Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling

Piotr BILER
Mathematical Institute, University of Wrocław pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland biler@math.uni.wroc.pl,
Jean DOLBEAULT
CEREMADE, U.M.R. C.N.R.S. no. 7534, Université Paris IX-Dauphine
Pl. du Maréchal de Lattre de Tassigny,
75775 Paris Cédex 16, France
dolbeaul@ceremade.dauphine.fr

Peter A. MARKOWICH
Institut für Mathematik, University of Vienna,
Boltzmanngasse 9, A-1090 Wien, Austria
Peter.Markowich@univie.ac.at
July 1, 1999

Abstract

We study the asymptotic behavior as $t \rightarrow+\infty$ of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential.

In plasma physics applications the damping is caused by a spatiotemporal rescaling of an "unconfined" problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac or fast diffusion/porous media type.

Key words and phrases: nonlinear drift-diffusion systems, asymptotic behavior of solutions, logarithmic Sobolev inequalities, fast diffusion, porous media
1991 Mathematics Subject Classification: 35Q, 35B40

1 Introduction

Consider the system

$$
\begin{align*}
& u_{t}=\nabla \cdot(\nabla f(u)+u \nabla V+\beta(t) u \nabla \phi) \\
& v_{t}=\nabla \cdot(\nabla f(v)+v \nabla V-\beta(t) v \nabla \phi) \tag{1.1}\\
& \Delta \phi=v-u
\end{align*}
$$

in $\mathbb{R}_{t}^{+} \times \mathbb{R}_{x}^{d}, d \geq 3$, and assume that β is a nonnegative decreasing function of time t with $\lim _{t \rightarrow+\infty} \beta(t)=0$. V is the exterior potential with $V(x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$. The initial data $u_{0}=u(t=0), v_{0}=v(t=0)$ are assumed to be in $L_{+}^{1}\left(\mathbb{R}_{x}^{d}\right)$. The function f satisfies

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(s)>0 \quad \forall s \in(0, \infty) \tag{1.2}
\end{equation*}
$$

The system (1.1) can be regarded as a model for a bipolar plasma, where both types of particles are confined by a potential $V(x)$, and where the Poisson coupling (mean field) becomes asymptotically weaker as $t \rightarrow+\infty$. In the next section, we derive such a model by a spatio-temporal rescaling from a system without confinement and without damping of the mean field. The function f defines the density-pressure constitutive relation, which is taken equal for both particle species (cf [8]).

Note that the minimum principle implies $u(t), v(t) \geq 0$ (since we assumed $u_{0}, v_{0} \geq 0$). We remark that for the following we always take the Newtonian potential ψ of g as solution of $-\Delta \psi=g$ in \mathbb{R}^{d}.

In this paper the nonlinearities we have in mind are either

$$
\begin{equation*}
f(s)=s^{m}, \quad s \geq 0 \tag{1.3}
\end{equation*}
$$

where the cases $m<1, m=1$ and $m>1$ correspond to the fast diffusion equation, the heat equation (linear diffusion) and the porous media equation respectively, or the following diffusion equation corresponding to "physical" 3-dimensional flows in the Fermi-Dirac thermodynamical framework. Define, with $\epsilon>0$ a parameter, $F: \mathbb{R} \rightarrow(0, \infty)$ by

$$
\begin{equation*}
F(\sigma):=\int_{\mathbb{R}_{v}^{3}} \frac{d v}{\epsilon+\exp \left(|v|^{2} / 2-\sigma\right)} . \tag{1.4}
\end{equation*}
$$

Clearly, $F(-\infty)=0, F(\infty)=\infty$. The nonlinearity f in (1.1) then reads

$$
\begin{equation*}
f(s)=s F^{-1}(s)-\int_{0}^{s} F^{-1}(\tau) d \tau, \quad 0 \leq s<\infty \tag{1.5}
\end{equation*}
$$

(where F^{-1} denotes the inverse function of F).
Note that stationary solutions of the equation

$$
z_{t}=\nabla \cdot(\nabla f(z)+z \nabla V)=\nabla \cdot(z(\nabla h(z)+\nabla V))
$$

where $h^{\prime}(s)=f^{\prime}(s) / s$, are of the form

$$
\begin{aligned}
& z(x)=(C-V(x))_{+}^{1 /(m-1)} \quad \text { if } \quad m \neq 1, \\
& z(x)=C e^{-V(x)} \quad \text { if } \quad m=1
\end{aligned}
$$

for (1.3), and

$$
z(x)=\int_{\mathbb{R}_{v}^{3}} \frac{d v}{\epsilon+C \exp \left(V(x)+|v|^{2} / 2\right)}
$$

for (1.4)-(1.5).
At the end of this introduction, let us mention a (nonexhaustive) list of references related to this work. Concerning the Gross logarithmic Sobolev inequalities in a PDE framework, we refer to [2] and references therein. The extension to the porous media or fast diffusion cases have been studied in [5, 6, 9]. For systems with a Poisson coupling and a linear diffusion, let us quote $[2,1,3]$. References $[4,7,8]$ are relevant for the modelization and the analysis in the plasma physics or semiconductor context.
Notation. In the sequel the $L^{p}\left(\mathbb{R}^{d}\right)$ norms shall be denoted by $|\cdot|_{p}$.

