofD(A1, ..., Am, B)
vanishes, this set is an algebraic submanifold (see Proposition 2), which is not
necessarily a union of vector subspaces (see examples 1, 2.a, 2.b in subsection
3.2). However, this assumption holds in many particular examples, studied in
this section.

In subsection 4.1, we state a decomposition for the solutions of (4) when
D(A1, ..., Am, B) is a union of vector subspaces and under the additional as-
sumption

N∗,ε(ω) " cdist(ω, Sm−1 ∩ D)α , ∀ω ∈ Sm−1 (47)

for some α " 2, c > 0 (see Proposition 7).
In subsection 4.2, we prove that, in the particular case n1 = 1 (i.e. Ker(B) =

Span(e1)), D(A1, ..., Am, B) is a vector subspace of Rm and (47) holds with
α = 2 (see Proposition 8). This leads to a decomposition of the solutions of (4)
with n1 = 1 (see Theorem 2).

In subsection 4.3, we consider different explicit examples, in which the de-
generate set D(A1, ..., Am, B) is a union of vector subspaces and the smallest
exponent in (47) is α = 2 or α = 4. We deduce a decomposition of the solutions
of (4) for these particular cases (see Theorem 3). With these examples, we see
that, when m " 2, there is a whole class of phenomena that do not arise under
(SK).

Finally, in subsection 4.4, we write a complete classification of the different
possible asymptotic behaviors when n = 2.
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4.1 General statement
For g : Rm → Rn, we define L(g) : (0,+∞) → (0,+∞],

L(g)(ρ) := sup{|g(ξ)|; ξ ∈ Rm, |ξ| = ρ}.

Proposition 7 We assume m " 2. Let A1, ..., Am, B be n∗n real matrices with
A1, ..., Am symmetric and B of the form (5). Let ε ∈ (0, ε∗) where ε∗ is as in
Proposition 1. We assume

• (A1)
D(A1, ..., Am, B) = ∪J

j=1Dj ,

where J ∈ N∗ and Dj is a vector subspace of Rm with codimension rj ∈ N∗,

• (A2) there exists cj > 0, αj " 2 for j = 1, ..., J , such that, for every
ω ∈ Sm−1 with dist(ω,D(A1, ..., Am, B)) = dist(ω,Dj),

N∗,ε(ω) " cjdist(ω,Dj)αj . (48)

Then, there exists C = C(A1, ..., Am, B) and λ = λ(A1, ..., Am, B) > 0 such
that, for every w0 ∈ L1 ∩ L2(Rm, Rn) with

N1(w0) :=
∫ ∞

1
ρm−1L[ŵ0](ρ)dρ < ∞, (49)

the solution of (4) with initial condition w0 can be decomposed as

w = w1 + w2 + w3 + w4

where (14) holds and

‖w3(t)‖L∞(Rm,Rn) ! C

t
1
α

N1(w0),∀t ∈ (0,+∞), (50)

where α := max{α1, ..., αJ} and

‖w4(t)‖L∞(Rm,Rn) ! C




J∑

j=1

1

t
rj
αj



 ‖w0‖L1(Rm,Rn),∀t ∈ (0,+∞). (51)

Remark 11 The assumption (49) holds, in particular, when w0 belongs to the
the Schwartz space S(Rm, Rn). Indeed, in that case, ŵ0 ∈ S(Rm, Rn), Thus,
there exists C > 0 such that, for every ξ ∈ Rm,

|ŵ0(ξ)| ! C

|ξ|m+1
,

which leads to ∫ ∞

1
ρm−1L(ŵ0)(ρ)dρ !

∫ ∞

1

C

ρ2
dρ.

The assumption (49) also holds when w0 belongs to Hs(Rm, Rn) with s large
enough.
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Remark 12 We refer to the Examples 1 and 2.a of Subsection 3.2 for which
the assumption (A1) holds with different values for the codimensions rj. For
example, in the example 2.a, any Dj is defined by (n− 2) linear equations, but
some of them may be linearly dependent, thus the codimension of Dj may take
any value rj ∈ {1, ...,m − 1} by varying n and the coefficients of the matrices
A1, ..., Am.

Note that the assumption αj " 2 is natural. Indeed, let us consider ω∗ ∈
Sm−1∩D(A1, ..., Am, B) and let us assume that the map ω 1→ N∗,ε(ω) is smooth
in a neighborhood of ω∗ (this can be justified, for example, when N∗,ε(ω∗) = 0
is a simple eigenvalue of the matrix Mε(ω∗) defined by (23)). Since N∗,ε is non
negative and N∗,ε(ω∗) = 0, then, necessarily, dN∗,ε(ω∗) = 0. Thus, the Taylor
formula justifies that, in a neighborhood of ω∗ we have

N∗,ε(ω) ! |d2N∗,ε(ω∗)||ω − ω∗|2.

Therefore, if (A2) holds, then, necessarily αj " 2.

Remark 13 Note that in Proposition 7, we do not assume (SK) to hold. Conse-
quently, in the decomposition of the solution, one has two other terms that decay
more slowly with rates t−1/α and max{t−rj/αj ; 1 ! j ! J}. Note also that, nec-
essarily, rj/αj < m/2 because rj < m and α " 2 whenever D(A1, ..., Am, B) is
not trivial.

Proof of Proposition 7 : In order to simplify the notations in this proof,
we write D instead of D(A1, ..., Am, B).

Let d ∈ (0, 1). We define w1, w2, w3, w4 by the following expressions, for
every t ∈ (0,+∞) and for every ξ ∈ R∗,

ŵ1(t, ξ) := ŵ(t, ξ)1ρ>11dist(ω,D)>d

ŵ2(t, ξ) := ŵ(t, ξ)1ρ<11dist(ω,D)>d

w3 :=
∑J

j=1 w3,j

ŵ3,j(t, ξ) := ŵ(t, ξ)1ρ>11dist(ω,D)=dist(ω,Dj)<d

w4 :=
∑J

j=1 w4,j

ŵ4,j(t, ξ) := ŵ(t, ξ)1ρ<11dist(ω,D)=dist(ω,Dj)<d.

Thanks to Proposition 1 and assumption (A2), there exists c > 0 depending on
d, cj , αj such that, for every ξ ∈ Rm,

|ŵ1(t, ξ)| !
√

3|ŵ0(ξ)|e−ct,

|ŵ2(t, ξ)| !
√

3|ŵ0(ξ)|e−cρ2t.

