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We study the asymptotic behavior and the asymptotic stability of the 2D Euler equations and of the 2D
linearized Euler equations close to parallel flows. We focus on flows with spectrally stable profiles U (y)
andwith stationary streamlines y = y0 (such thatU ′(y0) = 0), a case that has not been studied previously.
We describe a new dynamical phenomenon: the depletion of the vorticity at the stationary streamlines.
An unexpected consequence is that the velocity decays for large times with power laws, similarly to what
happens in the case of the Orr mechanism for base flows without stationary streamlines. The asymptotic
behaviors of velocity and the asymptotic profiles of vorticity are theoretically predicted and compared
with direct numerical simulations. We argue on the asymptotic stability of this ensemble of flow profiles
even in the absence of any dissipative mechanisms.
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1. Introduction

The flow of a perfect fluid is described by the Euler equations,

one of the oldest equations in mathematical physics [1]. Four

centuries after their discovery by Euler, these equations still

propose big challenges both to mathematicians and physicists [1].

2D flows and the 2D Euler equations are mathematically much

simpler than their 3D counterparts, but still present some very

interesting unsolved problems. One of the main phenomena for

2D flows is the self-organization into coherent structures [2–7]:

monopoles, dipoles, and parallel flows. Such large scale structures

are analogous to geophysical cyclones, anticyclones, and jets in

the oceans and atmospheres. This analogy, understood thanks to

the theoretical strong similarities between the 2D Euler equations

on the one hand and the Quasi-Geostrophic or the Shallow Water

models on the other hand, is one of the main motivations for

the study of the 2D Euler equations. The 2D Euler equations also

describe experimental flows: the transverse dynamics of electron

plasma columns [8], the dynamics of fluids when 3D motion

is prevented by a strong transverse field (rotation, a transverse
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magnetic field in a liquid metal, etc. [5]) or the dynamics of fluids
in very thin geometries [9].

Because large scale coherent flows appear spontaneously in
2D turbulence, their stability is a crucial problem. Moreover, the
study of the dynamical mechanism that describes the relaxation
towards these stable flows is essential. In this paper, we consider
stable parallel base flows v0(x, y) = U(y)ex, which are dynamical
equilibria of the 2D Euler equations. We prove that the velocity of
these flows is asymptotically stable, meaning that all the solutions
to the nonlinear Euler equations that start near v0 converge, for
large times, to some other parallel flows v0 + δU(y)ex, close
to v0.

1 Our analysis mostly relies on the linearization of the
2D Euler equations close to the base flows, which we prove to
actually describe also the nonlinear relaxation at leading order.
More precisely, we prove that the perturbation velocity decays
algebraically for large times. As far as the linearized dynamics is
concerned, an important improvement over the previous works is
the understanding of the case when the flow has some stationary
streamlines y = y0 (or equivalently the velocity profile U(y) has

1 This notion of convergence makes the notion of asymptotic stability stronger

than the alternative Lyapunov stability, that only states that all solutions of the

nonlinear equations that start near a steady point v0 stay near v0 forever. The

asymptotic stability of the velocity refers to asymptotic stability in the kinetic

energy norm.
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some stationary points y0, U
′(y0) = 0),2 which has not been

elucidated even qualitatively previously.
Besides the stability and the asymptotic stability problem itself,

the evolution operator for the linearized Euler equations plays a
very important role in different statistical approaches to turbulent
flows [10–12]. Indeed, in a turbulent context, it is likely that the
qualitative or quantitative properties of the fluctuations around
such stable structures are related to the linearized dynamics. For
instance, in quasi-linear approaches or second order closure of
the evolution of: Euler equations, point vortex model [10], or
Navier–Stokes equations (either forced, or unforced, and either
deterministic, or stochastic,) the linear operator appears naturally
as an essential theoretical tool. Similarly, in forced problems, in
the linear regime, the response can be easily expressed in terms,
either of the evolution operator for the linearized dynamics, or
of the resolvent operator for the dynamics. The behavior of these
operators for large times is thus a very important issue that has
many theoretical and dynamical consequences. In this work, we
quantify very precisely the large time asymptotic behavior of
the evolution operator for the linearized 2D Euler equations, and
discuss briefly some of the implications for the above problems.

The stability of the large scale coherent structures of 2D flows
is a very old and classical field of fluid mechanics. For instance
Rayleigh [13], Kelvin [14], Orr [15], Sommerfeld [16] and many
other famous scientists from the nineteenth and the beginning
of the twentieth century have participated to the understanding
of the linear theory for the 2D Euler equations close to parallel
flows.Mathematicians gave also important contributions: Arnold’s
theorems [17] and some modern generalizations [18–22] prove
the Lyapunov stability of some of these flows. Even if this work
deals only with the behavior of slightly perturbed stable flows,
other equally interesting and important problems arise in the study
of unstable or oscillatory flows. Recently many works have been
devoted to the proof of the instability of some classes of flows, the
characterization of the spectrum of the linearized equations, and
some estimates on the stability and the instability of such flows;
see for instance [23–26] and references therein.

Our work is based on the linearized 2D Euler equations. The
Rayleigh equation [13], which describes modes for the linear
dynamics, has been a subject of mathematical and theoretical
researches since the beginning of the twentieth century [27], and
is still currently actively studied. The main interest lies in the
dynamical phenomena associated with the singularities at the
critical layers (the singularities appearing when the frequency
of the perturbation is equal to that of a closed streamline of
the base flow). However, the modes of the Rayleigh equation
do not describe fully the linearized dynamics, because the linear
operator is non-normal [28]. Among the peculiarities of the
linearized 2D Euler equations, we stress the Orr mechanism [15]:
the base flow shears the perturbation producing thinner and
thinner filaments; then when the velocity or the stream function
is computed, the effect of such filaments being smoothed out,
the perturbation velocity decays for large times. This mechanism
is easily quantified when the shear is linear, either for the Euler
equations [15], or using for instance Kelvin waves [14] for viscous
flows. Case [29] and Dikii [30] were the first to stress that, in
general for inviscid flows, such a phenomenon is outside the scope
of a modal description using the Rayleigh equation. When the
shear is linear, using a Fourier–Laplace transform, the dynamics
of the perturbation is properly described in the framework of
an initial value problems. They concluded that the perturbation
velocity decreases asymptotically with an algebraic law for large

2 Please note that the profile U(y) has stationary points, but the 2D base flow has

no stationary points.

times. Other phenomena associated to the non-normality of
the linear operator include possible transient growth [31–33],
inviscid damping (the counterpart of Landau damping in plasmas),
axisymmetrization [34,35], and algebraic instabilities [36]. From
a mathematical point of view, the singularities at the critical
layers lead to the existence of a continuous spectrum for the
linearized 2D Euler equations. The analysis of the properties of this
continuous spectrum explains most of these transient growths,
inviscid damping, algebraic instabilities.

From a theoretical point of view, one class of works used the
Laplace transform tools [37,38,8], following the initial works of
Case [29], Dikii [30] and the generalization to non-uniform shear
by Briggs–Daugherty and Levy [39]. Another class of studies, less
general but very enlightening, used either simple or particular base
flows, or special conditions for which explicit computations are
possible [14,15,40,31,41–44,36].

In this paper, we are especially interested in the precise
description of the large time asymptotic behavior of the 2D Euler
and 2D linearized Euler equation close to parallel base flows. For
the linearized dynamics of stable base flows, once the contribution
of possible neutral modes has been subtracted, the asymptotic
behavior is related to the continuous spectrum of the linearized
operator. In the case of the base flow with a linear shear, U(y) =
σy, the explicit computations by Case [29] showed that, due to the
Orr mechanism, for large times the velocity perturbation decays
algebraically:

vx ∼
t→∞

C (y)

tα
and vy ∼

t→∞

C (y)

tβ
, (1)

with exponents α = 1 for the longitudinal component vx of the
velocity perturbation and β = 2 for the transverse one vy.

For more general base flows with strictly monotonic profiles
U(y) (without stationary streamline), it is a common belief that
the exponents α = 1 and β = 2 remain valid. This belief is
based on the results of an ansatz for large time asymptotics [45]
(see also [46], Appendix A). Some interesting comments about
the temporal behavior of the stream function and velocity, in the
case of localized initial perturbations (vorticity defects), can also
be found in [38] Section 7. Even if we have not found any com-
plete rigorous proofs, very precise classical arguments using the
Laplace transform [47,39] conclude that the contribution of the
continuous spectrum to the stream function perturbationψ decays
with ψ =

t→∞
O

(

1
t

)

, in agreement with Eq. (1). However, these ar-

guments do not generalize as soon as the profile U(y) is not mono-
tonic (flows with stationary streamlines).

From Lundgren’s work ([46], Appendix A), we see that the
preceding algebraic decay for the velocity or the stream function
may be related to the following asymptotic behavior for the
perturbation vorticity:

ω (y, t) ∼
t→∞

ω∞ (y) exp (−ikU(y)t)+ O

(

1

tγ

)

, (2)

where k is the initial perturbation wave number. Indeed, com-
puting the velocity from Lundgren’s ansatz (Eq. (2)) and assum-
ing uniformity in the asymptotic expansion, we obtain oscillating
integrals leading to algebraic decay for large times. The values for
the exponents α = 1 and β = 2 are then related to the singular-
ities of the Green function used in order to compute the velocity
perturbation from the vorticity perturbation. This argument, as-
suming Lundgren’s ansatz, suggests that the asymptotic behavior
for the velocity should be different for velocity profiles U(y) with
stationary points y0 (U

′(y0) = 0, base flowwith stationary stream-
line). Actually, in such a case, the stationary phase asymptotics
for oscillating integrals would generically give 1/

√
t contributions.

It has then been noticed by several authors, that with such a
1/

√
t law, Lundgren’s ansatzwould not be self-consistent anymore
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[45,44,42]. Similar problems have also been noticed by Brown and
Stewartson [45], as their own asymptotic expansion clearly breaks
down where U ′(y) = 0 (base flows with stationary streamlines).
Besides Lundgren and Stewartson, many authors have insisted on
the specificity of base flows with stationary streamlines (see for
instance [44,42,48]).

In the past, there have been only a few studies considering base
flows with stationary streamlines. In the case of the equations
for 2D barotropic flows on a β plane (a direct generalization
of the 2D Euler equations), Brunet and coauthors [44,42] have
studied the dynamics close to a parabolic jet when the potential
vorticity gradient exactly cancels the β effect. This case is similar
to the linear shear case in the 2D Euler equations studied by
Kelvin, Orr, Case and others [14,15,29,41,31], in that the vorticity
gradient exactly cancels out, which makes the linearized equation
much simpler and amenable to a very interesting explicit analytic
treatment. In the following, we will argue that, because of the
cancellation of the vorticity (or potential vorticity) gradient, the
dynamics of these cases is actually nongeneric, and that flows
where the vorticity (or potential vorticity) gradient does not vanish
behave differently.

In the general case, the asymptotic behavior of the vorticity and
velocity perturbations of flows with stationary streamlines thus
remains unstudied. In natural flows, however, jet velocity profiles
are most of the time not monotonic but have some extrema,
i.e. the flow has stationary streamlines; see for instance Jupiter,
atmospheric, and ocean jets. Why have cases with stationary
streamlines not been studied previously? This may be partially
on account of the wrong belief that base velocity profiles with
stationary points should be unstable. It is true that many of the
flows with extrema in their velocity profiles do not fulfill the
classical Rayleigh–Fjørtoft criteria [27]. However, these criteria are
only sufficient conditions of stability. Moreover, as seen in natural
flows and as shown below with several examples, many parallel
flows with stationary streamlines and not fulfilling the classical
Rayleigh–Fjørtoft criteria are actually stable. Another reason for a
lack of studies may also be the theoretical difficulty with Laplace
tools in this case, related to the presence of stationary streamlines
(merging of critical layers). Indeed, an essential tool for the Laplace
transform is the analytic continuation of dynamical quantities,
performed by avoiding the singularities associated to the critical
layers, with the use of integrations in the complex plane [27].
As will be discussed below, in the case of flows with stationary
streamlines, in order to perform the analytic continuation, one
would need to find a path in the complex plane passing at the same
time above and below the singularity, which is clearly impossible.
For this reason, it has often been stated that Laplace tools cannot
be used when stationary streamlines are present. By contrast, we
illustrate in this work that even if analytic continuation cannot be
performed in this way, Laplace tools are still very useful and lead
to very interesting results.

In the following we consider the generic case of a parallel flow
with any profile, eitherwith orwithout stationary streamlines, im-
proving by far the class of previously studied flows and overcom-
ing the previously discussed difficulties. We also discuss possible
generalizations to monopole vortices. We show how the Laplace
transform is generalized to the case of base flows with stationary
streamlines. For instance, we show how the classical determina-
tion of the number of unstable modes, by using Nyquist’s plots, re-
mains valid in this case. From this general theoretical approach, we
prove that the asymptotic vorticity field actually follows the Lund-
gren’s ansatz (2), even in the case of a base flow with stationary
streamlines. Similarly the velocity field decreases also algebraically
with the power laws (1), with α = 1 and β = 2.3 This may seem

3 An exception is the velocity field close to the stationary streamline, where we

have no theoretical prediction, butwherewe observe numerically that eitherα = 1

and β = 2 or α = β = 3/2 depending on the symmetry of the perturbation.