2 Derivation from a drift-diffusion system without confinement

Systems of the form (1.1) can be obtained by a spatio-temporal rescaling from drift-diffusion systems without confinement, and with a nonlinear diffusion of power-law type.

Consider the system for the densities n and p of oppositely charged particles

$$
\begin{align*}
& n_{t}=\nabla \cdot(\nabla f(n)+n \nabla \psi) \\
& p_{t}=\nabla \cdot(\nabla f(p)-p \nabla \psi) \tag{2.1}\\
& \Delta \psi=p-n
\end{align*}
$$

where, with $m>0$

$$
\begin{equation*}
f(s)=s^{m} \quad \text { for } \quad s \geq 0, \tag{2.2}
\end{equation*}
$$

and define u and v by

$$
\begin{align*}
& n(t, x)=\frac{1}{R^{d}(t)} u\left(\log R(t), \frac{x}{R(t)}\right), \tag{2.3}\\
& p(t, x)=\frac{1}{R^{d}(t)} v\left(\log R(t), \frac{x}{R(t)}\right),
\end{align*}
$$

with an increasing function $R>0$.
Lemma 2.1 A solution $\langle n, p\rangle$ of (2.1) (with f given by (2.2)) corresponds by the change of variables (2.3) to a solution $\langle u, v\rangle$ of (1.1) if and only if

$$
\begin{align*}
& \dot{R} R^{d(m-1)+1}=1, \\
& V(x)=\frac{1}{2}|x|^{2}, \tag{2.4}\\
& \beta(t)=R(t)^{2-d} .
\end{align*}
$$

Moreover

$$
\psi(t, x)=\frac{1}{R^{d-2}(t)} \phi\left(\log R(t), \frac{x}{R(t)}\right)
$$

Note that $\langle n, p\rangle$ and $\langle u, v\rangle$ have the same initial data if $R(0)=1$. Contrarily to (1.1), the strength of the Poisson coupling in (2.1) is assumed to be constant in time: the damping in (1.1) appears as a consequence of the rescaling.

3 Asymptotic (uncoupled) problem

Consider now the system (1.1) with $\beta=0$. Both u and v then solve an equation of the form

$$
\begin{equation*}
z_{t}=\nabla \cdot(\nabla f(z)+z \nabla V), \quad z(0)=z_{0} \geq 0 . \tag{3.1}
\end{equation*}
$$

Formally we have

$$
\int z(x, t) d x=\int z_{0}(x) d x \quad \text { for all } t>0
$$

(all the integrals are over \mathbb{R}^{d}, unless specified differently). Let

$$
\begin{equation*}
W[z]=\int[z(V+h(z))-f(z)] d x \tag{3.2}
\end{equation*}
$$

with the enthalpy defined by

$$
\begin{equation*}
h(z)=\int_{1}^{z} \frac{f^{\prime}(s)}{s} d s \tag{3.3}
\end{equation*}
$$

For a solution of (3.1), a standard computation (formally) gives

$$
\begin{align*}
\frac{d}{d t} W[z](t) & =\int\left[V+\left(h(z)+z h^{\prime}(z)-f^{\prime}(z)\right)\right] z_{t} d x \\
& =-\int z|\nabla(V+h(z))|^{2} d x \tag{3.4}
\end{align*}
$$

Consider then a steady state z_{∞} such that, for a constant $C_{z} \in \mathbb{R}$ with

$$
\begin{equation*}
C_{z} \leq \inf _{\mathbb{R}^{d}} V+h(\infty) \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
z_{\infty}(x)=\widetilde{h}^{-1}\left(C_{z}-V(x)\right) . \tag{3.6}
\end{equation*}
$$

Here \tilde{h}^{-1} is the extension of h^{-1} given by

$$
\widetilde{h}^{-1}(\sigma)=\left\{\begin{array}{ccc}
h^{-1}(\sigma) & \text { if } & \sigma \in\left(h\left(0^{+}\right), h(\infty)\right), \\
0 & \text { if } & \sigma \leq h\left(0^{+}\right) .
\end{array}\right.
$$

Remark 3.1 In the fast diffusion / porous media cases (1.3) $h(s)=m\left(s^{m-1}-1\right) /(m-1)$ is such that

$$
\begin{aligned}
& h(0+)=-\infty, \quad h(\infty)=\frac{m}{m-1} \quad \text { if } \quad m<1 \\
& h(0+)=-\frac{m}{m-1}, \quad h(\infty)=+\infty \quad \text { if } \quad m>1
\end{aligned}
$$

while $h(0+)=-\infty$ and $h(\infty)=+\infty$ if $m=1$. In the case (1.4)-(1.5) we have $h(s)=F^{-1}(s), h(0+)=-\infty$ and $h(\infty)=+\infty$.