The same computations as in the proof of Theorem 1 lead to

‖w1(t)‖L2(Rm,Rn) !
√

3‖w0‖L2(Rm,Rn)e
−ct,

‖w2(t)‖L∞(Rm,Rn) ! C
tm/2 ‖w0‖L1(Rm,Rn).

We fix j ∈ {1, ..., J}. In the study of w3,j and w4,j , we will use new coordi-
nates on Rm. We introduce the orthogonal sum

Rm = D⊥j +Dj : ξ = ξ′ + ξ′′.
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We fix an orthonormal basis (b′1, ..., b′rj
) of D⊥j and another orthonormal basis

(b′′1 , ..., b′′m−rj
) of Dj . For ξ = (ξ1, ..., ξm)t ∈ Rm − {0}, let ρ := |ξ| ∈ R∗+,

θ ∈ [0, π/2] be such that

|ξ′| = ρ cos(θ) i.e. θ := arccos
(
|ξ′|
|ξ|

)
.

Then ξ′ = ρ cos(θ)ζ∗, ξ′′ = ρ sin(θ)ζ∗∗, where ζ∗ ∈ D⊥j ∩ Sm−1, ζ∗∗ ∈ Dj ∩
Sm−1. There exists a unique pair (α, β) with α = (α1, α2, ..., αrj−1) ∈ Ωα :=
[−π/2, π/2) × [0, 2π)rj−2, β = (β1, β2, ..., βm−rj−1) ∈ Ωβ := [−π/2, π/2) ×
[0, 2π)m−rj−2, such that

ζ∗ = cos(α1) cos(α2)... cos(αrj−2) cos(αrj−1)b′1+
cos(α1) cos(α2)... cos(αrj−2) sin(αrj−1)b′2+
cos(α1) cos(α2)... sin(αrj−2)b′3+
...
...
cos(α1) sin(α2)b′rj−1+
sin(α1)b′rj

,

ζ∗∗ = cos(α1) cos(α2)... cos(αm−rj−2) cos(αm−rj−1)b′′1+
cos(α1) cos(α2)... cos(αm−rj−2) sin(αm−rj−1)b′′2+
cos(α1) cos(α2)... sin(αm−rj−2)b′′3+
...
...
cos(α1) sin(α2)b′′m−rj−1+
sin(α1)b′′m−rj

.

In the following arguments, we will use the change of variables (ξ1, ..., ξm) →
(ρ, θ, α, β), (ξ1, ..., ξm) → (ξ′, ξ′′). We have

dξ1...dξm = dξ′dξ′′

because ξ = (ξ1, ..., ξm) 1→ (ξ′, ξ′′) is a unitary linear transformation. We have

dξ1...dξm = J(ρ, θ, α, β)dρdθdαdβ,

where J is the Jacobian of the change of variables. Since the dependence of
ξ with respect to θ, α1, ..., αrj−1, β1, ..., βm−rj−1 always involves the functions
cos(.) and sin(.), there exists C = C(Dj) > 0 such that,

|J(ρ, θ, α, β)| ! Cρm−1dρdθdαdβ. (52)

Now, let us compute a bound on w3,j . For ξ ∈ Rm, we have the orthogonal
decomposition

Rm = D⊥j + Dj
ξ
|ξ| = ξ′

|ξ| + ξ′′

|ξ|

thus
|ξ′|
|ξ| = dist

(
ξ

|ξ| ,Dj

)
, (53)
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therefore

D3,j := {ξ ∈ Rm; |ξ| > 1,dist
(

ξ
|ξ| ;D

)
= dist

(
ξ
|ξ| ;Dj

)
< d}

= {ξ ∈ Rm; |ξ| > 1, |ξ
′|
|ξ| < d}

= {ξ ∈ Rm; ρ > 1, cos(θ) < d}.

Using the previous inclusion, Proposition 1, the assumption (48) and finally
(53), we get

‖w3,j(t)‖L∞ ! ‖ŵ3,j(t)‖L1

!
∫

D3,j
|ŵ(t, ξ)|dξ

!
∫

D3,j

√
3|ŵ0(ξ)|e−cN∗(ξ/|ξ|)tdξ

!
∫

D3,j

√
3|ŵ0(ξ)|e−ccjdist(ξ/|ξ|,Dj)

αj tdξ

!
∫

D3,j

√
3|ŵ0(ξ)|e−ccj(|ξ′|/|ξ|)αj tdξ.

Now, we perform a change of variable (ξ1, ..., ξm) → (ρ, θ, α, β). Thanks to (52),
we have

‖w3,j(t)‖L∞ !
∞∫

1

π/2∫

θ(d)

∫

Ωα

∫

Ωβ

C
√

3L[ŵ0](ρ)e−ccj cos(θ)αj tρm−1dρdθdαdβ,

where θ(d) := arccos(d) (indeed |ξ′|/|ξ| = cos(θ) < d in D3,j). Therefore, we
have

‖w3,j(t)‖L∞ ! C1N1(w0)

π/2∫

θ(d)

e−ccj cos(θ)αj tdθ,

where C1 := C
√

3vol(Ωα)vol(Ωβ). Performing the change of variable

y = cos(θ)t1/αj i.e. θ = arccos
(

y

t1/αj

)
,

we get
π/2∫

θ(d)

e−ccj cos(θ)αj tdθ =
dt1/αj∫

0
e−ccjyαj 1√

1− y2

t
2/αj

dy

t1/αj

! 1
t1/αj

1√
1−d2

∞∫

0
e−ccjyαj

dy.

This proves (50) with any constant C such that

C " C1√
1− d2

J∑

j=1

∞∫

0

e−ccjyαj
dy.

Now, let us compute a bound on w4,j . With the same strategy, we get

‖w4,j(t)‖L∞ !
∫

D4,j

√
3|ŵ0(ξ)|e−c|ξ|2N∗(ξ/|ξ|)tdξ

!
∫

D4,j

√
3|ŵ0(ξ)|e−ccj |ξ|2(|ξ′|/|ξ|)αj tdξ,

where

D4,j := {ξ ∈ Rm; |ξ| < 1,dist(ξ/|ξ|,D) = dist(ξ/|ξ|,Dj) < d}.
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Using ‖ŵ0‖L∞ ! ‖w0‖L1 , the inequality |ξ|2 cos(θ)αj " [|ξ| cos(θ)]αj = |ξ′|αj

(because αj " 2) and the inclusion

D4,j ⊂ {ξ ∈ Rm; |ξ′| < d, |ξ′′| < 1},

we get

‖w4,j(t)‖L∞ !
√

3‖w0‖L1vol(BRm−rj (0, 1))
∫

ξ′∈BRrj (0,d)
e−ccj |ξ′|αj tdξ′.