Time

|ωδ | / (ε/2)

0
0.5

1

y / 2π

1

0.8

0.6

0.4

0.2

0

10
20

30
40

0

1

0.8

0.6

0.4

0.2

Fig. 1. Evolution of the vorticity perturbationω(x, y, t) = ω(y, t) exp(ikx), close to

a parallel flow v0(x, y) = U(y)ex withU(y) = cos(y). The figure shows themodulus

of the perturbation |ω(y, t)| as a function of time and y. One clearly sees that

the vorticity perturbation rapidly converges to zero close to the points where the

velocity profile U(y) has extrema (y = 0 and π ). This depletion of the perturbation

vorticity at the stationary streamlines is a new generic self-consistent mechanism,

understood mathematically as the regularization of the critical layer singularities

at the edge of the continuous spectrum.

paradoxical, after the discussion of the preceding paragraphs. Ac-
tually, the naturally expected 1/

√
t contributions from the station-

ary phase asymptotics do not exist, unexpectedly. One reason is the
non-uniformity of the asymptotic expansion in Lundgren’s ansatz.
Anothermore important reason is related to a new dynamical phe-
nomena leading to the rapid decrease and cancellation of the vor-
ticity perturbation exactly at the stationary streamline (see Fig. 1),
which partially erase the effect of the stationary phase.We call this
phenomena vorticity depletion at the stationary streamlines. This is a
non-local collective phenomena, due to the effect of the perturba-
tion velocity on the background vorticity gradient. For this reason,
this phenomena has not been observed in the previous studies in-
volving stationary streamlines [44,42,48], because these cases have
an exactly zero vorticity (or potential vorticity) gradient. These last
cases are thus nongeneric.

In the following, we predict the vorticity depletion at the sta-
tionary streamlines using Laplace tools. It is thus a generic effect in
any type of parallel flow with non-monotonic stable velocity pro-
file.Wealso illustrate the results by direct numerical simulations in
the case of the Kolmogorov base flowU(y) = cos y, for the 2D Euler
equations with periodic boundary conditions. This vorticity deple-
tion mechanism also impacts nonlinear turbulent flows when the
perturbations are small enough to be governed by the linearized
equations, as discussed in the conclusion.

We establish the large time asymptotic contributions to the
vorticity and to the velocity fields, by the continuous spectrum, in
the case of the linearized dynamics.We are then able to discuss the
asymptotic stability of the velocity of parallel base flows, for the
nonlinear dynamics. The result is that parallel base flows which
have no mode (neither stable nor unstable) are asymptotically
stable: any small perturbation leads to a small deformation of
the base flow, the perturbation velocity to this new base flow
decaying algebraically. Stable Kolmogorov flows are examples of
base flows without modes, illustrating the importance of this class
of flows. Based on these resultswe also conclude that a quasi-linear
approach predicts the asymptotic velocity profile. We note that all
this is true only thanks to a nontrivial cancellation of leading order
terms, already noted by [46]. The current work put the validity
of a quasi-linear approach on a more rigorous ground, and proves
that this it is also valid also for flows with stationary streamlines.
It also gives an efficient theory and numerical tool to predict the
asymptotic flow.

For the case of a circular vortex base flows, the work [49]
shows that the far field velocity decays with exponents different
from the case of parallel flows. For circular vortex base flows, an
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example of non-monotonic angular velocity profile has also been
studied [36], based on a special explicit solution [50]. This example
shows a very interesting algebraic instability with t1/2 growths.
Even if we do not explicitly treat the case of stable circular vortices
v(r) = U(r)eθ in the present study, the generalization to this case
of the present study could be taken following similar theoretical
arguments. As discussed in the conclusion, the mechanism of
vorticity depletion probably also exists for vortices, both for mid-
vortex stationary streamlines, or in the core of the vortex.

In Section 2 we introduce the 2D Euler equations and the
linearized Euler equations. Section 2 describes the theory related to
the linearized Euler equation. We discuss the main results related
to the asymptotic behavior of the vorticity and velocity fields in
Section 2.2. The core of the proof relies on the results of the analysis
of the limit of small ǫ, for the resolvent operator, in Section 2.3.

Section 3 discusses the asymptotic stability of parallel flows for
the 2D Euler equation.

These results are illustrated in the case of doubly periodic
boundary conditions, with the Kolmogorov base flow, in Section 4.
For someaspect ratio, these floware stable even if they donot fulfill
the hypothesis of any of the two Arnold’s Theorems. Extending
Arnold’s arguments to this case, we first prove their Lyapunov
stability in Section 4.1. In Section 4.2, we show the results of direct
numerical simulations of the (nonlinear) 2DEuler equations,which
both illustrate the theoretical results of Section 2, and show that
the linearized dynamics correctly describes the nonlinear one.

Section 5 discusses briefly some consequences of these results
for the 2D Euler and Navier–Stokes equations with stochastic
forces and for possible theories relying on a quasi-linear or kinetic
approach. It also discusses somepossible generalizations tomodels
of interest for geophysical flows.

2. The 2D Euler and linearized Euler equations

Let us consider the 2D Euler equations

∂Ω

∂t
+ V · ∇Ω = 0, (3)

where Ω is the vorticity and V is the velocity. We consider this
equation either in an infinite plane, in a channel geometry with
boundary conditions V · n = 0 on the boundary wall, or in a
doubly periodic domain (0, 2π/δ)(0, 2π), where δ > 1 is the
aspect ratio. In some parts of the discussion, for technical reasons,
the boundary conditions will be important. Then only the case
of a doubly periodic domain will be explicitly treated. However
all the results are applicable to the channel and infinite domain
geometries with slight modifications.

We study the asymptotic stability of parallel flows v0 = U(y)ex.
We thus consider the Euler equations (3) with initial conditions
close to this base flow: Ω = ω0 + ω and V = v + v0, where
ω0(y) = −U ′(y) is the base flow vorticity and ω and v are the per-
turbation vorticity and velocity, respectively.

We also need to consider the linearized 2DEuler equations close
to this base flow. It reads

∂ω

∂t
+ v · ∇ω0 + v0 · ∇ω = 0. (4)

We assume that the base flow U(y) has no unstable mode (a
precise definition of modes will be given along the discussion). In
Section 4 we will illustrate some of the results on the particular
case of the Kolmogorov flow U(y) = cos y (in a doubly periodic
domain).

2.1. The Laplace transform, resolvent operator and Rayleigh equation

In this section and the following we consider the linearized 2D
Euler equations. We give the main definitions used later on.

We decompose the perturbation vorticity in Fourier series for
the x variable only. For parallel flows, due to the translational in-
variance, these Fouriermodes are independent one from the others
for the linear dynamics. In the following, we thus study perturba-
tions of the form ω(x, y, t) = ωk(y, t) exp(ikx) and ψ(x, y, t) =
ψk(y, t) exp(ikx), where ψ is the stream function, with ω = 1ψ
and k is the longitudinal wave number. In the following, we drop
the k subscripts for the perturbation. The relations between ω, v
and ψ are then

ω = d2ψ

dy2
− k2ψ, vx = −dψ

dy
and vy = ikψ. (5)

The linearized Euler equations then reads

∂ω

∂t
+ ikU (y) ω − ikψU ′′ (y) = 0. (6)

We study the long time asymptotics of the linearized equa-
tion. The more general approach is to use the Laplace transform of
Eq. (6). We define the Laplace transform ω̂ of ω as

ω̂ (y, p) =
∫ ∞

0

dt ω (y, t) exp (−pt) .

The Laplace transform is analytic for any complex number p for suf-
ficiently large real part ℜp. The inverse Laplace transform is given
by

ω (y, t) = 1

2π i

∫

Γ

dp ω̂ (y, p) exp (pt) , (7)

where the complex integration is performed along a Bromwich
contour Γ in the complex plane of p. In the following we use the
notation p = −ik(c + iǫ) where c and ǫ are real numbers; c and
ǫ are homogeneous to velocities. We assume k > 0. The Laplace
transform ω̂ is thus analytic for sufficiently large ǫ.

The Laplace transform of Eq. (6) reads

(U(y)− c − iǫ) ω̂ − U ′′ (y) φ = ω (y, 0)

ik
, (8)

where φ = ψ̂ is the Laplace transform of ψ , and ω(y, 0) is the
initial value for the vorticity field. We have

ω̂ = d2φ

dy2
− k2φ.

From a mathematical point of view, we have to solve the equation
for φ

(

d2

dy2
− k2

)

φ − U ′′

U − c − iǫ
φ = ω (y, 0)

ik (U − c − iǫ)
, (9)

with the boundary condition for φ (here φ doubly periodic). The
solution of this boundary value problem φ[ω(., 0)](y, c + iǫ)
depends functionally on the initial value of the vorticity ω(y, 0) (φ
is the resolvent operator for the stream function). This resolvent
operator encodes all the information about the temporal evolution
of the stream function and the vorticity field.

The homogeneous part of Eq. (9) is the celebrated Rayleigh
equation. It is also the equation for modes (ψ = φ(y) exp[ik(x −
(c + iǫ)t)]) of the linearized Euler equation (4). It reads

(

d2

dy2
− k2

)

φ − U ′′

U − c − iǫ
φ = 0, (10)

with the flow boundary conditions. For neutral modes (ǫ = 0), this
is a non-classical boundary value problem, because of the possible
singularities associated to the vanishing of U − c. Any yc such that
U(yc) = c is called a critical point for the velocity c. For any c , the
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free motion on the streamline y = yc is called the critical layer and
has exactly the frequency kc.

Any y0 such that U ′(y0) = 0 (no shear, for instance for velocity
extrema) is called a stationary point of the jet profile, correspond-
ing to a stationary streamline.We then call c

0
= U(y0) a stationary

velocity. If y0 is a local extrema of U , we note that when y → y0
(or equivalently c → c0 = U(y0)), two critical layers, one on each
side of the velocity extrema, merge into a single one.

The range of the profile U is the ensemble of velocities c such
that miny U(y) < c < maxy U(y).

In the following we assume that the base flow is spectrally sta-
ble, i.e., no unstable mode exist, which means that no solution to
(10) exist for any c+ iǫ with strictly positive ǫ > 0. Then, as shown
in Section 2.3, Eq. (9) has a unique solution for any c + iǫ with
strictly positive ǫ > 0. We also assume that no neutral mode exist,
whichmeans that no solutions to (10) is found in the limit ǫ → 0+

(a more precise definition will be given below in terms of the dis-
persion relation). This no mode assumption for Eq. (6) may seem
strange, but it is indeed a generic situation when such flows are
stables. It is indeed a classical result that shear flows without in-
flection points, or vortices with strictly decreasing vorticity profile
are stable and have no neutral mode [27,39]. For instance, in Sec-
tion 4, we prove that this hypothesis is also verified for the Kol-
mogorov flow U(y) = cos(y) as soon as the aspect ratio δ is larger
than 1. Actually the only examples we are aware of, of stable flows
for the 2D Euler dynamics, with neutral modes that do not disap-
pear when we add small perturbations to the flow, are cases with
localized vorticity profile [8]. Usually, modes appear when a pa-
rameter is changed, at the edge of an instability; four unstable (or
two degenerate) unstable eigenvalues then emerge from the con-
tinuous spectrum.

The case with neutral modes could be treated following the
same lines as what will be discussed below; one would then
have to separate the contributions by the neutral modes from
the contributions by the continuous spectrum. The following
discussion analyzes the contributions by the continuous spectrum
only.

2.2. Large time asymptotics for the linearized 2D Euler equations

In this section, we predict the large time asymptotic behavior of
the linearized 2D Euler equations, using Laplace transform tools.
We prove results (1) and (2) and the mechanism of vorticity
depletion at stationary streamlines. The heart of the proof relies
on the study of the effect of critical layers, on the inhomogeneous
Rayleigh equation (9), in the limit ǫ goes to zero. This rather
technical part is performed in Section 2.3.

The results of Section 2.3 are that the resolvent stream function
φ, solution of (9), has a finite limit for small positive ǫ:

φ (y, c + iǫ) −−−→
ǫ→0+

φ+ (y, c) , (11)

even if singularities exist due to the critical layers. We prove
that for any y, φ+(y, c) is twice differentiable with respect to c ,
except for velocities c that are in the interior of the range of U . In
this last case, for velocities c that are not stationary, φ+ is twice
differentiable, except for c = U(y). For c = U(y), φ+ is continuous
but not differentiable there, and has a logarithmic singularity: for
fixed y, φ+(y, c) = 1φc(c − U(y)) log(c − U(y))+ R(y, c), where
R(y, .) is an analytic function of c. When c = c0 is a stationary
velocity, φ+(y, c0) is differentiable with respect to c.