Note that (3.6) implies

$$
\begin{array}{ccc}
V(x)+h\left(z_{\infty}(x)\right)=C_{z} & \text { if } & h\left(0^{+}\right) \leq C_{z}-V(x) \\
\text { and } & z_{\infty}(x)=0 & \text { if } \tag{3.7}\\
h\left(0^{+}\right) \geq C_{z}-V(x) .
\end{array}
$$

Assume now that V is such that for all $C \in \inf _{\mathbb{R}^{d}} V+\left(h\left(0^{+}\right), h(\infty)\right)$

$$
\begin{equation*}
\int \widetilde{h}^{-1}(C-V(x)) d x<\infty . \tag{3.8}
\end{equation*}
$$

Now let $M<\infty$ satisfy

$$
\begin{equation*}
0 \leq M \leq \int \widetilde{h}^{-1}\left(\inf _{\mathbb{R}^{d}} V+h(\infty)-V(x)\right) d x \tag{3.9}
\end{equation*}
$$

(the right hand side may very well be $+\infty!$). Then the steady state z_{∞} is uniquely determined by the requirement

$$
\begin{equation*}
\int z_{\infty}(x) d x=M \tag{3.10}
\end{equation*}
$$

Note that this is the case for all $M \geq 0$ if $f(s)=s^{m}$ with $m>d / 2-1$ and $V(x)=\frac{1}{2}|x|^{2}(c f[6])$, or in the Fermi-Dirac case.

Assuming $W\left[z_{0}\right]<+\infty$, the entropy $W[z](t)$ decays monotonically with respect to t, and under additional regularity assumptions, it was shown in $[2,5,6,9]$ that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} W[z](t)=W\left[z_{\infty}\right] \tag{3.11}
\end{equation*}
$$

if

$$
\begin{equation*}
\int z_{0} d x=\int z_{\infty} d x=M \tag{3.12}
\end{equation*}
$$

In the following, we define the relative entropy

$$
\begin{equation*}
W\left[z \mid z_{\infty}\right]=W[z]-W\left[z_{\infty}\right] \tag{3.13}
\end{equation*}
$$

of the nonnegative states z, z_{∞} with equal integrals.

Remark 3.2 Set

$$
\begin{equation*}
\widetilde{W}\left[z \mid z_{\infty}\right]=\int\left(\int_{z_{\infty}(x)}^{z(x)}\left(h(s)-h\left(z_{\infty}(x)\right) d s\right) d x \geq 0 .\right. \tag{3.14}
\end{equation*}
$$

Since, by the definition (3.3) of h

$$
\begin{equation*}
\int_{z_{1}}^{z_{2}}\left(h(s)-h\left(z_{1}\right)\right) d s=z_{2}\left(h\left(z_{2}\right)-h\left(z_{1}\right)\right)-f\left(z_{2}\right)+f\left(z_{1}\right), \tag{3.15}
\end{equation*}
$$

we conclude

$$
\begin{aligned}
W\left[z \mid z_{\infty}\right]-\widetilde{W}\left[z \mid z_{\infty}\right] & =\int\left(V(x)+h\left(z_{\infty}\right)\right)\left(z-z_{\infty}\right) d x \\
& =\int_{\left\{h\left(0^{+}\right) \geq C_{z}-V(x)\right\}} z\left(V(x)+h\left(0^{+}\right)-C_{z}\right) d x \geq 0,
\end{aligned}
$$

where (3.7) and (3.12) were used for the last equality. Therefore $W\left[z \mid z_{\infty}\right] \geq 0$ follows and $W\left[z \mid z_{\infty}\right]=\widetilde{W}\left[z \mid z_{\infty}\right]$ if $h\left(0^{+}\right)=-\infty$.