Performing the change of variable ζ = t1/αj ξ′, we get
∫

ξ′∈BRrj (0,d)
e−cc̃|ξ′|αj tdξ′ ! 1

trj/αj

∫

Rr

e−ccj |ζ|αj
dζ,

which gives (51) with any constant C such that

C "
√

3
J∑

j=1

vol(BRm−rj (0, 1))
∫

Rr

e−ccj |ζ|αj
dζ. #

Remark 14 Extending the validity of this kind of decomposition to more gen-
eral situations (i.e. when the algebraic submanifold D(A1, ..., Am, B) is not the
union of a finite number of vector subspaces) is an open problem. Indeed, the
strategy used in the proof would need a parameterization of the submanifold
D(A1, ..., Am, B). In this case the conditions to be imposed on the initial datum
to ensure a similar decomposition are also to be clarified.

4.2 Decomposition when n1 = 1

This subsection is devoted to study the function ω ∈ Sm−1 1→ N∗,ε(ω) for ε > 0,
defined in Proposition 1 in the particular case n1 = 1 (i.e. Ker(B) = Span(e1)).
The parameters ε, m0, ...,mn−1 are fixed as in Proposition 1.

Proposition 8 Let A1, ..., Am, B be n ∗ n real matrices with A1, ..., Am sym-
metric and B of the form (5) with n1 = 1. Then

• (1) D(A1, ..., Am, B) is a vector subspace,

• (2) there exists ε∗ = ε∗(A1, ..., Am, B) > 0 such that, for every ε ∈ (0, ε∗),
there exists c = c(ε, A1, ..., Am, B) such that, for every ω ∈ Sm−1,

N∗,ε(ω) " cdist(ω,D)2.

A direct consequence of Proposition 8 and Proposition 7 is the following
theorem.

Theorem 2 Under the same assumptions as in Proposition 8, there exists
C, λ > 0 such that, for every w0 ∈ L1 ∩ L2(Rm, Rn) with (49), the solution
of (4) with initial condition w0 can be decomposed as

w = w1 + w2 + w3 + w4
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where (14) holds and

‖w3(t)‖L∞(Rm,Rn) ! C√
t
N1(w0),∀t ∈ (0,+∞) (54)

‖w4(t)‖L∞(Rm,Rn) ! C

t
r
2
‖w0‖L1(Rm,Rn)),∀t ∈ (0,+∞), (55)

where r := codim(D(A1, ..., Am, B).

Proof of Proposition 8 : The assumption n1 = 1 implies that

D(A1, ..., Am, B) = {ξ ∈ Rm; e1 is an eigenvector of A(ξ)}
= {ξ ∈ Rm;

∑m
j=1 a(j)

k,1ξj = 0,∀k = 2, ..., n}, (56)

which proves (1).

Let ε∗ > 0 be such that
2M2

1

c
εm1
∗ <

1
2
,

εm1
∗

n∑

k=2

( m∑

j=1

|a(j)
k,1|

)2
< 1,

where M1 is defined by (27) and c = c(B) is such that |Bv|2 " c|v|2,∀v ∈
Span(e2, ..., en). We have

N∗(ω) = min
{ n−1∑

k=0
εmk |BA(ω)kx|2;x ∈ Sn−1

}

" min
{
|Bx|2 + εm1 |BA(ω)x|2;x ∈ Sn−1

}
.

Let ω ∈ Rm −D(A1, ..., Am, B) and x ∈ Sn−1. We consider the decomposition
x = βe1 + x⊥ where β ∈ R and x⊥ ∈ Span(e2, ..., en). Thanks to the definition
of c and (27), we have

|Bx|2 + εm1 |BA(ω)x|2
= |Bx⊥|2 + β2εm1 |BA(ω)e1|2 + εm1 |BA(ω)x⊥|2 + 2βεm1〈BA(ω)e1, BA(ω)x⊥〉
" c|x⊥|2 + β2εm1 |BA(ω)e1|2 − 2|β|εm1 |BA(ω)e1|M1|x⊥|
" c

2 |x⊥|
2 + β2εm1

(
1− 2M2

1
c εm1

)
|BA(ω)e1|2

" c
2 |x⊥|

2 + β2

2 εm1 |BA(ω)e1|2.

Since Be1 = 0, we have

BA(ω)e1 = B





0
m∑

j=1
a(j)
2,1ωj

...
m∑

j=1
a(j)

n,1ωj





thus there exists a positive constant c = c(B) such that

|BA(ω)e1|2 " c
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ωj

∣∣∣
2
.
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Therefore,

|Bx|2 + εm1 |BA(ω)x|2 " c

2
min




1; εm1

n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ωj

∣∣∣
2




 (|x⊥|2 + β2),

thus

N∗(ω) " εm1c

2

n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ωj

∣∣∣
2
.

In order to conclude, let us prove the existence of a constant C > 0 such that
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ωj

∣∣∣
2

" Cdist(ω,D)2.

Let D⊥ be the orthogonal supplementary of the subspace D. Thanks to (56),
the quadratic form

ω̃ ∈ D⊥ 1→
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ω̃j

∣∣∣
2

is positive definite on D⊥. Thus, there exists C > 0 such that
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ω̃j

∣∣∣
2

" C|ω̃|2,∀ω̃ ∈ D⊥.

Using the decomposition

Rm = D ⊕ D⊥
ω = ω- + ω̃

we get
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ωj

∣∣∣
2

=
n∑

k=2

∣∣∣
m∑

j=1

a(j)
k,1ω̃j

∣∣∣
2

" C|ω̃|2 = Cdist(ω,D)2,∀ω ∈ Sm−1.#

4.3 Discussion on explicit examples
This section is devoted to the study of explicit examples, and discussing the
optimal value of the exponents αj in the assumption (48) of Proposition 7 .
Note that the optimal values of the exponents αj are important in the study
of the asymptotic behavior of (4) because they appear in the decomposition of
these solutions (see Proposition 7).