We think that all of the steps of these proofs could be easily
made rigorous from a mathematical point of view, by making
explicit the required hypothesis. An exception is for the limit ofφ in
the case of critical layers for stationary points.We actually prove in
the following that a solution exists for ǫ = 0, but we do not prove

the convergence to it when ǫ → 0. In order to deal with this small
gap in the proof, we will show, by numerically computing φ(y, ǫ),
that this convergence actually takes place.

These results (the limit and its properties) are the difficult
aspects of the discussion, from a mathematical point of view.
Their technical proof can be skipped at a first reading, the next
sections can be read independently by assuming these results.
The discussion then follows by performing the inverse Laplace
transformandproving results (1) and (2) in Sections 2.3.4 and2.3.5.

2.3. Limit for ǫ → 0+ of the resolvent operator

2.3.1. The dispersion relation

The equation defining the resolvent operator for the stream
function (9) is of the type

d2φ

dy2
+ q(y)φ = f (y), (12)

with q = −k2 −U ′′/(U − c− iǫ), and f = ω(y, 0)/[ik(U − c− iǫ)].
This is a boundary value problem. In order to be precise, we treat
the case of a doubly periodic domain with the period 2π , although
that is easily generalized to the case of a flow in a channel y ∈ (a, b)
with the boundary conditions φ(a) = φ(b) = 0.

For ǫ 6= 0, the differential equation is not singular. We consider
the homogeneous equation

d2φ

dy2
+ q(y)φ = 0. (13)

We consider two independent solutions to (13): φ1 is defined by
φ1(0) = 1 and φ′

1(0) = 0, and φ2 is defined by φ2(0) = 0 and
φ′
2(0) = 1 (here and below, primes are derivatives with respect

to y). The classical variation of the parameter computation then
insures that a particular solution to (12) is

φp (y) = −
(∫ y

0

φ2f

)

φ1 (y)+
(∫ y

0

φ1f

)

φ2 (y) ,

and a general solution is

φf = φp + aφ1 + bφ2, (14)

where a and b are unknown constants. The necessary and sufficient
conditions for φ to be periodic are that φ(0) = φ(2π) and φ′(0) =
φ′(2π). These conditions read

M

(

a

b

)

=
(

−φp (2π)
−φ′

p (2π)

)

with M =
(

φ1 (2π)− 1 φ2 (2π)
φ′
1 (2π) φ′

2 (2π)− 1

)

. (15)

This system has a single solution if and only if the determinant of
M is nonzero. det(M) = 0 defines the dispersion relation

D (c + iǫ) ≡ [φ1 (2π)− 1]
[

φ′
2 (2π)− 1

]

−φ′
1 (2π) φ2 (2π) = 0. (16)

The existence of modes (nontrivial solutions to (13)) is then
equivalent to the zero values of the dispersion relations. When
no mode exist, D is nonzero and (12) has thus a unique periodic
solution φf (14), with a and b the unique solution to (15).

Turning back to the inhomogeneous Rayleigh equation (9), the
preceding discussion applies as soon as ǫ 6= 0. We assume that
no unstable mode exists, then D(c + iǫ) is nonzero. Then the
inhomogeneous Rayleigh equation has a unique solution for any
c + iǫ, for nonzero ǫ.

The limit ǫ → 0 of φf (c + iǫ) is nontrivial due to the existence
of critical layers yc(c), for which the Rayleigh equation becomes
singular. We study this limit in the following sections.
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2.3.2. Limit ǫ → 0+ for isolated critical layers

We consider fixed values of c which are on the range of U:
miny{U(y)} < c < maxy{U(y)}. In such a case, for any value of
c , there exist one or several points yl such that U(yl) = c. The
inhomogeneous Rayleigh equation is then singular at such critical
layers. We discuss in this section the case U ′(yl) 6= 0 (isolated
critical layers). The case U ′(yl) = 0 will be treated in the next
section.

In order to properly study the limit ǫ → 0, we first build a
solution to the homogeneous equation (10), which is regular at
one of the critical layers y = yl. We define φr(y, c) as the solution
to (10) with φr(yl, c) = 0 and φ′

r(yl, c) = 1. From (10), we have
φ′′
r (yl, c) = U ′′(yl)/U ′(yc). We then have the expansion

φr (y, c) = (y − yl (c))

×
[

1 + U ′′ (yl (c))

2U ′ (yl (c))
(y − yl (c))+ o (y − yl)

]

. (17)

It can be shown that the solutionφr(y, c) is an analytic function of y
in the vicinity of yl, ifwe suppose thatU(y) is analytic in a vicinity of
yl. Moreover, from the definition U(yl(c)) = c , because U ′(yl) 6= 0,
then yl(c) is analytic in a vicinity of c and dyl/dc = 1/U ′(yl). The
solution φr(y, c

′) has then an analytic continuation for complex c ′

in the vicinity of c.
A classical result of the theory of differential equations of

second order is that, if we already know a solution φr , all other
solutions φ are expressed in terms of φr by quadratures. The recipe
for this is to look for solutions under the form φ = uφr , look for the
equation verified by u and integrate it. We apply this recipe to the
inhomogeneous Rayleigh equation (9). Then any solution φ to (9)
is expressed as

φ(y) = dφr(y)+ φr(y)

∫ y

y0

(e + f )

φ2
r

with (18)

f (y) =
∫ y

y0

dy2
ω (y2, 0) φr(y2)

ik (U(y2)− c − iǫ)
,

and where d and e are constants.
We study the behavior of the previous expression close to yl.

We first note that f is analytic close to yl. Then using the expansion
(17), we conclude that

φ(y, c + iǫ) = dφr(y, c + iǫ)+ gφr(y, c + iǫ)

× log (y − yl(c + iǫ))+ eφg (y, c + iǫ)+ φh (y, c + iǫ) (19)

where φg and φh are analytic functions of y close to yl, and where
g is a constant that depends on f (yl), f

′(yl) and e.
The interpretation of (19) depends on which determination of

the logarithm we use. Using dyl/dc = 1/U ′(yl) (discussed above),
we have yl(c + iǫ) = yl(c) + iǫ/U ′(yl) + o(ǫ). We choose a
determination of the logarithm such that log(y−yl(c)− iǫ/U ′(yl))
remains analytic for positive ǫ. Then the study of the limit ǫ → 0
of Eq. (14) is easily done, we denote this limit φ(y, c + i0). Using
that φr and φg depends analytically on c , we obtain

φ(y, c + i0) = dφr(y, c)+ gφr(y, c) log |y − yl| + eφg (y, c)
+φh (y, c) for y > yl and (20)

φ(y, c + i0) = (d − iπsgn
(

U ′(yl)
)

g)φr(y, c)

+ gφr(y, c) log |y − yl| + eφg (y, c)+ φh (y, c) for y < yl (21)

where sgn(U ′(yl)) is the sign of U ′(yl).
From this, we conclude that, for given d and e, the solution to

the inhomogeneous Rayleigh equation (9) converges, for ǫ → 0,
towards a function φ(y, c + i0), which is an analytical function
of y, except for y = yl where it has a logarithmic singularity. It
is continuous at y = yl. This result is valid close to any single
critical layer yl. If twoor several critical layer yl,i exist in the interval

y ∈ (0, 2π), then the result is easily extended, and holds with a
singularity at each critical layer.

Is this result also true for the solution φω(y, c + iǫ) of the
inhomogeneous Rayleigh equation with boundary conditions? In
order to answer this, we now turn again to the construction
of Section 2.3.1. The result of the previous paragraph is applied
alternatively to φ1(y, c + iǫ), φ2(y, c + iǫ) and to φp(y, c + iǫ),
please see Eq. (14). We thus conclude that all these three functions
have well-defined limits for ǫ → 0+, and that these limits are
continuous functions of y, which have singularities with finite
jump in their derivative for each critical layer. We can then extend
the definition of the dispersion relation to ǫ → 0+ with D+(c) =
limǫ→0+ D(c + iǫ). D+(c) verifies (16) for which we have proved
that all terms have a finite limit when ǫ → 0+. Then we conclude
that the two parameters a and b in Eq. (14) have finite limits when
ǫ → 0+. These limit values are given by Eq. (15), where each term
has a finite limit.

We thus conclude that the solution to the Rayleigh equation
with boundary conditions φω(y, c + iǫ) has a finite limit φ+(y, c)
for ǫ → 0+. Moreover, φ+(y, c) is a continuous function of y that
has a logarithmic singularity at each critical layer, giving a finite
jump for the first derivative.

Let us denote 1φ+ this jump. From the previous analysis we
know that

φ+ (y, c) = a + b (y − yl)+1φ+(y − yl)

× log |y − yl| + O (y − yl)
2 . (22)

Using this expansion, a direct analysis of the dominant term in (9)
leads to

1φ+ = ω (yl, 0)+ ikU ′′ (yl) φ+ (yl, c)

ikU ′ (yl)
.

The jump in the derivative thus depends on the value of φ+ which
is a non-local quantity (φ+ depends on the whole profile U).

Because φr and yl are analytic functions of c , the construction of
φ+ can be extended analytically when c is varied. Then from (22),
using yl(c

′) = yl(c)+ (c ′ − c)/U ′(yl), one sees that, for fixed y:

φ+ (y, c) = 1φc (U(y)− c) log (U (y)− c)+ φa (y, c) , (23)

where φa(y, c) is analytic close to c = U(y) and with

1φc = 1φ+
U ′ (y)

= ω (y, 0)+ ikU ′′ (y) φ+ (y,U (y))

ik (U ′ (y))2
. (24)

We illustrate the preceding results with numerical solutions
of the inhomogeneous Rayleigh equations on a doubly periodic
domain, and the base flow U(y) = cos y (the Kolmogorov flow).

We follow the algorithm described in Section 2.3.1, that is,
computing φ1, φ2, and φp, and then by using them, computing the
solution to the inhomogeneous Rayleigh equation for c ′ = c + iǫ
for small but nonzero values of ǫ. In order to numerically compute
the solutions to the differential equations (for φ1, φ2, and φp), we
use an adaptive method to deal with the singularity close to the
critical layers. An extreme precision is required in order to obtain
satisfactory results.

In order to test the quality of the numerical simulations, we
compute the Wronskian W = φ1(y)φ

′
2(y)− φ2(y)φ

′
1(y). From the

general theory of differential equations of second order, we know
that W does not depend on y. Here, from the values of φ1 and φ2

at y = 0, given by their definition, we have W = 1. We test the
accuracy of this in all our numerical simulations. For instance in
the case of simple critical layers, using the Matlab function ode45,
and fixing the relative error and the absolute error parameters of
this function to 10−13, we obtain solutions for which errors in W
are typically smaller than 10−6 for ǫ = 10−4.

Fig. 2 shows the real and the imaginary parts for the solution
φω(y, c + iǫ) to the inhomogeneous Rayleigh equation (9), in the
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Fig. 2. The real (ℜ, upper set of curves) and the imaginary parts (ℑ, lower set of

curves) for the solution φω(y, c + iǫ) to the inhomogeneous Rayleigh equation (9),

in the caseω(y, 0) = 1, c =
√
2/2 (yl = π/4 and yl = 7π/4), k = 1.5. The different

curves show the results for ǫ = 10−2 (blue (ℜ) and light blue (ℑ)), ǫ = 10−3

(green (ℜ) and magenta (ℑ)) and ǫ = 10−4 (red (ℜ) and yellow (ℑ)). The curves for

ǫ = 10−3 and ǫ = 10−4 are nearly indistinguishable, showing good convergence.

(For interpretation of the references to colours in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 3. Same as the previous figure, but for the imaginary part of the derivative

φ′
ω(y, c + iǫ) of the solution to the inhomogeneous Rayleigh equation (9) (blue for

ǫ = 10−2 , green for ǫ = 10−3 , and red for ǫ = 10−4). The green and red curves

are nearly indistinguishable. (For interpretation of the references to colours in this

figure legend, the reader is referred to the web version of this article.)

case ω(y, 0) = 1, c =
√
2/2 (yl = π/4 and yl = 7π/4), k = 1.5

for the values ǫ = 10−2, ǫ = 10−3 and ǫ = 10−4. This illustrates
the convergence of the solutions φω(y, c + iǫ) to a continuous
function φω(y, c + i0). The visible kinks close to the critical layers
suggest the discontinuity of the derivative. This is actually verified
and illustrated in Fig. 3, that shows the derivative with respect to
y, φ′

ω(y, c + iǫ).

2.3.3. Limit ǫ → 0+ for critical layer of stationary streamlines

We now consider the case of a critical layer that corresponds to
a stationary streamline (yl = y0, where U(y0) = c0, U

′(y0) = 0
and U ′′(y0) 6= 0).