Remark 3.3 Let $h\left(0^{+}\right)=-\infty$ and take a function $\Phi=\Phi(\gamma)$ with $\Phi(0)=0$ and $\Phi^{\prime}(\gamma)>0$ for $\gamma \in \mathbb{R}$. We define the functional

$$
\begin{equation*}
\widetilde{W}_{\Phi}\left[z \mid z_{\infty}\right]=\int\left(\int_{z_{\infty}(x)}^{z(x)} \Phi\left(h(s)-h\left(z_{\infty}(x)\right) d s\right) d x \geq 0 .\right. \tag{3.16}
\end{equation*}
$$

and compute its time-derivative along the solution $z(t)$ of (3.1):

$$
\begin{equation*}
\frac{d}{d t} W_{\Phi}\left[z \mid z_{\infty}\right](t)=-\int z|\nabla(V+h(z))|^{2} \Phi^{\prime}\left(h(z)-h\left(z_{\infty}\right)\right) d x \tag{3.17}
\end{equation*}
$$

Thus, W_{Φ} is another relative entropy for (3.1).

4 A Lyapunov functional

Consider now a solution $\langle u, v\rangle$ of (1.1) such that

$$
\begin{align*}
& \int u_{0} d x=M_{u} \geq 0 \tag{4.1}\\
& \int v_{0} d x=M_{v} \geq 0 \tag{4.2}
\end{align*}
$$

(with M_{u}, M_{v} satisfying (3.9) and $M_{u}+M_{v}>0$), and define the relative entropy

$$
\begin{equation*}
\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]=W\left[u \mid u_{\infty}\right]+W\left[v \mid v_{\infty}\right]+\frac{\beta}{2}|\nabla \phi|_{2}^{2} \tag{4.3}
\end{equation*}
$$

Similarly to the case studied in [1], [3], we obtain
Lemma 4.1 For $d \geq 3$, if u and v are smooth and decay sufficiently fast as $|x| \rightarrow+\infty$, and if f satisfies (1.2) we have

$$
\begin{align*}
& \frac{d}{d t}\left(\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right](t)\right)=-2 J-\beta^{2} \int(u+v)|\nabla \phi|^{2} d x \\
& -2 \beta \int[f(u)-f(v)](u-v) d x+2 \beta \int \Delta \phi \nabla \phi \cdot \nabla V d x+\frac{1}{2} \frac{d \beta}{d t}|\nabla \phi|_{2}^{2} \tag{4.4}
\end{align*}
$$

where

$$
\begin{equation*}
J=\frac{1}{2} \int u|\nabla h(u)+\nabla V|^{2} d x+\frac{1}{2} \int v|\nabla h(v)+\nabla V|^{2} d x . \tag{4.5}
\end{equation*}
$$

Proof: Assuming a sufficient decay of ϕ in $x \in \mathbb{R}^{d}$ (with $d \geq 3$) as $|x| \rightarrow+\infty$, we obtain

$$
\begin{equation*}
\frac{d}{d t}|\nabla \phi|_{2}^{2}(t)=2 \int(-\Delta \phi)_{t} \phi d x=2 \int\left(u_{t}-v_{t}\right) \phi d x \tag{4.6}
\end{equation*}
$$

and thus

$$
\begin{align*}
& \frac{d}{d t}\left(\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right](t)\right)-\frac{1}{2} \frac{d \beta}{d t}|\nabla \phi|_{2}^{2}(t) \\
& =\int(V+h(u)+\beta \phi) u_{t} d x+\int(V+h(v)-\beta \phi) v_{t} d x \tag{4.7}
\end{align*}
$$

Then, replacing u_{t} and v_{t} by their expressions in (1.1) and integrating by parts, we obtain

$$
\frac{d}{d t}\left(\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right](t)\right)-\frac{1}{2} \frac{d \beta}{d t}|\nabla \phi|_{2}^{2}(t)
$$

$$
\begin{aligned}
= & -\int \nabla(V+h(u)+\beta \phi) \cdot[\nabla f(u)+u \nabla V+\beta u \nabla \phi] d x \\
& -\int \nabla(V+h(v)-\beta \phi) \cdot[\nabla f(v)+v \nabla V-\beta v \nabla \phi] d x
\end{aligned}
$$

The evaluation of the cross-terms between u or v and ϕ goes as follows

$$
\begin{aligned}
& -\int \beta \nabla \phi \cdot[\nabla f(u)+u \nabla V] d x-\int \nabla(V+h(u)) \cdot \beta u \nabla \phi d x \\
& +\int \beta \nabla \phi \cdot[\nabla f(v)+v \nabla V] d x+\int \nabla(V+h(v)) \cdot \beta v \nabla \phi d x \\
& =-2 \beta \int \nabla \phi \cdot[\nabla f(u)+u \nabla V] d x \\
& \quad+2 \beta \int \nabla \phi \cdot[\nabla f(v)+v \nabla V] d x
\end{aligned}
$$

using $z \nabla h(z)=\nabla f(z)$ since $s h^{\prime}(s)=f^{\prime}(s)$. Collecting the terms and using the Poisson equation, we first obtain