Consider the case m " 2,

A1 :=




0 1 0
1 0 0
0 0 0



 , A2 :=




0 0 1
0 0 0
1 0 0



 , B :=




0 0 0
0 0 0
0 0 1



 ,

Ak = 0 for k = 3, ...,m and the associated system (4) with ξ ∈ Rm. Then, we
have n1 = 2 and, for every ξ = (ξ1, ..., ξm)t ∈ Rm,

A(ξ) =
m∑

j=1

ξjAj =




0 ξ1 ξ2

ξ1 0 0
ξ2 0 0



 .
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Thus
D = D1 ∪ D2

where
D1 := {ξ ∈ Rm; ξ1 = 0},D2 := {ξ ∈ Rm; ξ2 = 0}.

(see the analysis made in Example 2.a in Section 3.2).

Proposition 9 There exists ε∗ > 0 such that, for every ε ∈ (0, ε∗),

(1) with m = 2, there exists c > 0 such that,

N∗(ω) " cdist(ω,D)2 , ∀ω ∈ S1. (57)

(2) with m " 3, (57) fails but there exists c > 0 such that

N∗(ω) " cdist(ω,D)4 , ∀ω ∈ Sm−1. (58)

The previous proposition leads to the following remarks

• The assumption n1 = 1 is not necessary for (57) to hold. Indeed, it holds
for the example studied in this section with m = 2 and in that case n1 = 2.

• The power αj in (48), that coincides with 2 when n1 = 1, may be strictly
greater than 2 when n1 " 2. Indeed, for the example studied in this
section with m " 3, (48) holds with αj = 4 but not with αj = 2.

Propositions 9 and 7 lead to the following decomposition for the solutions of
(4) with the previous matrices.

Theorem 3 Let m " 2 and A1, ..., Am, B be defined at the beginning of this
section. There exists C, λ > 0 such that, for every w0 ∈ L1 ∩ L2(Rm, Rn) with
(49), the solution of (4) with initial condition w0 can be decomposed as

w = w1 + w2 + w3 + w4

where (14) holds and

• when m = 2,

‖w3(t)‖L∞(Rm,Rn) ! C√
t
N1(w0),∀t ∈ (0,+∞), (59)

‖w4(t)‖L∞(Rm,Rn) ! C

t
m−1

2
‖w0‖L1(Rm,Rn)),∀t ∈ (0,+∞), (60)

• when m " 3,

‖w3(t)‖L∞(Rm,Rn) ! C

t
1
4
N1(w0),∀t ∈ (0,+∞), (61)

‖w4(t)‖L∞(Rm,Rn) ! C

t
m−1

4
‖w0‖L1(Rm,Rn)),∀t ∈ (0,+∞). (62)
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Proof of Proposition 9 : Let ε∗ > 0 be such that

εm2
∗ <

1
2
,

and ε ∈ (0, ε∗). Easy computations lead to

Mε(ω) =
2∑

k=0

εmkA(ω)kBtBA(ω)k =




εm1ω2

2 0 0
0 εm2ω2

1ω2
2 εm2ω1ω3

2

0 εm2ω1ω3
2 1 + εm2ω4

2



 (63)

Thus, for every v ∈ S2, we have

vtM(ω)v = εm1ω2
2v2

1 + εm2ω2
1ω2

2v2
2 + 2εm2ω1ω3

2v2v3 + [1 + εm2ω4
2 ]v2

3

" εm1ω2
2v2

1 + 1
2εm2ω2

1ω2
2v2

2 + [1− εm2ω4
2 ]v2

3

" min{εm1ω2
2 , 1

2εm2ω2
1ω2

2 , 1− εm2ω4
2}.

Noticing that, for every ω ∈ Sm−1,

1− εm2ω4
2 " 1− εm2 >

1
2

>
1
2
εm2ω2

1ω2
2 ,

and using the definition (24), we get

N∗(ω) " min{εm1ω2
2 ,

1
2
εm2ω2

1ω2
2}. (64)

1st case : m = 2. For every ω ∈ S1, we have ω2
1 + ω2

2 = 1 thus (64) leads
to

N∗(ω) " min{εm1 ,
1
4
εm2}dist(ω,D)2.

2nd case : m " 3. Let ω ∈ Sm−1 and j ∈ {1, 2} be such that dist(ω,D) =
dist(ω,Dj). Then |ωj | ! |ωi| ! 1 for i ∈ {1, 2} such that i $= j, thus (64) leads
to

N∗(ω) " min{εm1 ,
1
2
εm2}|ωj |4 = min{εm1 ,

1
2
εm2}dist(ω,D)4.

Now, let us show that (57) may not hold with m " 3. We consider ω ∈ Sm−1

of the form

ω =





ω1

2ω1√
1− 5ω2

1

0
...
0




, (65)

where ω1 > 0 is small. Using the definition of N∗,ε(ω) given by (24) and the
explicit expression of the matrix Mε(ω) given by (63), we get

N∗(ω) ! et
2Mε(ω)e2 = 4εm2ω4

1 = 4εm2dist(ω,D)4.

We conclude by considering points ω ∈ Sm−1 of the form (65), with ω1 → 0. #
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4.4 Complete classification in the case n = 2

Let us consider the system (4) with

Aj :=

(
a(j)
1 a(j)

1,2

a(j)
1,2 a(j)

2

)
, B :=

(
0 0
0 1

)
, (66)

with a(j)
1 , a(j)

1,2, a
(j)
2,1, a

(j)
2 ∈ R. All possible partially dissipated systems with n = 2

enter in this setting. Obviously, in this case, n1 = n2 = 1.

Theorem 4 Let m ∈ N∗, m " 2, and A1, ..., Am, B be real matrices of the form
(66).

(A) When a(j)
1,2 = 0, for j = 1, ...,m, then, D(A1, ..., Am, B) = Rm, and, for

every solution of (4) with L2(Rm, R2) initial condition, the first component is a
traveling wave and the second one decays exponentially in L2.