In order to properly study the limit ǫ → 0 in this case, we first
build a solution to the homogeneous equation (10), which is regu-
lar at the critical layer y = y0. We defineφr(y, c0) as the solution to
(10) with φr(y0, c0) = 0, φ′

r(y0, c0) = 0 and φ′′
r (y0, c0) = 1. Such a

solution can be shown to exist by a series expansion in powers of
(y−y0). It can be shown thatφr(y, c0) is an analytic function of y in
the vicinity of y0, if we suppose that U(y) is analytic in the vicinity
of y0.

However, by contrast to the case of isolated critical layers
analyzed in Section 2.3.2, the solution φr(y, c0) is not analytic in

the vicinity of c0. Then the approach of Section 2.3.2 cannot be
generalized.

Let us first prove that it exists a solution to the inhomogeneous
Rayleigh equation, for ǫ = 0, which is continuously differentiable
at y0.We start fromexpression (18). f is analytic in y0. Let us choose
e = −f (y0) and b = 0. Then we obtain the particular solution

φω,0(y) = φr(y)

∫ y

y0

(f − f (y0))

φ2
r

. (25)

Noting that the expansion of φr begins at order 2 in (y − y0), we
easily prove that

φω,0(y) = φi (y)+ gφr (y) log |y − y0| , (26)

where g is a constant and φi is an analytic function of y. We note
that φω,0(y) is continuously differentiable at the critical layer y0.
This solution is defined locally, in an interval whereφr has no other
zero than y0. However, it can be extended to the whole interval
y ∈ (0, 2π), because Eq. (9) is not singular in other points than y0.

By contrast to the situation obtained for isolated critical points,
we cannot make an analytical continuation of the solution (25) for
complex c0 + iǫ. We thus follow another route.

We note that we can add bφi to φω,0(y), where two different
values for b can be chosen for y < y0 and for y > y0. The function

{

φ+(y, c0) = b−φr(y)+ φω,0(y) for y < y0

φ+(y, c0) = b
+
φr(y)+ φω,0(y) for y > y0

(27)

is actually a solution to the inhomogeneous Rayleigh equation (9)
for any y 6= y0 which is continuously differentiable in yl. It is thus
a solution to (9).

The values of b+ and b− can be chosen in order to satisfy the
boundary conditions. For instance, for 2π-periodic solutions, the
boundary conditions are equivalent to

N

(

b−

b+

)

=
(

φω,0 (2π)− φω,0 (0)
φ′
ω,0 (2π)− φ′

ω,0 (0)

)

with N =
(

φr (0) −φr (2π)
φ′
r (0) −φ′

r (2π)

)

. (28)

The determinant of N then plays the role of a dispersion relation
for neutral mode associated to the stationary streamlines. It reads

Ds = −φr (0) φ
′
r (2π)+ φr (2π) φ

′
r (0) . (29)

When no such mode exists, Eq. (28) is solved, and we obtain a
solution to the inhomogeneous Rayleigh equation that verifies the
boundary conditions.

We have thus constructed a solution to the inhomogeneous
Rayleigh equation for real c0 = U(y0), where y0 is a stationary
point of U such that U ′′(y0) 6= 0.

We illustrate the preceding results with numerical solutions
of the inhomogeneous Rayleigh equations on a doubly periodic
domain, for the Kolmogorov base flow U(y) = cos y.

The numerical computation follows the same rules as the ones
described in Section 2.3.2. We note that using the Matlab function
ode45, and fixing the relative error and the absolute error parame-
ters of this function to 10−13, we obtain solutions for which errors
in W are typically smaller than 10−2 for ǫ = 10−3. It is thus much
harder to obtain good quality numerical simulation in that case,
than in the case of isolated critical layers discussed in Section 2.3.2.

Fig. 4 shows the real and the imaginary parts for the solution
φω(y, c0 + iǫ) to the inhomogeneous Rayleigh equation (9), in the
caseω(y, 0) = 1;with a critical layer corresponding to a stationary
point (c0 = 1, y0 = 0) and with k = 1.5; for the values ǫ = 10−2,
ǫ = 5.10−3 and ǫ = 10−3. This illustrates the convergence of the
solutions φω(y, c0 + iǫ) to a continuous function φ+(y, c0). It turns
out that the real part converges to zero. The same results are also
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Fig. 4. The real (ℜ) and the imaginary (ℑ) parts for the solutionφω(y, c0+ iǫ) to the

inhomogeneous Rayleigh equation (9), in the case ω(y, 0) = 1; with a critical layer

corresponding to a stationary point (c0 = 1, yl = 0) and with k = 1.5. The different

curves show the results for ǫ = 10−2 (blue (ℜ) and light blue (ℑ)), ǫ = 5.10−3

(green (ℜ) and magenta (ℑ)) and ǫ = 10−3 (red (ℜ) and yellow (ℑ)). The curves for

ǫ = 5.10−3 and ǫ = 10−3 are indistinguishable, showing good convergence. The

real part is the ensemble of curves that converge to zero. (For interpretation of the
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of this article.)
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Fig. 5. Same as the previous figure, but for the imaginary part of the derivative

φ′
ω(y, c0 + iǫ) of the solution to the inhomogeneous Rayleigh equation (9). All three

curves are indistinguishable.

presented for the derivative with respect to y, φ′
ω(y, c0 + iǫ), on

Fig. 5.
We now turn to the derivation of a property of such solutions,

that will be very important in the discussion of the asymptotic
behavior of the linearized 2D Euler equations. We have shown
that φ+(y, c0) is continuously differentiable at yl, and has a second
order logarithmic singularity at y0 (see (26) and (27)). Then a direct
inspection of the leading singularity in Eq. (9), of order (y − yc)

−1,
leads to the conclusion that

ikU ′′ (y0) φ+ (y0,U (y0))+ ω(y0, 0) = 0. (30)

2.3.4. The asymptotic vorticity field

Using the results of the previous section, we prove in this
section that the vorticity field converges, for large time, towards
a field oscillating at a multiple of the streamline frequency. More
precisely, we prove that

ω (y, t) ∼
t→∞

ω∞ (y) exp (−ikU(y)t)+ O

(

1

tγ

)

. (31)

In particular, for any stationary point y0,ω∞(y0) = 0. This essential
property means that the vorticity cancels rapidly at any stationary

streamline. This is the mechanism of vorticity depletion at the
stationary streamlines, discussed in the introduction.

Using (11) and (8) we have

ω̂(y, c + iǫ) ∼
ǫ→0+

ikU ′′ (y) φ+ (y, c)+ ω (y, 0)

ik (U(y)− c − i0+)
. (32)

Thanks to the analysis of the properties ofφ in the previous section,
we know that all its singularities are integrable. We thus see that
for any c , ω̂(., c) has nonintegrable singularities at each critical
layer yl. For fixed y, ω̂(y, .) has a single singularity for the velocity
c = U(y). Using (32), we write the inverse Laplace transform (7)
on the Bromwich contour defined by p = −ik(c + iǫ) with ǫ > 0
and −∞ ≤ c ≤ +∞.

ω (y, t) = 1

2π i

∫ +∞

−∞
dc

exp (−ik(c + iǫ)t)

U(y)− c − iǫ

× [ikU ′′ (y) φ (y, c + iǫ)+ ω(0, y)]. (33)

We first estimate the contribution of the pole

1

2π i

∫ +∞

−∞
dc

exp (−ik(c + iǫ)t)

U(y)− c − iǫ
[ikU ′′ (y) φ+ (y,U(y))+ ω(0, y)]

=
[

ikU ′′ (y) φ+ (y,U(y))+ ω (y, 0)
]

exp (−ikU(y)t) ,

using the standard deformation of the contour of the complex
integral, and the residue theorem. The remainder contribution to
the vorticity (33) is then

kU ′′ (y)

2π

∫ +∞

−∞
dc
φ+ (y, c)− φ+ (y,U(y))

U(y)− c
exp (−ikct) .

This integral is an oscillating integral. For large times, it thus gives
a contribution of order O(1/tγ ) where γ depends on the order
differentiability ofφ+(y, c) as a function of c. The result (31) is thus
proved, and we have

ω∞ (y) = ikU ′′ (y) φ+ (y,U(y))+ ω (y, 0) . (34)

We remark that for any point y1 whereU ′′(y1) vanishes,ω∞(y1)
= ω(y1, 0). This could have been anticipated as for such points y1,
from (6), we trivially have ω(y1, t) = ω(y1, 0) exp(−ikU(y1)t) for
any time t .

Using (30) and (34), we deduce that

ω∞ (y0) = 0.

This result means that the vorticity tends to zero for large time
for any stationary streamlines y0. This vorticity depletion at the
stationary streamline is, from a mathematical point of view, a
nontrivial consequence of the Laplace transform analysis, and of
the regularization of the resolvent operator at stationary velocities.
As will be illustrated in Section 4, using numerical simulation, it
is a striking dynamical effect leading to the disappearance of any
filament in the area close to the critical layer of a stationary point
of the profile U . This has a large qualitative impact on the flow
structure and evolution.

This effect comes from the term vyU
′′(y) in the linearized

Euler equation (6); it is thus a consequence of the effect of the
transverse velocity on the background vorticity. Because vy is a
non-local quantity, depending on the evolution of the vorticity
field everywhere in the domain, this effect is a non-local, nontrivial
one that we are not able to explain easily heuristically.

Besides these theoretical results, the Laplace tools are very
interesting as they allow the computation of asymptotic behavior
of the flow without relying on a complex direct numerical
computation. Moreover, whereas the asymptotic approach of
Lundgren does not provide any computation of the profile ω∞(y),
here we can compute it from (34).

Using this last procedure and thenumerical computations of the
resolventφω , described in Sections 2.3.2 and 2.3.3, we compute the
asymptotic vorticity profiles. They are represented in Figs. 10, 11
and 16; and discussed in more details in Section 4.2.
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2.3.5. The asymptotic velocity field

In this section we study the asymptotic behavior of the velocity
field. We prove that the velocity field decays algebraically for large
times:

vx(y, t) ∼
t→∞

ω∞ (y)

ikU ′(y)

exp (−ikU(y)t)

t
and (35)

vy(y, t) ∼
t→∞

ω∞ (y)

ik (U ′(y))2
exp (−ikU(y)t)

t2
; (36)

where ω∞ is the asymptotic vorticity profile (31), (34).
We first explain this result starting from the asymptotic

vorticity derived in the previous section (31), and using large
time asymptotic behavior of oscillating integrals. This argument is
heuristically very interesting. However it will be valid only when
the contributions of stationary points y0 are negligible, and when
the convergence of the vorticity towards the asymptotic vorticity is
sufficiently rapid. Indeed, the convergence towards the Lundgren’s
ansatz has to be uniformly more rapid than the derived algebraic
laws. This last point is actually true only for strictly monotonic
velocity profiles U as will be discussed below.

In order to give a proof of the results (35) and (36) valid also
for profile U with stationary streamlines, we give a more general
argument based on Laplace transform at the end of this section.

Oscillating integrals. We begin with the expression of the velocity
from the vorticity field using a Green function formalism.We have

v(y, t) =
∫

dy′ Gk(y, y
′)ω(y′, t), (37)

where Gk is defined from (5):

Gk(y, y
′) =

(

−∂Hk

∂y
, ikHk

)

(

y, y′)

with
∂2Hk

∂y2
− k2Hk = δ

(

y − y′) ,

with the periodic boundary conditions on y. Using the asymptotic
result on the vorticity field, we thus have

v(y, t) ∼
t→∞

∫

dy′ Gk

(

y, y′)ω∞(y
′) exp (−ikU(y)t) . (38)

We consider the asymptotic behavior, for large times t , of the
oscillating integral (38). Since Kelvin, very classical results do exist
for the asymptotic behavior of such integrals, the most famous
result being the stationary phase approximation. Such results are
discussed in Appendix A.

An essential point, which makes this case different from the
more classical ones, is that the Green function Gk(y, y

′) is not
smooth everywhere: it is smooth except for the singularity when
y = y′. We prove in Appendix A that if U(y) has no stationary
points (for all y, U ′(y) 6= 0), then results (35)–(36) are valid, the
main contribution being related to the singularities of the Green
function.

If the velocity field U(y) has M stationary points ym (U ′(ym) =
0), then the contributions of the stationary points, generically of
order 1/

√
t , usually dominate the contributions of the singularity

of the Green function Gk, in integrals like (38). If ω∞(ym) 6= 0, the
classical stationary phase approximation (see Appendix A) would
lead to

v(y, t) ∼
t→∞

∑

m=1,...,M

Gk(y, ym)ω∞(ym)

√

2π

|kU ′′ (ym)|

× exp

(

iǫmπ

4

)

exp(−ikU (ym) t)√
t

,

where ǫm is the sign of −kU ′′(ym).