$$
\begin{aligned}
& -2 \beta \int \nabla \phi \cdot[\nabla f(u)-\nabla f(v)] d x \\
& =2 \beta \int \Delta \phi[f(u)-f(v)] d x \\
& =-2 \beta \int(u-v)[f(u)-f(v)] d x
\end{aligned}
$$

and then

$$
\begin{equation*}
-2 \beta \int \nabla \phi \cdot(u \nabla V-v \nabla V) d x=2 \beta \int(\nabla V \cdot \nabla \phi) \Delta \phi d x \tag{4.8}
\end{equation*}
$$

so (4.4) follows.
Later on we shall use the identity

$$
\begin{equation*}
\int \Delta \phi \nabla \phi \cdot \nabla V d x=\frac{1}{2} \int|\nabla \phi|^{2} \Delta V d x-\int \nabla \phi^{\top}\left(D^{2} V\right) \nabla \phi d x \tag{4.9}
\end{equation*}
$$

where $D^{2} V$ denotes the Hessian of V and " \top " stands for transposition.

5 Another relative entropy

In this section (only) we shall assume $h\left(0^{+}\right)=-\infty, h(\infty)=\infty$, which hold in the Maxwell and Fermi-Dirac cases.

We define the " t-local Maxwellian" functions $\bar{u}=\bar{u}(t)$ and $\bar{v}=\bar{v}(t)$ respectively by

$$
\begin{align*}
& \bar{u}(x, t)=h^{-1}\left(C_{u}(t)-V(x)-\beta(t) \bar{\phi}(x, t)\right), \\
& \bar{v}(x, t)=h^{-1}\left(C_{v}(t)-V(x)+\beta(t) \bar{\phi}(x, t)\right), \\
& -\Delta \bar{\phi}=\bar{u}-\bar{v}, \tag{5.1}\\
& \int \bar{u}(x, t) d x=M_{u}, \\
& \int \bar{v}(x, t) d x=M_{v} .
\end{align*}
$$

Note that, due to the dependence of β on t, the normalization constants C_{u} and C_{v} depend on t.

The potential $\bar{\phi}$ then solves the nonlinear elliptic problem

$$
\begin{align*}
& -\Delta \bar{\phi}=h^{-1}\left(C_{u}-V-\beta \bar{\phi}\right)-h^{-1}\left(C_{v}-V+\beta \bar{\phi}\right), \\
& \int h^{-1}\left(C_{u}-V-\beta \bar{\phi}\right) d x=M_{u}, \tag{5.2}\\
& \int h^{-1}\left(C_{v}-V+\beta \bar{\phi}\right) d x=M_{v} .
\end{align*}
$$

Remark 5.1 The problem (5.2) has the following variational formulation: $\bar{\phi}$ minimizes the functional $\mathcal{E}[\phi]$ on $\mathcal{D}^{1,2}\left(\mathbb{R}^{d}\right)=\left\{\phi \in L^{2 d /(d-2)}\left(\mathbb{R}^{d}\right): \nabla \phi \in\right.$ $\left.L^{2}\left(\mathbb{R}^{d}\right)\right\}$, where

$$
\begin{aligned}
\mathcal{E}[\phi]=\frac{1}{2} \int|\nabla \phi|^{2} d x & +\frac{1}{\beta} \int G\left(D_{1}[\phi]-V-\beta \phi\right) d x-\frac{M_{u}}{\beta} D_{1}[\phi] \\
& +\frac{1}{\beta} \int G\left(D_{2}[\phi]-V+\beta \phi\right) d x-\frac{M_{v}}{\beta} D_{2}[\phi] .
\end{aligned}
$$

Here G is a primitive of h^{-1}, i.e. $G^{\prime}=h^{-1}$, and $D_{1}[\phi], D_{2}[\phi] \in \mathbb{R}$ are determined from the normalizations

$$
\begin{aligned}
& \int h^{-1}\left(D_{1}[\phi]-V-\beta \phi\right) d x=M_{u} \\
& \int h^{-1}\left(D_{2}[\phi]-V+\beta \phi\right) d x=M_{v}
\end{aligned}
$$

A simple computation gives (5.2) as the Euler-Lagrange equations of \mathcal{E}. In the linear diffusion case (i.e. $h(s)=\log s, h^{-1}(\sigma)=e^{\sigma}$), this variational
problem has been studied in [7], [4]), and has been shown to have "good" properties (boundedness from below, weak lower semicontinuity and strict convexity). The problem is under investigation in the nonlinear case.