(B) Let us assume that there exists j ∈ {1, ...,m} such that a(j)
1,2 $= 0. Then

D(A1, ..., Am, B) = {ξ ∈ Rm;
∑m

j=0 a(j)
1,2ξj = 0} is an hyperplane of Rm and there

exist C = C(A1, ..., Am, B) > 0 and λ = λ(A1, ..., Am, B) > 0 such that, for
every w0 ∈ L1 ∩L2(Rm, R2) with (49), the solution of (4) with initial condition
w0 can be decomposed as

w = w1 + w2 + w3

where (14) holds and

‖w3(t)‖L∞(Rm,R2) ! C√
t
(N1(w0) + ‖w0‖L1(Rm,Rn))

Proof of Proposition 4 : (A) can be obtained from easy explicit com-
putations and (B) is a consequence of Theorem 2. #

5 Summary array of the classification, open prob-
lems and conjectures

5.1 Summary array of the classification
We recapitulate the results proved in Sections 2, 3 and 4 in the following array.
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m,n (SK) D L2 stability decomposition
m = 1 yes {0} yes e−t + 1√

t

∀n no R no e−t + 1√
t
+ tr. wave

n = 2 yes {0} yes e−t + 1
t

∀m no hyperplane yes e−t + 1
t + 1√

t

no Rm no e−t + tr. wave
∀n yes {0} yes e−t + 1

tm/2

∀m no ∪vs codim r yes conjecture :
e−t + 1

t
m
2

+ 1

t
r

(2(n−1))
+ 1

t
1

2(n−1)

no submanifold yes open problem
no Rm no open problem

∀n no vs codim r yes e−t + 1

t
m
2

+ 1

t
r
2

+ 1√
t

∀m
n1 = 1

In this array, by the expression “tr. waves” in the second line we mean “a sum
of a finite number of traveling waves”, and in the fifth one “a traveling wave”.
The notation “∪ vs codim r” in the seventh line means that D(A1, ..., Am, B)
is the union of a finite number of vector subspaces Dj , j = 1, ..., J such that
codim(Dj) " r for j = 1, ..., J . The expression “vs codim r” in the last line
means that D(A1, ..., Am, B) is a vector subspace with codimension r.

In the first and second lines we collect the results of Proposition 5. The
third, fourth and fifth lines refer to Theorem 4. The sixth line comes from
Theorem 1. The seventh line is explained in the next subsection. The eighth
and ninth lines summarize the results of Propositions 2, 3 and 4. Finally, the
tenth line contains the results of Theorem 2.

5.2 Open problems and conjectures
The decomposition of the solutions of (4) when m " 2, n " 3 are arbitrary is
an open problem.

The simplest situation not covered in this article should be the case when
the set of degeneracy is a finite union of vectors subspaces of Rm. We conjecture
that, in that case, the following inequality holds

N∗,ε(ω) " cdist(ω,D)2(n−1). (67)

The intuition of the exponent 2(n− 1) comes from the definition

N∗,ε(ω) := min{
n−1∑

k=0

εmk |BA(ω)kx|2;x ∈ Sn−1}.

Indeed, for every x ∈ Sn−1,
n−1∑
k=0

εmk |BA(ω)kx|2 is polynomial of ω with degree

! 2(n − 1). If the conjecture (67) is valid, then Proposition 7 leads to a de-
composition for the solutions of (4) when D(A1, ..., Am, B) is a finite union of
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vectors subspaces of Rm. This decomposition is written in the seventh line of
the array.

Similarly, when the set of degeneracy is a strict algebraic submanifold of Rm

of codimension r, we conjecture that any solution of (4) can be decomposed as
w = w1 + w2 + w3 + w4 where w1 and w2 satisfy (14) and

‖w3(t)‖L∞ ! C

t
1

2(n−1)
N(w0),

‖w4(t)‖L∞ ! C
1

t
r

2(n−1)

‖w‖L1 ,

where the constant C depends on the parameterization of the algebraic mani-
fold D(A1, ..., Am, B). However, in this situation, it would not be sufficient to
understand the behavior of N∗,ε(ω) since one would also need the analogue of
Proposition 7.

Another open problem is the nature of the non dissipated solutions and the
decomposition of the solutions when D(A1, ..., Am, B) = Rm.

6 Global existence around a constant equilibrium
for the nonlinear system

6.1 Problem formulation
In this section, we study non linear systems of balance laws of the form

∂w

∂t
+

m∑

j=1

∂Fj(w)
∂xj

= Q(w) (68)

where m,n ∈ N∗, w : R×Rm → Rn, w = w(t, x) is the unknown, Fj , Q : Rn →
Rn are smooth functions, and

Q(w) :=
(

0
q(w)

)

where 0 ∈ Rn1 and q(w) ∈ Rn2 .
We consider a constant equilibrium We ∈ Rn i.e. Q(We) = 0. The aim of this

section is to investigate under what conditions the source term may prevent the
breakdown of smooth solutions, in a neighborhood of We. This question has
been addressed earlier, for instance, in [23], under the following assumptions
(H0)-(H2) in order to deal with strictly entropy dissipative symmetrizable
systems.
(H0) : The differential dw2q(We) is invertible.
(H1) : There exists a strictly convex entropy η = η(w), defined in a convex
compact neighborhood G of We, such that d2

wη(w)dwFj(w) is symmetric for
every w ∈ G and for every j ∈ {1, ...,m}.
(H2) : There exists a constant CG > 0 such that, for every w ∈ G,

[dwη(w)− dwη(We)] ·Q(w) ! −CG|Q(w)|2,∀w ∈ G. (69)
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Under these conditions, in [23] the existence of global smooth solutions in a
neighborhood of We was proved, when the linearized system around We satisfies
(SK).

We shall also assume that the hypotheses (H0)-(H2) are fulfilled. Moreover,
in order to simplify the proof, we will assume the following assumption (H3).
(H3) : There exists D ∈ Rn2×n2 positive definite such that

Q(w) :=
(

0
−Dw2

)
. (70)

In subsection 6.2, we make precise Yong’s statement in [23] by giving an
explicit estimate of the size of the neighborhood of We in which global existence
holds. The possibility of measuring this size explicitly is a key ingredient in the
degenerate case, studied in subsection 6.3, where we show that the (SK) con-
dition on the linearized system around We is not necessary for global existence
around We. More precisely, in subsection 6.3, we consider a constant degenerate
equilibrium We and we assume the existence of a sequence of non degenerate
equilibria (W p

e )p∈N converging to We and such that the quantity N∗,W p
e

in (24)
measuring the decay rate (25) for the linearized system around W p

e converges
to zero slowly enough. Then, we prove the existence of global smooth solutions
for (68) in a neighborhood of We. Our theorem takes advantage of the contribu-
tion of the nonlinearity, when the linearized system is degenerate. Our proof is
inspired by Coron’s return method for nonlinear control (see [4]). We end this
section with an example of application of this theorem.