However, a remarkable fact is that for any stationary point y0
(such that U ′(y0) = 0), due to the vorticity depletion mechanism
discussed in Section 2.3.4 and proved in Section 2.3.3, ω∞(y0) =
0. Then the leading order contribution from the stationary phase
approximation vanishes. The analysis could proceed in order to
determine the next leading order term in the expansion, from (38),
expected to be of order 1/t3/2. However, such a detailed analysis is
useless, because the convergence ofω(., t) towards the asymptotic
vorticity profile ω∞ is too slow, in the vicinity of a stationary
streamline. Actually the error due to the slow convergence towards
the Lundgren’s profile gives contributions which are also of order
1/t3/2. This will be illustrated using direct numerical simulations
in Section 4 (see Fig. 9, Fig. 15 and the related text).

Laplace tools. In order to give a precise argument for the results
(35)–(36), we use Laplace tools. We first note that vy = ikψ , and
study the asymptotics for the stream functionψ . Starting from the
inverse Laplace transform of ψ , we have

ψ (y, t) = k

2π

∫ +∞

−∞
dc φ+ (y, c) exp (−ikct) , (39)

where φ+(y, .) is the limit of φ(y, c + iǫ) for ǫ → 0. (39) is an
oscillating integral. We use that for any y for which U ′(y) 6= 0,
φ+(y, c) is twice differentiable except at c = U(y) where it has a
logarithmic singularity1φc(c −U(y)) log(c −U(y)) (see Eq. (23)).
Then the large time asymptotics of ψ is due to this singularity. In
order to evaluate it, we part integrate twice (39) and evaluate the
contribution of the singularity with the residue theorem. Then the
leading order contribution is obtained as,

ψ (y, t) ∼
t→∞

ω∞ (y)

(ikU ′ (y))2
exp (−ikU(y)t)

t2
, (40)

where we have used (24) and (34) in order to express1φc .
We note that (36) follows immediately from (40) and from the

relation vy = ikψ . The asymptotic result (35) for the transverse
velocity vx can be derived by following similar arguments as the
one just described for ψ .

The above argument uses the explicit prediction (23) for the sin-
gularity ofφ+(y, c) as a function of c . The expressions (23) and (24)
are valid onlywhen y is not a stationary streamline (U ′(y) 6= 0). For
stationary streamlines ym we have no theoretical predictions. Di-
rect numerical computation in Section 4.2will leadus to conjecture
that for such special pointsψ(ym, t) ∼

t→∞
C1 exp(−ikU(ym)t)/t

3/2,

vx(ym, t) ∼
t→∞

C2 exp(−ikU(ym)t)/t
3/2 and vy(ym, t) ∼

t→∞
ikC1

exp(−ikU(ym)t)/t
3/2. We note that this exponent 3/2 is not re-

lated to a contribution from the stationary phase approximation.
We thus conclude that the results (35) and (36) are valid not

only for monotonic profiles, but also for base flows with stationary

streamlines. This is in marked contrast to what was thought to

be true in many previous publications, based on the asymptotic

expansions and the stationary phase arguments. This is mainly due
to the vorticity depletion mechanism at the stationary streamlines
discussed in the previous section.We also stress that, using Laplace
tools, the asymptotic profile ω∞(y) can be numerically computed
easily, without relying on direct numerical computations of the
Euler equations.

We have theoretical predictions for the power law in the
asymptotic behavior of the perturbation velocity, for all points of
the domain except along the stationary streamlines.

3. Asymptotic stability of parallel flows for the 2D Euler

equations

In the previous section, we have obtained results for the asymp-
totic behavior of the linearized 2D Euler equations,with initial con-
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ditions close to some parallel flows v0(r) = U(y)ex. We now ad-
dress the evolution of the same initial conditions by the nonlinear
Euler equation (3). The aim of this section is to explain why the lin-
earized dynamics will be a good approximation for the dynamics
for any time t , and to explain why the flow velocity is asymptoti-
cally stable (in kinetic energy norm), for small initial perturbation
of the vorticity (in enstrophy norm).

We consider the initial vorticity Ω(x, y, 0) = −U ′(y) + ǫω(x,

y, 0), where ǫ is small. Without loss of generality, we suppose that
∫

dxω = 0. The perturbation ω can be decomposed in Fourier
modes along the x direction

ω (x, y, t) =
∑

k

ωk (y, t) exp (ikx) .

From the 2D Euler equations (3), the equation for the evolution of
ωk reads

∂ωk

∂t
+ ikU (y) ωk − ikψkU

′′ (y) = −ǫNL with

NL =
∑

l

{

−ik
∂ψl

∂y
(y, t) ωk−l (y, t)

+ ∂

∂y
[ilψl (y, t) ωk−l (y, t)]

}

. (41)

The left hand side is the linearized Euler equation, whereas the
right hand side are the nonlinear corrections. We want to prove
that, for sufficiently small ǫ, neglecting the nonlinear terms is self-
consistent.

For this we have to prove that the nonlinear terms remain
uniformly negligible for large time. We then use the asymptotic
results for the linearized equation derived in Section 2. We thus
have, for any k

ψk,L (y, t) ∼
t→∞

ωk,L,∞ (y)

(ikU ′ (y))2
exp (−ikU(y)t)

t2
and

ωk,L (y, t) ∼
t→∞

ωk,L,∞ (y) exp (−ikU(y)t) ,

(42)

where the subscript L refers to the evolution according to the
linearized dynamics. We call a quasi-linear approximation to the
right hand side of Eq. (41), the approximation where ψk and ωk

would be evaluated according to their linearized evolution close to
the base flow U(y). From (42), one would expect at first sight that
this quasi-linear approximation of the nonlinear term NLQL, would
give contributions of order O(1/t). The detailed computation,
easily performed from (42), actually shows that the contributions
of order O(1/t) identically vanish for large times. Then

ǫNLk,QL =
t→∞

O

( ǫ

t2

)

.

This is an important remark, as it proves that within a quasi-
linear approximation, the contribution of the nonlinear terms NLQL
remains uniformly bounded, and more importantly it is integrable
with respect to time.

Then it is natural to conjecture that the contribution of the
nonlinear terms remains always negligible. More precisely, we
naturally conjecture that within the fully nonlinear equation, for
sufficiently small ǫ:

ψk (y, t) ∼
t→∞

ωk,∞ (y)

(ikU ′ (y))2
exp (−ikU(y)t)

t2
and

ωk (y, t) ∼
t→∞

ωk,∞ (y) exp (−ikU(y)t)

with

ωk,∞ (y) = ωk,L,∞ (y)+ O (ǫ) .

A similar reasoning in order to evaluate the nonlinear evolution
for the profile U(y) would lead to the conclusion that for large
times

Ω0 (y, t) ∼
t→∞

−U ′
∞ (y) with U ′

∞ (y) = U (y)+ δU (y) ,

where δU = O(ǫ2).
This means that the parallel flow quickly stabilizes again

towards another parallel flow which is close to the initial one.
A natural question would be to compute the modified profile.

The preceding analysis leads to the quasi-linear expression

δU (y) = −ǫ2
∫ ∞

0

dt NL0,QL (t)+ o
(

ǫ2
)

. (43)

This expression involves integrals over times of solutions to the
linearized Euler equation. It is not amenable to a simple expression,
but could be easily be computed numerically from Laplace tools.

This result has to be contrasted with the results usually
obtained using a quasi-linear approach, for instance in the kinetic
theory of particle dynamics (point vortex models, plasma physics,
astrophysics). Usually the integrals occurring in (43) diverge. Then
one invokes a time scale separation, and the divergence of the
integral is regularized using a multiple scale analysis. Here, by
contrast, the integral converges. This means that there is a single
time scale over which all quantities reach their asymptotic value
(a typical time scale here is 1/s where s is the typical shear).
The nonlinear evolution is thus very brief and leads to very small
changes in the initial profile U .

A theory for the relaxation towards equilibrium for the 2D
Euler equations has been proposed based on a quasi-linear theory
coupled to someMarkovianization hypothesis, by analogywith the
kinetic theory of point vortices [51]. These types of approaches
based on analogies are natural guess that rely on theoretical
hypothesis (quasi-linear hypothesis and Markovian hypothesis),
that would benefit from either theoretical justifications or
numerical verifications. The results of this paper for the linearized
dynamics and the discussion above show that the approximation
of the nonlinear dynamics by the linearized dynamics remains
uniformly self-consistent; the computation of the nonlinear effects
by a quasi-linear approach is thus also seld-consistent. However
as discussed above, the relaxation is then extremely rapid
and all quantities relax rapidly. Any further assumptions like
Markovianization seems then irrelevant. Simpler approach, like
the one of [46], similar to the discussion of this section seems thus
more relevant.

We thus conclude that a direct asymptotic expansion based
on a quasi-linear approach, similar to the one in [46], or may be
with more subtle treatments of the lower order contributions, is
most probably the relevant approach for a theory of the relaxation
of the 2D Euler equations. The exact results on the linearized
dynamics of the previous section and the discussion above put such
an asymptotic expansion on a more rigorous basis, by proving that
the leading order contribution remains self-consistently bounded
for all times, and explainingwhy an asymptotic expansion possibly
converges. In Lundgren’s approach, the asymptotic behavior is
described by a power of 1/t expansion for large times, whose
leading order term is not determined. It actually depends on
the initial condition and cannot be predicted only with a large
time series expansion. The further interest of the Laplace method
developed in this paper is to give precise predictions for the
asymptotic profile that can be easily computed numerically from
the Laplace tools. The numerical computations in the next section
will confirm the statements on this last paragraph, by showing
excellent agreements between direct numerical simulations of the
2D Euler equations and the predictions of such a simple quasi-
linear approach, based on Laplace tools computations.

We also conclude that, for any profileU verifying the hypothesis
of this work (no unstable and no neutral modes for the linearized



958 F. Bouchet, H. Morita / Physica D 239 (2010) 948–966

dynamics) with any perturbation corresponding to a small
vorticity, the assumption that the velocity converges for large
times towards a new parallel velocity profile close to the initial
profile U is a self-consistent hypothesis. We see in Section 4 that
this is confirmed by numerical computations.

From this discussion, we thus conclude that it is natural to
conjecture that for any profile U verifying the hypothesis of
this work (no unstable and no neutral modes for the linearized
dynamics), for any perturbation corresponding to a small vorticity,
the velocity converges for large times towards a new parallel
velocity profile close to the initial profile U . A possible theorem
expressing thismore preciselywould be similar to the one recently
obtained byMouhot andVillani [52], for the Landau damping in the
very close setup of the Vlasov equation. It has however to be noted
that no proof of such a theorem for the 2DEuler equations is known
yet, even in the simplest case of a profile U without stationary
points.

It is thus very natural to conjecture that the ensemble of shear
flows without unstable or neutral modes is asymptotically stable4

in the sense given previously (initial perturbation controlled by
a vorticity norm, for instance the enstrophy, and large time
perturbation controlled by a kinetic energy norm).5

4. The Kolmogorov flow

In this section, we consider the particular case of the 2D Euler
equations in a doubly periodic domain D = [0, 2π/δ)[0, 2π),
where δ > 1 is the aspect ratio; with the Kolmogorov base flow
U(y) = cos(y).

4.1. Stability

In this section we study the stability of the Kolmogorov flow for
2D Euler equation dynamics. We note that, for the linearized 2D
Navier–Stokes equations, Mishalkin and Sinai [55] have found that
the Kolmogorov flow is stable for δ > 1 and unstable for δ < 1.
Here we prove the stability for δ > 1 for the dynamics of both the
Euler and linearized 2D Euler equations.We also shownumerically
that unstable modes exist for δ < 1, while no stable mode exists
for δ > 1, for the linearized 2D Euler equations.

4.1.1. Lyapunov stability

We consider initial vorticity conditions close to the base flow
vorticity ω0(y) = sin(y). We let this initial condition evolve ac-
cording to the nonlinear Euler equation (3). If the perturbation to
the initial flow remains small for all times, the flow is said to be Lya-
punov stable. We first prove that the base flow ω0(y) is Lyapunov
stable as soon as δ > 1.

The classical Energy Casimir method proposed by Arnold [17]
cannot be applied directly here. Indeed, the Kolmogorov flow does

4 We refer here to the notion of asymptotic stability of an ensemble of steady

states of an infinite dimensional Hamiltonian equations, see for example the

work [53] where any stable soliton of the KDV equations, slightly perturbed,

is proved to converge for large times towards another slightly different soliton.

Asymptotic stability of an ensemble of steady states has also been proved for other

solutions of infinite dimensional Hamiltonian systems.
5 A classical argument, presented in a rigorous framework by Caglioti and

Maffei [54] in the context of the Vlasov equation, implies that steady states of the

Vlasov equation for which Landau damping would occur, would be unstable in a

weaknorm.At the core of the proof lies the time reversal symmetry of the equations.