Consider now the functional

$$
\begin{equation*}
\Sigma[u, v]=W[u \mid \bar{u}]+W[v \mid \bar{v}]+\frac{\beta}{2}\left(|\nabla \phi|_{2}^{2}-|\nabla \bar{\phi}|_{2}^{2}\right) . \tag{5.3}
\end{equation*}
$$

A simple computation shows that

$$
\begin{aligned}
\Sigma[u, v]=\int & {[u(h(u)-h(\bar{u}))-f(u)+f(\bar{u})] d x } \\
& +\int[v(h(v)-h(\bar{v}))-f(v)+f(\bar{v})] d x \\
& +\int(u-\bar{u})(V+h(\bar{u})) d x+\int(v-\bar{v})(V+h(\bar{v})) d x \\
& +\frac{\beta}{2}\left(|\nabla \phi|_{2}^{2}-|\nabla \bar{\phi}|_{2}^{2}\right) .
\end{aligned}
$$

The integrands in the first two terms on the right hand side can be expressed using (3.15). On the other hand, by the definition of \bar{u} and \bar{v},

$$
\begin{aligned}
& \int(u-\bar{u})(V+h(\bar{u})) d x+\int(v-\bar{v})(V+h(\bar{v})) d x \\
& =\int(u-\bar{u})\left(C_{u}-\beta \bar{\phi}\right) d x+\int(v-\bar{v})\left(C_{v}+\beta \bar{\phi}\right) d x \\
& =\int(-\Delta(\phi-\bar{\phi}))(-\beta \bar{\phi}) d x \\
& =-\beta \int \nabla \phi \cdot \nabla \bar{\phi} d x+\beta|\nabla \bar{\phi}|_{2}^{2} .
\end{aligned}
$$

Thus the representation

$$
\begin{equation*}
\Sigma[u, v]=\int\left(\int_{\bar{u}}^{u}(h(s)-h(\bar{u})) d s+\int_{\bar{v}}^{v}(h(s)-h(\bar{v})) d s\right) d x+\frac{\beta}{2}|\nabla \phi-\nabla \bar{\phi}|_{2}^{2} \geq 0 \tag{5.4}
\end{equation*}
$$

holds and the inequality is strict unless $\langle u, v\rangle=\langle\bar{u}, \bar{v}\rangle$.

Remark 5.2 Since for solutions of (5.2),

$$
\begin{align*}
& \frac{d}{d t}\left(\int(\bar{u}(V+h(\bar{u}))-f(\bar{u})) d x+\int(\bar{v}(V+h(\bar{v}))-f(\bar{v})) d x+\frac{\beta}{2}|\nabla \bar{\phi}|_{2}^{2}\right) \\
& \quad=\int(h(\bar{u})+V+\beta \bar{\phi}) \frac{\partial \bar{u}}{\partial t} d x+\int(h(\bar{v})+V-\beta \bar{\phi}) \frac{\partial \bar{v}}{\partial t} d x+\frac{1}{2} \frac{d \beta}{d t}|\nabla \bar{\phi}|_{2}^{2} \\
& \quad=\frac{1}{2} \frac{d \beta}{d t}|\nabla \bar{\phi}|_{2}^{2} \tag{5.5}
\end{align*}
$$

by the definition of \bar{u} and \bar{v}, for any solution of (1.1),

$$
\begin{equation*}
\frac{d}{d t}\left(\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]-\Sigma[u, v]\right)=\frac{1}{2} \frac{d \beta}{d t}|\nabla \bar{\phi}|_{2}^{2} \tag{5.6}
\end{equation*}
$$

and we conclude

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}\left(\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right](t)-\Sigma[u, v](t)\right)=0 \tag{5.7}
\end{equation*}
$$

Thus $\Sigma[u, v]$ is another relative entropy of (1.1).

6 Exponential decay in the bipolar case

The method used in [3] extends (formally) to the system (1.1) for which we assume from now on the existence of a smooth solution for $t \in[0,+\infty)$, which decays sufficiently fast for large $|x|$. We also assume in the following that V and f are chosen such that

$$
\begin{equation*}
W\left[z \mid z_{\infty}\right] \leq \frac{K}{2} \int z|\nabla h(z)+\nabla V|^{2} d x \tag{6.1}
\end{equation*}
$$

for all sufficiently regular nonnegative functions z on \mathbb{R}^{d} with $\int z d x=\int z_{\infty} d x$, where $K>0$ is independent of z. In the following, we shall refer to this inequality as the Generalized Sobolev inequality (see [6], [5]). Note that the Gross logarithmic Sobolev inequality is an example of the Generalized Sobolev inequality for $f(s)=s$, i.e. for $h(s)=\log s$, and $V(x)=\frac{1}{2}|x|^{2}$.