6.2 Size of the neighborhood for global existence under
(SK)

In this section, we assume that (SK) holds. More precisely, it is supposed that
the following hypothesis is fulfilled.

(H4) : The linearized system around We satisfies (SK),

Ker(B) ∩ {eigenvectors of AWe(ω)} = {0},∀ω ∈ Sm−1,

where AWe(ω) :=
∑m

j=1 ωjAj(We), Aj(We) := dwFj(We) and

B :=
(

0 0
0 D

)
.

Thus, using the same notations as in Proposition 1, we deduce that

N∗,We := min{
n−1∑

k=0

εmk |BAWe(ω)kx|2;x ∈ Sn−1, ω ∈ Sm−1} > 0.

We now introduce the compensating function

KWe(ω) :=
n−1∑

k=1

εmk [AWe(ω)∗kB∗BAWe(ω)k−1 −AWe(ω)∗k−1B∗BAWe(ω)k]

with the notations of Proposition 1 (see the definition of a compensation function
in Remark 5). We know that

B∗ + B

2
+

1
2
(KWe(ω)AWe(ω) + (KWe(ω)AWe(ω))∗) " 1

2
N∗,We . (71)
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We introduce

CWe := max{‖KWe(ω)‖;ω ∈ Sm−1}, (72)

δWe :=
1
2

min{ 1
CWe

,
N∗,We

2C2
We
‖D‖2 + ‖D‖N∗,We

}. (73)

Theorem 5 We assume that (H0), (H1), (H2), (H3) and (H4) are fulfilled.
Let s " [m/2] + 2 be an integer and M > 0 be such that

‖Q‖Cs(G) +
m∑

j=1

‖Aj‖Cs(G) ! M. (74)

Then, there exist νp = νp(η, G,M) > 0 for p = 1, 2, 3 such that, for every
w0 ∈ We + Hs(Rm, Rn) with

‖w0 −We‖Hs(Rm,Rn) < ν1N∗,We min{δWe , ν2},

the system (68) has a unique global solution

w ∈ C0([0,+∞),We + Hs(Rm, Rn))

satisfying, for every T > 0,

‖w(T )−We‖2Hs +
∫ T

0
‖w2‖2Hs +

δWeN∗,We

2

∫ T

0
‖∇xw‖2Hs−1 ! ν3‖w0 −We‖2Hs .

(75)

Proof of Theorem 5 : Thanks to the assumption (H3), we have We2 = 0.
We proceed in several steps.
Step 1: Let w0 ∈ We +Hs(Rm, Rn). From the local in time existence theory of
Hs solutions, we know that there exists T > 0 depending only on ‖w0−We‖Hs

such that (68), with initial value w0, has a unique solution

w ∈ C0([0, T ],We + Hs(Rm, Rn)).

As long as (75) holds, one has

‖w(T )−We‖Hs(Rm,Rn) ! √
ν3‖w0 −We‖Hs .

Since the right hand side of this estimate does not depend on T , the solution
can be continued up to T = +∞. Thus, to prove the theorem, we only need to
justify the bound (75).
Step 2: Let us now prove (75). Arguing as in [23, pp 255-259] we get the
existence of Cp = Cp(η, G,M) > 0, for p = 1, 2 such that

‖w(T )−We‖2Hs +
∫ T
0 ‖w2(t)‖2Hsdt

! C1‖w0 −We‖2Hs + C2Ns(T )
∫ T
0

(
‖∇xw(t)‖2Hs−1 + ‖w2(t)‖2Hs−1

)
dt

(76)

where
Ns(T ) := sup

0!t!T
‖w(t)−We‖Hs .
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In order to control the term
∫ T
0 ‖∇xw(t)‖2Hs−1dt, we use the linearized system

around We. Here we develop the arguments in [23] making them more precise.
We have

∂w

∂t
+

m∑

j=1

Aj(We)
∂w

∂xj
= Q(w) + hWe

where

hWe :=
m∑

j=1

[Aj(We)−Aj(w)]
∂w

∂xj
.

Applying the Fourier transform, we get

∂ŵ

∂t
+ iAWe(ξ)ŵ = Q̂(w) + ĥWe . (77)

We compute the imaginary part of the scalar product in Cn of equation (77)
with KWe(ω)ŵ(t, ξ) (where ξ = |ξ|ω). Using the skew symmetry of KWe(ω), we
get

.(〈KWe(ω)ŵ,
∂ŵ

∂t
〉) + |ξ|〈ŵ,KWe(ω)AWe(ω)ŵ〉 = .〈KWe(ω)ŵ, Q̂(w) + ĥWe〉.

Thanks to (71), (72) and Cauchy-Schwarz inequality, we get

|ξ|(N∗,We
2 |ŵ|2 − ‖D‖|ŵ2|2) ! −.〈KWe(ω)ŵ, ∂ŵ

∂t 〉+ CWe |ŵ|(|Q̂(w)|+ |ĥWe |)
! −.〈KWe(ω)ŵ, ∂ŵ

∂t 〉+ N∗,We |ξ|
4 |ŵ|2

+ 2C2
We

N∗,We |ξ|
(|Q̂(w)|2 + |ĥWe |2).

Multiplying this inequality by |ξ|2k−1, integrating over (0, T )t × Rm
ξ , and sum-

ming over k ∈ {1, ..., s}, we get

N∗,We
4

∫ T
0 ‖∇xw‖2Hs−1dt ! CWe [‖w(T )−We‖2Hs + ‖w0 −We‖2Hs ]

+
∫ T
0 ‖D‖‖w2‖2Hsdt

+ 2C2
We

N∗,We

∫ T
0 ‖Q(w)‖2Hs−1 + ‖hWe‖2Hs−1dt.

(78)

Indeed, we have
∑s

k=1

∫ T
0

∫
Rm |ξ|2k−1.〈KWe(ω)ŵ, ∂ŵ

∂t 〉dξdt
=

∑s
k=1

∫
Rm |ξ|2k−1(〈KWe(ω)ŵ(T ), ŵ(T )〉 − 〈KWe(ω)ŵ(0), ŵ(0)〉)dξ

! CWe

∑s
k=1

∫
Rm |ξ|2k−1(|ŵ(T )|2 + |ŵ0|2)dξ

! CWe(‖w(T )−We‖2Hs + ‖w0 −We‖2Hs).