This argumentwould be easily generalized to the 2DEuler equations. Thismay seem

in contradictionwith the notion of asymptotic stability discussed here. However the

notion of stability discussed by Caglioti and Maffei involves weak topology for both

the initial condition and final state. There is no contradiction with our definition of

asymptotic stability, as we control here the initial perturbation in a vorticity norm

and control the convergence in a velocity norm.

not verify the hypothesis for any of the twoArnold’s theorems [17].
However, we can still prove the stability in this case, by direct
analysis. Let us define the Energy Casimir functional F as

F [Ω] = 1

2

∫

D

(

Ω2 − V2
)

.

F being half the enstrophy minus the kinetic energy, it is a
conserved quantity for the 2D Euler equations.

We first prove that the base flow ω0(y) = sin(y) (v0 = cos(y)
ex) is a minimum of F . We consider the perturbation vorticity ω =
Ω − ω0, and decompose it into Fourier modes ω =

∑

k>1 ωkek
with 1ek = −λkek, where the λk > 0 are arranged in increas-
ing order, and where ek are orthonormal

(∫

D
ekek′ = δkk′

)

. On the
doubly periodic domain D = [0, 2π/δ)[0, 2π), if δ > 1, we have
λ1 = λ2 = 1, corresponding for instance to the modes cos(y) and
sin(y). Then for any k ≥ 3, λk > 1.

We obtain

F = 1

2

∑

k

λk − 1

λk
ω2

k . (44)

Since λk ≥ 1, F ≥ 0. Moreover F [ω0] = 0. We thus conclude that
ω0 is a global minimum for F .

We note that this minimum is degenerate, as all vorticity fields
ω = α cos(y)+ β sin(y) are also minima.

Since F is a conserved quantity, we conclude that

1

2

∑

k≥3

λk − 1

λk
ω2

k (t) = εF , (45)

where εF = F(0) is the small value of F for the initial perturbation.
Then if they are initially small, all ωk for k ≥ 3 remain small for
large times, the amplitude being measured according to the norm
(44).

Expression (45) does not control the first Fourier modesΩ1 and
Ω2. For this, we use the fact that the enstrophy

Γ2 =
∫

D

Ω2

is conserved. We suppose that its initial value is Γ2,0 + ǫΓ
where Γ2,0 is the base flow enstrophy and ǫΓ is the perturbation
enstrophy. Using the enstrophy conservation we have

Ω2
1 (t)+Ω2

2 (t) = Γ2,0 + ǫΓ −
∑

k

ω2
k .

Then, using that
∑

k≥3 ω
2
k ≤ 2λ3

λ3−1
ǫF (derived from (45), using

λk ≥ λ3 for k ≥ 3), we have

∣

∣Ω2
1 (t)+Ω2

2 (t)− Γ2,0

∣

∣ ≤ max

{

ǫΓ ,
2λ3

λ3 − 1
ǫF

}

.

This means that the flow associated to the two first modes is
a(t) sin(y + φ(t)) where φ may be arbitrary but where the
amplitude a is controlled up to an error of order max{ǫΓ , ǫF }.

We have thus proved that any initial condition close to the
initial profile ω = sin(y) remains close to the family of profiles
sin(y + φ). Then the flow is Lyapunov stable in this sense.

4.1.2. Linear and spectral stabilities

Next, we let the initial conditions close to the base flowω0(y) =
sin y evolve according to the linearized 2D Euler equations (4). If
the perturbation to the initial flow remains small for this dynamics,
the flow is said to be linearly stable.

We decompose the perturbation vorticity in Fourier series for
the x variable only. For parallel flows, due to the translational
invariance, such Fourier modes are independent. The modes with
no dependence on x are easily shown to be neutral. Then the only
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Fig. 6. Minimum values for the dispersions relation minc D
+(c, k) as a function of

k2 . This plot shows that neutral modes exist only for k2 = 1.

issue is about the stability possible modes. In order to prove this,
we simply note that the perturbed Energy Casimir functional (44)
is conserved not only by the nonlinear Euler dynamics but also by
the linearized one. Then, because the Energy Casimir functional is
positive, this proves that any x-dependent perturbation remains
small if it is initially small. The flow is thus linearly stable as soon
as δ > 1.

If the linear equation has no exponentially growing modes, it
is called spectrally stable. Linear stability implies spectral stability
(the converse may be wrong). Then because it is linearly stable,
we can conclude that no unstable modes exist to the linearized 2D
Euler equation as soon as δ > 1.

4.1.3. Neutral modes

We look for themodes of Eq. (4) such that the stream function is
of the formψ = φ(y) exp(ik(x− ct)). Then φ satisfies the classical
Rayleigh equation (10).

As discussed in Section 4.1.2, no unstable eigenvalue exists for
k2 > 1. Thus only for real values of c can the Rayleigh equation
have solutions for k2 > 1. In the following, using numerical simula-
tions, we show that no neutralmodes exist, except for themarginal
case k = 1 (giving a mode for the case δ = 1).

When c is in the range of U : −1 = miny{U(y)} < c < 1 =
maxy{U(y)}, U − c vanishes at the two critical layers defined by
U(yl1,2) = cos(yl1,2) = c. The Rayleigh equation then has loga-
rithmic singularities. As discussed in Section 2.1, when initial value
problems are considered, the relevant solutions to the Rayleigh
equation are the ones that are obtained with c ′ = c + iǫ, c real,
and by considering the limit ǫ → 0+. We study the existence of
modes in that limit.

For this, we numerically compute the dispersion relation
D+ (c, k) of the Rayleigh equation, as defined in Section 2.3.2.
Neutral modes correspond to zeros of D+. We use the same
numerical tools as the one described in the end of Section 2.3.2: we
use theMatlab function ode45, and fix the relative error parameter
and the absolute error parameter of this function to 10−13, then
obtain solutions for which errors in theWronskianW are typically
smaller than 10−6 for ǫ = 10−4. We approximate D+(c, k) by the
numerically computed D(c + iǫ, k)with ǫ = 10−4.

Fig. 6 shows Dm(k) = minc D
+(c, k) (we note that D+ is un-

changedwhen the sign of k is changed). For a given value of k, some
neutral mode exist if and only ifDm(k) vanishes.We conclude from
this plot that neutral modes exist only for the value k2 = 1 (we
have tested values of k2 up to k2 = 10).

For k2 = 1, we see numerically that a mode exists for c = 0
only. The mode is then found by direct integration of Eq. (10).
It is the trivial mode φ = C , where C is any constant number
(ψ = C exp(ix) and ψ = C exp(−ix)).

real (φ(2π))

im
a

g
 (φ

(2
π
))
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Fig. 7. Nyquist plots (complex D+(c) represented in the complex plane, when c is

varied), for values k2 = 0.99 (green dashed line) and k2 = 1.01 (plain blue line).

The representation of the complex curveD+(c)when c is varied
is called a Nyquist plot (see [56] or [37] in the context of fluid
dynamics). It is very useful, as the algebraic number of loops of the
Nyquist plot around 0 counts the number of unstablemodes on the
complex half plane c = cR + iλwith positive λ [56,37].

Fig. 7 shows the Nyquist plot of D+(c), for k = 0.99 and k =
1.01 respectively. One clearly sees the passing of the curves across
the value D+ = 0 when k is changed from k = 0.99 to k = 1.01,
corresponding to neutral modes for k = 1. Moreover, we conclude
that only one neutral mode exists for this value of k, because only
one branch of the curve passes through 0. For larger value of c (not
shown), the upper part of the plot loops to the right on the upper
half plane, goes down to the lower half plane by crossing the real
axis for very large values of φ, before to close on the branch visible
in the lower half plane. Counting the algebraic number of loops
around zero, we thus conclude that for k > 1, no unstable modes
exists, in accordance with the result of Section 4.1; whereas for
k < 1 only one unstable mode exists.

From this analysis,we thus conclude that only oneneutralmode
exists. This modes corresponds to the destabilization of the flow
and the appearance of an unstablemode,whenpassing fromvalues
k2 ≥ 1 to values k2 ≤ 1. It is the trivial modeψ = C exp(ix), found
for the phase speed c = 0.

4.2. Direct numerical computation of the 2D Euler equations

In this section, we illustrate and complement the above results
through thedirect numerical simulation of the 2D (nonlinear) Euler
equations, in the doubly periodic domain D = [0, 2π/δ)[0, 2π),
for the Kolmogorov base flow U(y) = cos y.

Since the base flow is homogeneous in the x direction, the
dynamics of the fields would be decoupled into that of the
components of the form fk(y, t) exp(ikx), if the equations were
linearized. Then it is natural to consider initial conditions of this
form also in the (nonlinear) 2D Euler equations, because we are
interested in slightly perturbed parallel flows.

Since, in the Euler equations, instabilities are mainly large
scale ones, the flow is more likely affected by large scale
perturbations. Moreover, in geophysics and experiments, forcing
and perturbations tend to be dominantly effective on the largest
scales of the flow. It is thus natural to study initial perturbations of
the form

ω(x, y, 0) = ǫA(y) cos δx (46)

where k = δ is the smallest wave number (largest scale). We
consider the case ǫ ≪ 1; we use ǫ = 0.01 throughout in the
following numerical computations.
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Fig. 8. The time series of perturbation velocity components |vδ,x(y = 0, t)|, for
the initial perturbation profile A(y) = 1 and the aspect ratio δ = 1.1, with various

resolutions of the system (N × N). The simulations blow up at t ≈ 70 for N = 256

and at t ≈ 150 for N = 512. In the following numerical results, we have used

high enough resolutions in order to confirm that the asymptotic behavior is robustly

observed.

Similarly, we first examine the dynamical response for the same
wave number as the initial perturbation, namely,

ωδ(y, t) =
∫

dx

2πδ−1
e−iδxω(x, y, t) (47)

vδ(y, t) =
∫

dx

2πδ−1
e−iδx

v(x, y, t). (48)

The analysis of nonlinear effect will be performed at the end of this
section.

Direct numerical simulations. In the following, for the direct nu-
merical simulations, we use the classical pseudo-spectral method
algorithm [57], which is the most precise and robust numerical
algorithm currently known for the Euler and Navier Stokes equa-
tions in doubly periodic domains, and indeed regarded as the stan-
dard method for precise numerical simulations in these cases.

A standard way to compute numerical solutions to the Euler
equations is to integrate directly the truncated Euler equations
without viscosity [58]. We follow this procedure. The numerical
scheme is thus not stable in the long run; on account of the lack of
explicit dissipation, the simulation blows up when the small scale
structures become of the same size as the grid scale [58]. As an il-
lustration, Fig. 8 presents the computation of the first mode of the
velocity perturbation, computed with three different numerical
simulations using 2562, 5122 and 10242 Fourier components, re-
spectively. This illustrates the blowup after some times, occurring
later on for larger resolutions. Moreover this shows that the short
time numerical results are stable when the resolution is increased.
In the following numerical results, we have always confirmed that
the resolution of the system is high enough, by systematically test-
ing the stability of the results by changing the resolution, such that
the asymptotic behavior discussed is robustly observed. This pro-
cedure for assessing the numerical results for the Euler equations
without dissipation is also a standard one (see for instance [58]).

An independent assessment of the quality of the numerical re-
sults is provided by Fig. 10, discussed later in more details. On this
figure, the final vorticity profile is computed by two algorithms:
the just described direct numerical simulations, and the predic-
tions from the Laplace transform (Eq. (34)). The results from these
two completely independent algorithms are indistinguishable on
Fig. 10. Themaximumdiscrepancy between the twoprofiles on this
figure is of order 0.0001.

Fig. 9. The profiles of perturbation vorticity, |ωδ(y, t)|, at several times, for the ini-

tial perturbation profile A(y) = 1 and aspect ratio δ = 1.1. A flat region is observed

near the stationary streamline y = 0. As time goes on, this flat region becomes nar-

rower and narrower, and instead the region with the profile proportional to y2 ex-

tends towards the stationary streamlines, leading to a parabolic profile in the large

time limit.

Fig. 10. The final profile of the modulus of the perturbation vorticity, |ωδ∞(y)|,
obtained from the direct numerical simulation and the theory (Eq. (34)), for the

initial perturbation profile A(y) = 1 and the aspect ratio δ = 1.1. The two profiles

show a very good agreement.

Fig. 11. The final profile for the modulus of the perturbation vorticity, |ωδ∞(y)|,
for the initial perturbation profile A(y) = 1, and aspect ratios δ = 1.1, 1.2 and 1.5,

computed from the prediction of the Laplace transform tools (Eq. (34)). The profile

shows a bifurcation from single to double peak shapes, when δ is increased.

Asymptotic vorticity profile for even perturbations. First, we consider
an initial perturbation where A(y) has the same parity as the base
flow. In particular, we examine A(y) = 1.
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The space–time series of |ωδ(y, t)| is shown in Fig. 1, which,
we have already seen. Initially, it rapidly (almost exponentially)
relaxes toward the final profile, |ωδ∞(y)|; in particular, it relaxes
to zero at y = 0 andπ (stationary streamlines), whereas it remains
constant at y = π/2 and 3π/2. The rapid relaxation of themodulus
|ωδ(y, t)| is in agreement with the theoretical prediction (31) that
the Lundgren ansatz is asymptotically valid.