Theorem 6.1 Let $d \geq 3$ and consider f satisfying (1.2). Assume that f and $V, V(x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$, are such that the Generalized Sobolev inequality (6.1) holds. Consider a sufficiently regular, global solution of (1.1) (which
decays sufficiently fast for $|x|$ large) corresponding to initial data $u_{0}, v_{0} \geq 0$ and assume that M_{u}, M_{v} (as defined in (4.1), (4.2)) satisfy (3.9). Moreover, assume that there are constants $c_{1} \in \mathbb{R}$ and $\omega>0$ such that
(i) $2 D^{2} V(x)-\operatorname{Tr}\left(D^{2} V(x)\right) I \geq c_{1} I \quad$ for all $x \in \mathbb{R}^{d}$,
(ii) $\beta_{t}(t) \leq-2 \omega \beta(t)$ for all $t \geq 0$.

Then there exists a constant $\tilde{\lambda}>0$, explicitly computable in terms of K, c_{1}, ω such that

$$
\begin{equation*}
\mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right](t) \leq e^{-\widetilde{\lambda} t} \mathcal{W}\left[\left\langle u_{0}, v_{0}\right\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right] \tag{6.2}
\end{equation*}
$$

for each solution $\langle u, v\rangle$ of (1.1) with initial data $\left\langle u_{0}, v_{0}\right\rangle$ and all $t \geq 0$.
Remark 6.2 If we assume charge neutrality $M_{u}=M_{v}$, i.e. $\int\left(u_{0}-v_{0}\right) d x=0$, and $|\nabla \phi(0)|_{2}^{2}<\infty$ (which follows from the finiteness of $\mathcal{W}\left[\left\langle u_{0}, v_{0}\right\rangle\right] \mid\left\langle u_{\infty}, v_{\infty}\right\rangle$), then the results in Theorem 6.1 also hold true in the one- and two-dimensional cases $d=1, d=2$ (since $\lim _{|x| \rightarrow+\infty}|\nabla \phi(x, t)|=0$ under the electroneutrality condition).

Remark 6.3 The potentials $V(x)=\left(1+|x|^{2}\right)^{\alpha / 2}$ with $0<\alpha \leq 2$ do satisfy assumptions (i) on confinement, while $V(x)=\left(1+|x|^{2}\right)^{\alpha / 2}$ with $\alpha>2$ does not.

Also note that Generalized Sobolev inequalities were so far proven only for uniformly convex potentials in the case of nonlinear functions $f=f(s)$. At least quadratic growth of $V(x)$ as $|x| \rightarrow \infty$ seems necessary for (6.1) to hold.

Remark 6.4 If $\beta(t)=e^{-(d-2) t}$ as it is the case when β is obtained by the mean of time-dependent rescalings, we recover the results of [3] for $f(s)=$ s. For the system (2.1)-(2.2), the (algebraic) rate of convergence of course depends on m because of the dependence of R on t.

Remark 6.5 As it is well known, cf [3, 5, 6], results on exponential decay of the relative entropy imply (via Csiszár-Kullback inequalities) the exponential convergence to steady states of (1.1) and convergence to self-similar solutions of (2.1) with an algebraic decay rate in the L^{1}-norms.

Proof: For any positive λ

$$
\begin{align*}
& -\left(\frac{d}{d t} \mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]+\lambda \mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]\right) \\
& =\lambda\left(K J-W\left[u \mid u_{\infty}\right]-W\left[v \mid v_{\infty}\right]\right)+(2-\lambda K) J+B+2 E+F+C, \tag{6.3}
\end{align*}
$$

where

$$
\begin{aligned}
B & =\beta^{2} \int(u+v)|\nabla \phi|^{2} d x, \\
E & =\beta \int[f(u)-f(v)](u-v) d x, \\
F & =-\frac{1}{2}\left(\beta_{t}+\lambda \beta\right)|\nabla \phi|_{2}^{2}, \\
C & =-2 \beta \int \Delta \phi \nabla \phi \cdot \nabla V d x .
\end{aligned}
$$

Observe that if we define

$$
G_{1}=\beta \int u(\nabla h(u)+\nabla V) \cdot \nabla \phi d x, \quad G_{2}=\beta \int v(\nabla h(v)+\nabla V) \cdot \nabla \phi d x
$$

then

$$
G_{1}-G_{2}=\beta \int(u(\nabla h(u)+\nabla V)-v(\nabla h(v)+\nabla V)) \cdot \nabla \phi d x=E+\frac{1}{2} C .
$$

Now set

$$
\begin{gathered}
f_{1}=\sqrt{u}(\nabla h(u)+V), \quad g_{1}=\beta \sqrt{u} \nabla \phi, \\
f_{2}=\sqrt{v}(\nabla h(v)+V), \quad g_{2}=\beta \sqrt{v} \nabla \phi, \\
a_{1}=\left|f_{1}\right|_{2}, \quad b_{1}=\left|g_{1}\right|_{2}, \quad a_{2}=\left|f_{2}\right|_{2}, \quad b_{2}=\left|g_{2}\right|_{2} .
\end{gathered}
$$