Let C̃M > 0 be such that, for every t ∈ (0, T ),

‖hWe(t)‖Hs−1 !
m∑

j=1

|Aj |Cs−1(G)Ns(T )
∥∥∥∥

∂w

∂xj

∥∥∥∥
Hs−1

! C̃MNs(T )‖∇xw(t)‖Hs−1 .

We get
N∗,We

4

∫ T
0 ‖∇xw‖2Hs−1dt ! CWe [‖w(T )−We‖2Hs + ‖w0 −We‖2Hs ]

+
(
‖D‖+ 2C2

We
‖D‖2

N∗,ε

) ∫ T
0 ‖w2‖2Hsdt

+ 2C2
We

C̃2
M

N∗,We
Ns(T )2

∫ T
0 ‖∇xw‖2Hs−1dt.

(79)
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Thus multiplying (79) by δWe and adding (76), we get

1
2‖w(T )−We‖2Hs +

(
1
2 − C2Ns(T )

) ∫ T
0 ‖w2‖2Hs + δWe N∗,We

4

∫ T
0 ‖∇xw‖2Hs−1

!
(
C1 + 1

2

)
‖w0 −We‖2Hs+(

C2Ns(T ) + 2δWe C̃2
MNs(T )2 C2

We
N∗,We

) ∫ T
0 ‖∇xw‖2Hs−1 .

(80)
Indeed, the definition of δWe (see (73)) implies

δWe

(
‖D‖2 +

2CW 2
e
CM

N∗,ε

)
! 1

2

and
δWeCWe ! 1

2
. (81)

So, as long as Ns(T ) is small enough so that w(t, .) ∈ G on (0, T ), C2Ns(T ) < 1/4
and

C2Ns(T ) + 2δWe C̃2
MNs(T )2

C2
We

N∗,We

! δWeN∗,We

8
(82)

we have (75) with ν3 := 4(C1 + 1) and

‖w(T )−We‖Hs ! 2
√
C1 + 1‖w0 −We‖Hs . (83)

The inequality (82) holds in particular when

C2Ns(T ) ! δWe N∗,We
16 and 2δWe C̃2

MNs(T )2 C2
We

N∗,We
! δWe N∗,We

16 ,

i.e. when

Ns(T ) ! N∗,We min

{
δWe

16C2
,

1
4
√

2C̃MCWe

}
. (84)

The inequality (83) justifies that (84) holds as soon as

‖w0 −We‖Hs <
1

2
√
C1 + 1

N∗,We min

{
δWe

16C2
,

1
4
√

2C̃MCWe

}
.

We have proved Theorem 5 with

ν1 := 1
32C2

√
C1+1

, ν2 := 4C2√
2C̃MCWe

, ν3 := 4(C1 + 1). #

Remark 15 Thanks to the careful study of the linear hyperbolic systems in the
previous sections, one sees that Yong’s strategy [23] we have pursued here cannot
be applied directly to the case where the linearized system around the equilibrium
We does not satisfy (SK). For example, if the linearized system around We is
such that

N∗,We(ω) " cdist(ω,D)2,

we cannot get a control on the whole term
∫ T
0 ‖∇xw(t)‖2Hs−1dt but only on part of

the gradient. This corresponds to the situation where some of the space directions
are missing in the first order derivatives in the linearized system. In that case,
the PDE does not have any structure on those missing variables which are only
unstructured parameters, the gain of time-space estimates being impossible on
those directions.
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6.3 Global existence without (SK)
In this subsection, we assume the following hypothesis.
(H5) The linearized system around We does not satisfy (SK), but there exists
a sequence of constant equilibria (W p

e )p∈N ⊂ G such that

• W p
e → We when p → +∞,

• for every p ∈ N, the linearized system around W p
e satisfies (SK).

Theorem 6 We assume that (H0)- (H3) and (H5) are fulfilled. Let s "
[m/2] + 2 be an integer and M > 0 be such that (74) holds. There exist νk =
νk(η, G,M) > 0 for k = 0, 1, 2, 3 such that, if

N∗(W p
e ) > ν0CW p

e
|W p

e −We|, for p large enough, (85)

then, there exists p ∈ N∗ such that for every w0 ∈ We + Hs(Rm, Rn) with

‖w0 −We‖Hs(Rm,Rn) < ν1N∗,W p
e

min{δW p
e
, ν2}, (86)

the system (68) has a unique global solution w ∈ C0([0,+∞),We+Hs(Rm, Rn))
satisfying, for every T > 0,

‖w(T )−We‖2Hs +
∫ T

0
‖w2‖2Hs +

δW p
e
N∗,W p

e

2

∫ T

0
‖∇xw‖2Hs−1 ! ν3‖w0−We‖2Hs .

(87)

Remark 16 Obviously (H5) implies that N∗,W p
e
→ 0 when p → +∞. The

assumption (85) only says that this convergence is not too fast.

Proof of Theorem 6 : This proof is an adaptation of the proof of Theorem
5 and the same notations will be used.

As in the proof of Theorem 5, there exists C1 = C1(η, G) > 0, C2 =
C2(η, G,A1, ..., Am) > 0 such that (76) holds.

In order to control
∫ T
0 ‖∇xw(t)‖2Hs−1dt, we use the linearized system around

W p
e for p large enough writing

∂w

∂t
+

m∑

j=1

Aj(W p
e )

∂w

∂xj
= Q(w) + hW p

e
.

Applying the Fourier transform, we get

∂ŵ

∂t
+ iAW p

e
(ξ)ŵ = Q̂(w) + ĥW p

e
. (88)

We compute the imaginary part of the scalar product of this equation with
KW p

e
(ω)ŵ(t, ξ). Performing the same analysis as in the proof of Theorem 5, we

get

N∗,W
p
e

4

∫ T
0 ‖∇xw‖2Hs−1dt ! CW p

e
[‖w(T )−We‖2Hs + ‖w0 −We‖2Hs ]

+(‖D‖+
2C2

W
p
e
‖D‖2

N∗,W
p
e

)
∫ T
0 ‖w2(t)‖2Hsdt

+
2C2

W
p
e

N∗,W
p
e

∫ T
0 ‖hW p

e
(t)‖2Hs−1dt.