After the rapid relaxation, |ωδ∞(y)| converges towards the final
profile algebraically. In particular, in the vicinity of y = 0 and π
(stationary streamlines), it relaxes as slowly as t−1, leading locally
to a flat profile (see Fig. 9). However, as time goes on, this flat
region becomes narrower and narrower, and instead the region
with the profile proportional to y2 extends towards the stationary
streamlines. This indicates that, in the large time limit, the profile
is parabolic in the vicinity of the stationary streamlines.

This also illustrates that the relaxation towards the stationary
profile does not converge in a uniform way; the process is very
slow close to the stationary streamlines whereas it is extremely
rapid away from them.

The width yf of the flat area decreases as yf ∼ 1/
√
t , whereas

the constant value of the vorticity modulus in the flat area de-
creases as 1/t . When computing the velocity from the vorticity
(Eq. (37)), the overall effect of this flat area is thus of order 1/t3/2.
Such a contribution is thus of the same order as what would give
the leading order term of the asymptotic expansion of oscillating
integrals, as discussed in the end of Section 2.3.5.

In Fig. 10, we compare the final profiles obtained from the
Laplace tools (Eq. (34)) and the direct numerical simulations. The
results show a very good agreement. This agreement support both
the quality of the direct numerical simulations and the results
of the computation of the asymptotic profile from the Laplace
transform tools.

The computation of the asymptotic profile from the Laplace
method is extremely rapid and easy, compared with direct
numerical simulations. Using this tool, we study some qualitative
properties of the asymptotic profile. By increasing the aspect
ratio δ, we observe a bifurcation from a single- to a double-
peaked asymptotic vorticity profile (Fig. 11). The three asymptotic
profiles all show the depletion of the vorticity perturbation at the
stationary streamlines.

Asymptotic decay of the velocity perturbation for even perturbations.
The space–time series of the modulus of the perturbation velocity
components |vδ,x(y, t)| and |vδ,y(y, t)| are shown in 12. The
relaxation to zero of the velocity perturbation illustrates the
asymptotic stability of the velocity for the 2D Euler dynamics.

We investigate the asymptotic behavior of the velocity pertur-
bationmore precisely. Fig. 13 shows the time series at several posi-
tions. As shown, their asymptotic forms are |vδx(y, t)| ∼ t−α , with
α = 1, and |vδy(y, t)| ∼ t−β , with β = 2. This is in agreement
with the theoretical predictions for the asymptotic behavior of the
velocity perturbation (see Eqs. (35) and (36)).

Odd perturbations. Next, we consider initial perturbations where
A(y) has a parity opposite to the base flow one. In particular, we
examine A(y) = sin y.

The space–time series of |ωδ(y, t)| is shown in Fig. 14. It shows
an initial rapid relaxation toward the final profile, as expected
from the theory (Eq. (34)). Since the parity of the perturbation
is conserved for all times, the vorticity profile remains odd. Then
|ωδ(y, t)| is zero for y = 0 and y = π (stationary streamlines), as
expected.

The rapid relaxation is again followed by an algebraic conver-
gence to the final profile. In particular, in the vicinity of y = 0 and
y = π (stationary streamlines), it relaxes as slowly as, t−1/2, in this
case. The vorticity is always zero at the stationary streamlines, the
profile in the vicinity is linear (see Fig. 15), not flat as in the case
of even perturbations. However, as time goes on, this linear region

Time

|vδx| / (ε/2δ)

|vδy| / (ε/2δ)

0

0.5

1

y / 2π

10
20 30

40

0.4

0.3

0.2

0.1

0

0

0.4

0.3

0.2

0.1

Time
0

0.5

1

y / 2π
10

20 30
40

1

0.8

0.6

0.4

0.2

0

0

1

0.8

0.6

0.4

0.2

a

b

Fig. 12. The space–time series of |vδ,x(y, t)| (a) and |vδ,y(y, t)| (b), for the initial

perturbation profile A(y) = 1 and the aspect ratio δ = 1.1. Both the components

relax toward zero, showing the asymptotic stability of the Euler equations.

becomes narrower and narrower, and instead the region with the

profile proportional to y2 extends towards the stationary stream-

lines. This indicates that, in the large time limit, the profile is locally

parabolic in the vicinity of the stationary streamlines, as in the case

of even perturbations. The profile being odd, we remark that such a

parabolic profile means that the asymptotic vorticity profile is not

twice differentiable at the stationary streamlines.

The final profile obtained from the Laplace transform tools

(Eq. (34)) and the direct numerical simulations again show

excellent agreement (see Fig. 16).

The space–time series of |vδ,x(y, t)| and |vδ,y(y, t)|, similarly to

the case of A(y) = 1, shows a relaxation toward zero, illustrating

the asymptotic stability of the Euler equations.

We investigate the velocity asymptotic behavior more pre-

cisely. Fig. 17 shows the time series at several positions. As shown,

their asymptotic forms are |vδx(y, t)| ∼ t−α , with α = 1, and

|vδy(y, t)| ∼ t−β , with β = 2, for almost all values of y. Thus we

verify that the direct numerical simulation for the asymptotic be-

havior of the velocity perturbation is in good agreement with the

theory. Only in the vicinity of y = 0 andπ (stationary streamlines),

the exponents are changed to α = 1.5 and β = 1.5. We recall that

we have no theoretical predictions for the asymptotic velocity on

these stationary streamlines.

In the last paragraphs, we have compared themodeωδ from the

direct numerical simulations of the (nonlinear) 2D Euler equations

with the predictions of the linearized 2D Euler equations. The

agreement between both is extremely good. There is indeed no

visible differences, even for large times. This is in agreement with

the theoretical discussion in the Section 3, namely, the difference

is expected to be of the order ǫ2. To summarize, we conclude that

the asymptotic behavior of the (nonlinear) Euler equations are very

well described by the quasi-linear theory discussed in the previous

sections.

Evolution of the base flow profile and asymptotic stability. We

now consider the evolution of the base flow profile Ω0(y, t)

(the x-average vorticity, directly related to the x-average velocity,

please see the discussion preceding equation (43)). We define
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a

b

Fig. 13. The time series of perturbation velocity components |vδ,x(y, t)| (a) and
|vδ,y(y, t)| (b) at three locations, y = 0 (vicinity of the stationary streamline) (red),

y = π/4 (green), and y = π/2 (blue), for the initial perturbation profile A(y) = 1

and the aspect ratio δ = 1.1. We observe the asymptotic forms |vδ,x(y, t)| ∼ t−α ,
with α = 1, and |vδ,y(y, t)| ∼ t−β , with β = 2, in accordance with the theory

for the asymptotic behavior of the velocity (Eqs. (35) and (36)). (For interpretation

of the references to colours in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 14. The space–time series of the modulus of the perturbation vorticity,

|ωδ(y, t)|, with initial perturbation profile A(y) = sin y, and aspect ratio δ = 1.1.

the difference with respect to the initial profile by ω0(y, t) =
Ω0(y, t)+ U ′(y). We thus have

ω0(y, t) =
∫

dx

2πδ−1
ω(x, y, t). (49)

The evolution of the base profile ω0(y, t) is due to the non-
linear effects (see Eq. (43)). Fig. 18 shows this evolution in direct

Fig. 15. The profiles of the perturbation vorticity modulus, |ωδ(y, t)|, at several
times, for the initial perturbation profile A(y) = sin y and aspect ratio δ = 1.1. As

the time goes on, the linear region becomes narrower and narrower, and instead

the region with the profile proportional to y2 extends towards the stationary

streamlines, leading to a parabolic profile in the large time limit.

Fig. 16. The final profile of the perturbation vorticity modulus, |ωδ∞(y)|, obtained
from both direct numerical simulation and theory. The initial perturbation profile

is A(y) = sin y and the aspect ratio is δ = 1.1. The two profiles show excellent

agreement.

numerical simulations. This illustrates that the perturbation vor-
ticity converges extremely rapidly (on times of order t = 15which
correspond to the linear shear times) toward a fixed perturbation
profile. The asymptotic perturbation profile is of order ǫ2. All these
are in agreement with the theoretical discussions of Section 3.

5. Discussion

In this paper, we have discussed the asymptotic stability of
parallel flows for the 2D Euler equations. Our results are valid for
any flow that has no modes for the linearized dynamics (neither
unstable nor neutral ones). This situation is a generic one, as
the example of the Kolmogorov flows (Section 4) illustrates. An
adaptation of the present results to the case where the flow
has neutral modes would be easy. Our results are valid for base
flow profiles U(y) with or without stationary points y0 such that
U ′(y0) = 0. We have emphasized the case with stationary points
that has not been studied before.

For the linearized 2D Euler equations, we have proven that
Lundgren’s ansatz (2) actually describes the asymptotic vorticity
field for large times. The asymptotic vorticity field thus oscillates,
for each streamline, at a multiple of the streamline frequency. The
asymptotic vorticity profile depends both on the initial condition
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a

b

Fig. 17. The time series of the perturbation velocity components, |vδ,x(y, t)| (a) and
|vδ,y(y, t)| (b) at three locations, y = 0 (vicinity of the stationary streamline) (red),

y = π/4 (green), and y = π/2 (blue), for the initial perturbation profile A(y) =
sin y and aspect ratio δ = 1.1. We observe the asymptotic forms |vδ,x(y, t)| ∼ t−α ,
with α = 1, and |vδ,y(y, t)| ∼ t−β , with β = 2, in the almost all the region, in

accordance with the theory. Only in the vicinity of y = 0 and π , we observe the

exponents α = 1.5 and β = 1.5, for which we have no theoretical predictions.

(For interpretation of the references to colours in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 18. The space–time series of the x-averaged perturbation vorticity, ω0(y, t).

The initial perturbation profile is A(y) = 1 and the aspect ratio is δ = 1.1.

in a nontrivial way, and on the base flow. The asymptotic vorticity

is always strongly affected by the base flow structure, in a non-

local way, especially when stationary streamlines exist. It is thus

unlikely that a description based on the local shear give a good

quantitative description, except maybe in a limit or nearly linear

shear. We have also shown that this asymptotic profile can be

computed directly from the resolvent operator of the linearized
Euler equations (see Eq. (34) and Fig. 11)without performing costly
direct numerical computation of the Euler equations.

For the linearized 2D Euler equations, we have also proved that
the asymptotic velocity field decays algebraically for large times
(Eq. (1)), with exponents α = 1 and β = 2 for any streamlines
that are not stationary (U ′(y0) 6= 0). On the stationary stream-
lines, we have no theoretical predictions, but we have found nu-
merically that two cases exist: α = 1 and β = 2 for perturbation
vorticity fields having the same periodicity as the base flow veloc-
ity, and α = 3/2 and β = 3/2 for perturbation vorticity field hav-
ing the opposite periodicity with respect to the base flow.Without
stationary streamlines, these results are the same as the classically
expected ones.With stationary streamlines, these results were un-
expected as the effect of the stationary streamlines in oscillating in-
tegrals could have been expected to give 1/

√
t contributions. Such

contributions cancel out because of a self-consistent vorticity de-
pletion at the stationary streamlines. This is a new mechanism of
vorticity depletion at the stationary streamlines that we theoreti-
cally predict for the linearized 2D Euler equations and prove to be
self-consistent for the 2DEuler equations, and numerically confirm
for the 2D Euler equations.

This vorticity depletion mechanism occurs due to the effects
of the transverse component of the velocity perturbation on the
background vorticity gradient. This mechanism is thus absent
in cases where the background vorticity gradient identically
vanishes, or for a beta-plane barotropic flow when the beta effect
exactly balance the vorticity gradient, a case studied in several
papers [44,42]. We think that this last case is not generic as
the vorticity depletion mechanism exists as soon as the vorticity
gradient is not exactly balanced.

We use the above results to prove that if the perturbation
evolves according to the linearized 2D Euler equations, the
nonlinear term remains uniformly bounded in time, and actually
decays algebraically for large times. Based on these results, we
argue that for the (nonlinear) 2D Euler equations, a quasi-linear
treatment of the nonlinear terms is self-consistent. This strongly
suggests that such a quasi-linear treatment of the nonlinear
term should be valid. This also suggests that the full nonlinear
equation converges towards Lundgren’s type asymptotics for the
perturbation vorticity field and to zero for the asymptotic velocity
field, extremely rapidly.

From these theoretical arguments, we then expect that the
velocity of parallel flows without unstable or neutral linear modes
is asymptotically stable: the velocity converges towards a new
parallel flow which is very close to the initial one, even in the
absence of dissipation. The distance between the initial profile and
the asymptotic one is of order ǫ2, where ǫ is the order ofmagnitude
of the initial perturbation.

Direct numerical simulations of the Euler equations close to
the Kolmogorov base flow show an excellent agreement with the
above theoretical predictions.