By the Cauchy-Schwarz inequality we have

$$
2\left|G_{1}-G_{2}\right|=2\left|\int\left(f_{1} g_{1}-f_{2} g_{2}\right) d x\right| \leq 2\left(a_{1} b_{1}+a_{2} b_{2}\right)
$$

But

$$
0 \leq\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}=\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}
$$

$$
\begin{gathered}
2 \gamma\left(a_{1} b_{1}+a_{2} b_{2}\right) \leq 2 \sqrt{\gamma^{2}\left(a_{1}^{2}+a_{2}^{2}\right)} \sqrt{b_{1}^{2}+b_{2}^{2}} \\
\leq \gamma^{2}\left(a_{1}^{2}+a_{2}^{2}\right)+\left(b_{1}^{2}+b_{2}^{2}\right) \\
=2 \gamma^{2} J+B,
\end{gathered}
$$

so that taking $\gamma=\sqrt{1-\lambda K / 2}$ with $\lambda K<2$ we obtain

$$
\sqrt{1-\lambda K / 2}|2 E+C| \leq(2-\lambda K) J+B .
$$

Using (6.3) we arrive at

$$
\begin{align*}
& -\left(\frac{d}{d t} \mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]+\lambda \mathcal{W}\left[\langle u, v\rangle \mid\left\langle u_{\infty}, v_{\infty}\right\rangle\right]\right) \\
& \quad \geq \sqrt{1-\lambda K / 2}|2 E+C|+2 E+C+F \tag{6.4}\\
& \quad=(2 E+C)(1+\operatorname{sgn}(2 E+C) \sqrt{1-\lambda K / 2})+F
\end{align*}
$$

By the assumption (i) of Theorem 6.1 and (4.9), $C \geq c_{1} \beta|\nabla \phi|_{2}^{2}$. By assumptions (i) and (ii) of Theorem 6.1, $F \geq(\omega-\lambda / 2) \beta|\nabla \phi|_{2}^{2}$.

Therefore if $2 E+C \geq 0$, then $\tilde{\lambda}=\min (2 / K, 2 \omega)$ gives $-\left(\frac{d}{d t} \mathcal{W}+\lambda \mathcal{W}\right) \geq 0$ for $0<\lambda \leq \tilde{\lambda}$. Otherwise, since $E \geq 0, C \leq 2 E+C \leq 0$ (then, in particular, $\left.c_{1}<0\right)$ and

$$
-\left(\frac{d}{d t} \mathcal{W}+\lambda \mathcal{W}\right) \geq\left[c_{1}(1-\sqrt{1-\lambda K / 2})+\omega-\lambda / 2\right] \beta|\nabla \phi|_{2}^{2}
$$

Hence, there exists a $\tilde{\lambda}>0$ such that the expression in the brackets is positive for $0<\lambda<\widetilde{\lambda}$, which implies (6.2).

Acknowledgments. This research was partially supported by the grants KBN 324/P03/97/12, POLONIUM 98111, and the program on Charged Particle Kinetics at the Erwin Schroedinger Institute - Vienna. Also, the second and third authors acknowledge support from the EU TMR-Network ERBFMRXCT970157.

References

[1] A. Arnold, P. Markowich, G. Toscani, On large time asymptotics for drift-diffusion Poisson systems, preprint ESI-Vienna no. 655 (1999), 111.
[2] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On logarithmic Sobolev inequalities, Csiszár-Kullback inequalities, and the rate of convergence to equilibrium for Fokker-Planck type equations, preprint TMR "Asymptotic Methods in Kinetic Theory"(1998), 1-77.
[3] P. Biler, J. Dolbeault, Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems, preprint CEREMADE no. 9915 (1999), 1-15 / preprint ESI-Vienna no. 703 (1999).
[4] L. Caffarelli, J. Dolbeault, P.A. Markowich, C. Schmeiser, On Maxwellian equilibria of insulated semiconductor devices, preprint ESI-Vienna (1999).
[5] J.A. Carrillo, G. Toscani, Asymptotic L^{1}-decay of solutions of the porous medium equation to self-similarity, to appear in Ind. Math. J., (1999).
[6] J. Dolbeault, M. del Pino, Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous medium problems, preprint CEREMADE no. 9905 (1999), 1-42 / preprint ESI-Vienna no. 704 (1999).
[7] J. Dolbeault, Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system, Math. Meth. Mod. Appl. Sci. 1 (1991), 188-208.
[8] P.A. Markowich, A. Unterreiter, Vacuum solutions of a stationary driftdiffusion model, Ann. Scuola Norm. Sup. Pisa, Serie IV, 20 (1993), 372386.
[9] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, preprint Dept. Math., Univ. of California, Santa Barbara (1999).