(89)
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Moreover, there exists C̃M > 0 such that for every t ∈ (0, T ),

‖hW p
e
(t)‖Hs−1 = ‖hWe(t) +

∑m
j=1[Aj(We)−Aj(W p

e )] ∂w
∂xj

(t)‖Hs−1

! C̃M[Ns(T ) + |We −W p
e |]‖∇xw(t)‖Hs−1 .

Thus,

N∗,W
p
e

4

∫ T
0 ‖∇xw‖2Hs−1dt ! CW p

e
[‖w(T )−We‖2Hs + ‖w0 −We‖2Hs ]

+(‖D‖+
2C2

W
p
e
‖D‖2

N∗,W
p
e

)
∫ T
0 ‖w2(t)‖2Hs

+
4C2

W
p
e
C̃2
M

N∗,W
p
e

(
Ns(T )2 + |We −W p

e |2
) ∫ T

0 ‖∇xw‖2Hs−1dt.

(90)
Multiplying (90) by δW p

e
and adding (76), as long as C2Ns(T ) < 1/4, we get

1
2‖w(T )−We‖2Hs + 1

4

∫ T
0 ‖w2‖2Hs +

δW
p
e

N∗,W
p
e

4

∫ T
0 ‖∇xw‖2Hs−1

!
(
C1 + 1

2

)
‖w0 −We‖2Hs

+
(
C2Ns(T ) + 4δW p

e
C̃2
M[Ns(T )2 + |We −W p

e |2]
C2

W
p
e

N∗,W
p
e

) ∫ T
0 ‖∇xw‖2Hs−1dt.

So, as long as

C2Ns(T ) + 4δW p
e
C̃2
M[Ns(T )2 + |We −W p

e |2]
C2

W p
e

N∗,W p
e

! δW p
e
N∗,W p

e

8
, (91)

we have (87) with ν3 := 4(C1 + 1). The inequality (91) holds in particular when

C2Ns(T ) ! δW
p
e

N∗,W
p
e

24 ,

4δW p
e
C̃2
M

C2
W

p
e

N∗,W
p
e

Ns(T )2 ! δW
p
e

N∗,W
p
e

24 ,

4δW p
e
C̃2
M

C2
W

p
e

N∗,W
p
e

|We −W p
e |2 ! δW

p
e

N∗,W
p
e

24 ,

i.e. when

Ns(T ) ! min

{
δW p

e
N∗,W p

e

24C2
,

N∗,W p
e√

96CW p
e
C̃M

}
, (92)

and
|We −W p

e | !
N∗,W p

e√
96CW p

e
C̃M

.

The inequality (87) proves that (92) holds when

‖w0 −We‖Hs ! 1
2
√
C1 + 1

min

{
δW p

e
N∗,W p

e

24C2
,

N∗,W p
e√

96CW p
e
C̃M

}
.

We have proved Theorem 6 with

ν0 :=
√

96C̃M, ν1 :=
1

48C2
√
C1 + 1

, ν2 :=
√

24C2

2CW p
e
C̃M

, ν3 := 4(C1 + 1).#

Of course, the assumption (H6) may be difficult to check on a given system
of conservation laws. But it gives an easy way to build examples of non linear
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systems of conservation laws with global smooth solutions in a neighborhood of
a degenerate constant equilibrium.

Example of application of Theorem 6 : Let us consider (68) with
m = 1, n = 2,

F (w) =
(

F (1)(w)
F (2)(w)

)
, Q(w) =

(
0
w2

)
, We =

(
0
0

)
, W p

e =
(

ap

0

)
,

where ap $= 0 and ap → 0. We assume

•
∂F (2)

∂w1
(We) = 0,

•
∂F (1)

∂w2
(w) =

∂F (2)

∂w1
(w),∀w ∈ G, (93)

where G is a neighborhood of We in R2,

• there exists M > 0 such that
∣∣∣
∂F (2)

∂w2
(W p

e )
∣∣∣ ! M

∣∣∣
∂F (1)

∂w2
(W p

e )
∣∣∣,∀p ∈ N. (94)

The assumption (H0) is fulfilled because q(w) = −w2 thus dw2q(w) = −1
is invertible. The assumption (H1) holds with η(w) := |w|2 because dwF (w)
is symmetric thanks to the assumption (93). The assumption (H2) is fulfilled
with CG = 1. It is clear that (H3) holds.

By definition, N∗,W is the smallest eigenvalue of the non negative matrix



εm1

(
∂F (2)

∂w1
(W )

)2
εm1 ∂F (2)

∂w1
(W )∂F (2)

∂w2
(W )

εm1 ∂F (2)

∂w1
(W )∂F (2)

∂w2
(W ) 1 + εm1

(
∂F (2)

∂w2
(W )

)2



 ,

thus N∗,We = 0, i.e. (SK) is not satisfied for the linearized system around We

and, for ε > 0 small enough, we have

N∗,W p
e

" 1
2
εm1

∣∣∣
∂F (2)

∂w1
(W p

e )
∣∣∣
2
.

By definition of CW p
e

and thanks to (94), we have

CW p
e

! 2εm1(1 + M)
∣∣∣
∂F (2)

∂w1
(W p

e )
∣∣∣

Thus, (85) holds in particular when
∣∣∣
∂F (1)

∂w2
(W p

e )
∣∣∣ > 4ν0(1 + M)|W p

e −We|,

which is valid, in particular, when
∣∣∣

∂2F (1)

∂w2∂w1
(We)

∣∣∣

is large enough. At this point, it is clear that the assumption (85) takes advan-
tage of the nonlinearity.
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Remark 17 Finally, let us notice that Theorem 6 does not apply to the isen-
tropic Euler equation with damping,

∂w

∂t
+

∂F (w)
∂x

=
(

0
−w2

)
, F (w) =

(
−w2

f(w1)

)
,We =

(
0
0

)
,W p

e =
(

ap

0

)
,

where ap $= 0 and ap → 0 when p → +∞. Indeed, easy calculations show that
the non validity of (SK) for the linearized system around We is equivalent to
f ′(0) = 0 and the assumption (85) is equivalent to

|f ′(ap)|2 > ν̃0|ap|,∀p ∈ N∗.

This last inequality is impossible when f is smooth. Therefore, the existence
of global smooth solutions in a neighborhood of zero, for this equation, when
f ′(0) = 0 stays an open problem.
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