The theoretical study performed in this paper, could be eas-
ily generalized to the study of the asymptotic behavior and
stability of jets in the context of both barotropic flows in the beta-
plane approximations, or 2D axisymmetric vortices. Many recent
works have considered perturbations to 2D vortices [59–61,34,62].
As far as asymptotic behavior is concerned, following the approach
of this paper, in the case of vortices, we argue that a similar per-
turbation vorticity depletion should occur at any stationary point
of the angular velocity of the vortex U(r)/r . For instance in the
case of a monotonic angular velocity, such a stationary point of
the angular velocity is located at the core of the vortex r = 0,
and the vorticity depletion occurs at the center of the vortex. This
phenomena has indeed been observed by Bassom and Gilbert [49]
(see their discussion, and the comment of their Figs. 2(b) and 4(a)).
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Fig. 19. A snapshot of the vorticity field for the 2D Navier–Stokes equations with

stochastic forces, in a statistically stationary regime. The vorticity field is close to a

steady state of the 2D Euler equation (here a dipole). The fluctuations close to this

state are the visible filaments on the figure. One clearly see that such filaments are

present in between the two vortices, but are absent in the core of the vortices. This

is due to the vorticity depletion mechanism at the core of the vortices, the points

where the angular velocity of the vortices have local extrema.

They have stated that ‘‘We at present lack a simple physical expla-
nation of this process whereby vorticity is more highly suppressed
than a passive scalar, and do not knowwhether it has applicability
beyond the Gaussian vortex’’. The general arguments developed in
the present paper, based on the Laplace tools, suggest that such a
vorticity depletion is indeed a generic phenomenon, valid for any
parallel flow (resp. circular vortex), at the stationary points of the
velocity profile (resp. angular velocity profile). Mathematically this
is due to the regularization of the critical layer singularities at the
edge of the continuous spectrum.

This vorticity depletion mechanism also impacts turbulent
flows where perturbations are locally governed by the linearized
equations. Fig. 19 shows a snapshot of the vorticity field in the
dynamics of the stochastic 2D Navier–Stokes equations [63]. One
clearly observes a depletion of the vorticity fluctuations at the core
of the vortices. This effect in a stochastically forcedmodel is related
to the depletion mechanism in a deterministic equation, described
in this paper.

We have treated the linearized dynamics and the asymptotic
stability for the case of parallel flows, for the 2D Euler dynamics.
The generalization of these results to more complex cases,
for instance flows with separatrix and stationary points would
also be extremely interesting. The problem is then much more
difficult, from a theoretical point of view, but could be addressed
numerically. Also the time dependent situation, by contrast to the
case of perturbation of steady base flows, is of a large interest. It
has been shown numerically that interactions with large scales
dominate the small scale dynamics [64,65], in the spirit of rapid
distortion theory or quasi-linear approaches. This has deep impact
on the statistics of the associated turbulence [66].

Because both are transport equations by a non-divergent field,
there is a very well known analogy between the Vlasov equations
and the 2D Euler equations. An even closer relation between the
2D Euler and Vlasov equation can also be found: the 2D Euler
dynamics of a localized perturbation (vorticity defect) is actually
described by a Vlasov equation at leading order [38]. Both the 2D
Euler and Vlasov equations have very similar behaviors, including
for instance relaxations without dissipation (Orr mechanism or
Landau damping) and the associated asymptotic stability. The

theory of the asymptotic stability of 2D Euler equations is thus
deeply related to the asymptotic stability of Vlasov equations.
We note very recent mathematical results on nonlinear Landau
damping [52], a subject related to the asymptotic stability of Vlasov
equations. A natural issue is to know if such recent mathematical
results [52] could be generalized to the case of the 2D Euler
equations, in relationwith the results obtained in the presentwork.

It is important to notice that a rigorousmathematical treatment
of the Orr mechanism for the Euler equations, in the spirit of the
work by Mouhot and Villani [52] for the Vlasov equation, does not
exist yet, even in the simplest case of base flow profile U without
stationary point. This is a very interesting mathematical problem
and we hope that some new results may follow the recent proof in
the Vlasov case.

The Laplace tools we have used along this paper is suited for
analytical initial data only. An interesting question is to know if
similar results may hold for nonanalytic data. We note that for the
Vlasov equations, analyticity of initial data leads to exponential
decay of the perturbation; but there are counterexamples by
Glassey and Schaeffer [67,68] showing that there is in general
no exponential decay for the linearized Vlasov Poisson equation
without analyticity, orwithout confinement. This seems to indicate
that analyticity is essential for observing Landau damping for the
Vlasov equation. We refer to [52] for a further discussion of this
point.Weguess that, similarly, analyticity is an essential ingredient
for the Orr mechanism in the context of the 2D Euler equations.

The current work has interesting consequences for the under-
standing of the kinetic theory of the point vortex model on the one
hand and for the linearized 2D Euler and 2D Navier–Stokes equa-
tions with stochastic forces, when the large scale structures domi-
nate the dynamics, on the other hand. These applications were one
of our motivations for studying the asymptotic behavior of the lin-
earized 2D Euler equations and the asymptotic stability of the 2D
Euler equations. These consequences will be developed in forth-
coming works.
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Appendix A. Oscillating integrals

A.1. General classical results

Let us consider the asymptotic behavior, for large t , of the
integral

I(t) =
∫ b

a

dx g(x) exp(if (x)t). (50)

1. First, we consider the case when f has no singular point. We
suppose that f and g are twice differentiable, that f has no
singular point, i.e. f ′(x) 6= 0 for any x, and that either g(a) 6= 0
or g(b) 6= 0. Then

I(t) ∼ 1

it

[

g(b) exp (itf (b))

f ′(b)
− g(a) exp (itf (a))

f ′(a)

]

. (51)

Namely, I(t) ∼ t−1. This can be easily proved by integrations
by part. If g(a) = g(b) = 0, if g and f are sufficiently differen-
tiable, then the asymptotic behavior can be obtained by further
integrations by parts.
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2. Next, we consider the case when f has a single stationary point.
We suppose that f is a real function with a single stationary
point x0 (f

′(x0) = 0), that f and g are smooth and that f ′′(x0) 6=
0. The asymptotic behavior of the oscillating integral (50) is then
given by the classical stationary phase results [69,70],

I(t) ∼
t→∞

g(x0)

√

2π

|f ′′ (x0)|
exp

(

iǫπ

4

)

exp (itf (x0))√
t

, (52)

where ǫ is the sign of f ′′(x0). Namely, I(t) ∼ t−1/2.

A.2. Oscillating integrals and the velocity asymptotic expansion

We apply the general methods of oscillating integrals to
the particular case of the computation of the velocity from an
oscillating vorticity field, like for instance the case given by Eq. (38).
We first evaluate the long time asymptotics of

v(y, t) =
∫

dy′ Gk(y, y
′)h(y′) exp(−ikU

(

y′) t), (53)

where the function h is assumed to be twice differentiable and
where Gk is the Green function for the computation of the
velocity v(y) exp(ikx) from a vorticity fieldω(y) exp(ikx). We treat
explicitly the case of a channel −L < y < L. The results are also
valid for periodic boundary conditions for y, just by dropping all
the contributions from the boundary in the expressions below.

Before going into more general discussions, we note that for
the case of a linear base flow U(y) = sy, and when h(y) is either
constant, sinusoidal, or hyperbolic sinusoidal, then an explicit
expression for vk(y, t) is obtained (see [29]).

Clearly, Eq. (53) is an oscillating integral. In order to study its
asymptotic expansion, we use the results of Appendix A.1 of this
Appendix.

First, we treat the case of a base flow without stationary point.
We use the fact that Gk(y, .) is smooth everywhere, except for y′ =
y (see Appendix B). Then we can use the results on the asymptotic
behaviors of oscillating integrals (Appendix A.1) for both intervals
−L < y′ < y and y < y′ < L independently. Moreover, we assume
that h(y) is at least twice differentiable. We then obtain

vx(y, t) ∼
t≫l/ks

− 1

ikst

[

Gk,x (y, L) h(L) exp (−ikU (L) t)

−Gk,x (y,−L) h(−L) exp (ikU (−L) t)

+ h(y) exp (−ikU (y) t)
]

; (54)

the first two terms are contributions from the boundaries and the
third term is due to the discontinuity of Gk,x(y, y

′) for y = y′ (see
(59) in Appendix B). Here we define s as the minimum shear rate
s = min(U ′(y)), and l is a typical length scale that characterizes
the variations of h(y). Similarly we obtain

vy(y, t) ∼
t≫l/ks

1

k2s2t2

[

∂Gk,y

∂y′ (y, L) h (L) exp (−ikU (L) t)

− ∂Gk,y

∂y′ (y,−L) h (−L)

× exp (ikU (L) t)− ikh (y) exp (−ikU (y) t)

]

. (55)

We note that there is no contribution of order 1/t in this case,
becauseGk,y(y, y

′) has a discontinuity of its first derivative only, for
y′ = y (see (60) in Appendix B; moreover in the case of a bounded
domain Gk vanishes at the boundaries (Gk,y(y, L) = 0)).

Next, we treat the case of a base flow with stationary points ym
such that U ′(ym) = 0. We assume that each stationary point ym is

not degenerated (f ′′(ym) 6= 0). We perform the computation for
only one of these, denoted y0, without loss of generality.

Recall that the classical results on oscillating integrals (52) as-
sume the function g (see Eq. (50)) to be smooth. This is not always
the case for us. Indeed, the Green function Gk(y, y

′) is not smooth
for y = y′. However, if y 6= y0, this discontinuity for Gk or for its
derivative can easily be handled by dividing the integration inter-
val into two subintervals, as has been done in the previous para-
graph. Then we conclude that the leading order of the asymptotic
behavior is still dominated by the contribution of the stationary
points. Thus the result (52) is still valid.

Then, from (53), using (52), we obtain, for y 6= y0,

v(y, t) ∼
t→∞

Gk(y, y0)h(y0)

√

2π

|kU ′′ (y0)|

× exp

(

iǫkπ

4

)

exp(−ikU (y0) t)√
t

, (56)

where ǫk is the sign of −kU ′′(y0). We note that the asymptotic
expansion has a discontinuity for y = y0, due to the discontinuity
of the Green function. Through a straightforward generalization of
the classical result (52) to oscillating integrals with discontinuous
functions g , we can conclude that this discontinuity is regularized
over a length scale l =

√
1/(|kU ′′(y0)|t), that decreases with time.

Appendix B. Green functions

Let us establish the expression and some properties for the
velocity Green function Gk. The results on the discontinuity of the
Green function, Eqs. (59) and (60), are necessary for the discussion
of Appendix A. We here consider the case of periodic boundary
conditions (y 2π-periodic), though the case of a channel geometry
−L ≤ y ≤ L can be treated similarly, the resultant Eqs. (59) and
(60) remaining unchanged.

Let us denote Hk the Green function for the stream function in
the x-Fourier space. The x-Fourier transforms of ω = 1ψ gives
ωk = d2ψk/dy

2 − k2ψk. Hk(y, y
′) is thus solution of

∂2Hk

∂y2
− k2Hk = δ

(

y − y′) (57)

where Hk(., y
′) = 0 is a 2π-periodic function for any y.

We note that Hk(y, y
′), considered as function of y, is smooth

everywhere except for y = y′. For y = y′, Hk is continuous and has
a jump unity for its first derivative:

∂Hk

∂y

(

y′+, y′) − ∂Hk

∂y

(

y′−, y′) = 1, (58)

where F(y′+, y′) is the limit of F(y, y′) for y′ going to y with the
condition y > y′.

Because of the translational invariance in a doubly periodic
domain, the set of Eqs. (57)–(58) and the associate boundary
conditions are invariant under translation. Then clearly, Hk(y, y

′)
depends only on ‖y − y′‖ where

‖y‖ = min
integer n

|2πn − y| .

Besides these general properties, an explicit expression to Hk

can be found from (57) and (58):

Hk(y, y
′) = − cosh(k‖y − π‖)

2 sinh(kπ)
.

Using the fact that Hk(y, y
′) depends only on ‖y − y′‖ and (58),

it is easily verified that Hk(y, y
′), considered as a function of y′, is

differentiable and has a discontinuity in its derivative for y′ = y:

∂Hk

∂y

(

y, y+)

− ∂Hk

∂y

(

y, y−)

= 1.
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Using v = ∇ ∧ (ψez), we have for the x-Fourier transforms:
vk,x = −dψk/dy and vk,y = ikψk. Thus

Gk =
(

−∂Hk

∂y
, ikHk

)

.

Then, using the properties of Hk, we note that Gk(., y
′) is smooth

everywhere except for y = y′, and that its derivative has a jump
for y = y′:

Gk

(

y, y+)

− Gk

(

y, y−)

= (−1, 0) (59)

and

∂Gk,y

∂y

(

y, y+)

− ∂Gk,y

∂y

(

y, y−)

= ik. (60)
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