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Abstract

In this paper, we study the Cauchy problem for a nonlinear wave equation with frictional

and viscoelastic damping terms in Rn. As is pointed out by [10], in this combination, the

frictional damping term is dominant for the viscoelastic one for the global dynamics of the

linear equation. In this note we observe that if the initial data is small, the frictional damping

term is again dominant even in the nonlinear equation case. In other words, our main result is

diffusion phenomena: the solution is approximated by the heat kernel with a suitable constant.

Especially, the result obtained for the n = 3 case is essentially new. Our proof is based on

several estimates for the corresponding linear equations.

1. Introduction

1. Introduction
In this paper we are concerned with the following Cauchy problem for the wave equation

with two types of damping terms:

(1.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂2
t u − ∆u + ∂tu − ∆∂tu = f (u), t > 0, x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn,

where u0(x) and u1(x) are given initial data, and about the nonlinearity f (u) we shall consider

only the typical case such as

f (r) := |r|p, (p > 1),

without loss of generality (see Remark 1.3 below).

Concerning the following equation with frictional damping:

(1.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂2
t u − ∆u + ∂tu = f (u), t > 0, x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn,

nowadays one can find an important result called as the critical exponent problem such

as following: there exists an exponent p∗ > 1 such that if the power p of nonlinearity

f (u) satisfies p∗ < p, then the corresponding problem (1.2) has a small data global in time

solution, while in the case when 1 < p ≤ p∗ the problem (1.2) does not admit any nontrivial

global solutions for some initial data. We call p∗ as the critical exponent. In the frictional
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damping case, we have p∗ = pF := 1 +
2

n
, which is called as the Fujita exponent in the

semi-linear heat equation case. For those results, we refer to [4], [5], [8], [12], [15], [16],

[18], [19], [20], [24], [25], [26] and the references therein.

Quite recently, Ikehata-Takeda [11] has treated the original problem (1.1) motivated by a

previous result concerning the linear equation due to Ikehata-Sawada [10], and solved the

Fujita critical exponent one. They have discovered the value p∗ = 1 +
2

n
again only in the

low dimensional case (i.e., n = 1, 2). Then, the problem of the critical exponent to (1.1) is

still open for all n ≥ 3. This result due to [11] implies an important recognition that the

dominant term is still the frictional damping ∂tu, although the equation (1.1) has two types

of damping terms. Note that in the viscoelastic damping case,

(1.3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂2
t u − ∆u − ∆∂tu = f (u), t > 0, x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn,

we still do not know the “exact” critical exponent p∗. Several interesting results about this

critical exponent problem including optimal linear estimates for (1.3) can be observed in the

literature due to D’Abbicco-Reissig [2, see Theorem 2, and Section 4]. But, it seems to be a

little far from complete results on the critical exponent problem of (1.3). In fact, in [2] they

studied a more general form of equations such that

∂2
t u − ∆u + (−∆)σ∂tu = µ f (u)

with σ ∈ [0, 1] and µ ≥ 0. Pioneering and/or important contributions for the case σ = 1

(i.e., strong damping one) can be found in several papers due to [7], [13] ( both in abstract

theory), [21], [23] and the references therein.

We should also mention some results for the asymptotic behavior of solutions to the lin-

earized compressible Navier-Stokes systems, since the main results of this paper are largely

overlapping with the results in that fields. We also note that it is well known that the so-

lution of (1.3) is corresponding to the density of the Navier-Stokes system. In this case,

Hoff-Zumbrun [6] firstly pointed out that the asymptotic behavior of the solution in terms of

Lp-norms with Hs∩L1 data for some s ≥ 0, has two possibilities as t → ∞: When p > 2, the

dominant term is given by the pure diffusive part. On the other hand, if p < 2, the solution

asymptotically behaves like the diffusion wave. Kagei-Kobayashi [14] extended the results

of [6] to the half space case. In a more simple setting, Kobayashi- Shibata [17] proved sharp

decay estimates of the solutions and recently, Ikehata-Onodera [9] obtained the lower bound

of solutions in terms of L2.

From observations above one naturally encounters an important problem such that

even in the higher dimensional case for n ≥ 3, can one also solve the critical exponent

problem of (1.1)?

Our first purpose is to prove the following global existence result of the solution together

with suitable decay properties to problem (1.1).

Theorem 1.1. Let n = 1, 2, 3, ε > 0 and p > 1 +
2

n
. Assume that (u0, u1) ∈ (W

n
2
+ε,1 ∩

W
n
2
+ε,∞)×(L1∩L∞) with sufficiently small norms. Then, there exists a unique global solution
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u ∈ C([0,∞); L1 ∩ L∞) to problem (1.1) satisfying

‖u(t, ·)‖Lq(Rn) ≤ C(‖u0‖W
n
2
+ε,1
∩W

n
2
+ε,∞

(Rn)
+ ‖u1‖L1∩L∞(Rn))(1 + t)

− n
2

(1− 1
q

)(1.4)

for q ∈ [1,∞].

Our second aim is to study the large time behavior of the global solution given in Theorem

1.1. For this we define the Gauss kernel by

Gt(x) = (4πt)−
n
2 e−

|x|2

4t .

Theorem 1.2. Under the same assumptions as in Theorem 1.1, the corresponding global

solution u(t, x) satisfies

lim
t→∞

t
n
2

(1− 1
q

)
‖u(t, ·) − MGt‖Lq(Rn) = 0,(1.5)

for 1 ≤ q ≤ ∞, where M :=

∫

Rn

(u0(y) + u1(y))dy +

∫ ∞

0

∫

Rn

f (u(s, y))dyds.

R 1.3. We should remark that our results are easily extended to the nonlinear term

f (u) satisfying the locally Lipschitz growth condition

| f (u)| ≤ C|u|p,

| f (u) − f (v)| ≤ C(|u|p−1 + |v|p−1)|u − v|

for some constant C > 0, with minor modification of the proofs.

R 1.4. By combining the blowup result given in [11, Theorem 1.3] and Theorems

1.1 and 1.2 with n = 3, one can make sure that even in the n = 3 case the critical exponent p∗

to (1.1) is given by the Fujita exponent p∗ = pF . Such sharpness has already been announced

in the low dimensional cases (i.e., n = 1, 2) by [11, Theorems 1.1 and 1.3]. So, the result

for n = 3 is essentially new. It is also worth mentioning that we need not to assume the

upper bound of the growth order p in Theorems 1.1 and 1.2, since we construct the global

solution of (1.1) in the class C([0,∞); L1 ∩ L∞) under the restriction n ≤ 3. These are our

main contributions to problem (1.1) in this paper. It is still open to show the global existence

part for all n ≥ 4, however, this part will be studied in our forthcoming project.

Before closing this section, we summarize notation, which will be used throughout this

paper.

Let f̂ denote the Fourier transform of f defined by

f̂ (ξ) := cn

∫

Rn

e−ix·ξ f (x)dx

with cn = (2π)−
n
2 . Also, let −1[ f ] or f̌ denote the inverse Fourier transform.

We introduce smooth, radial cut-off functions to localize the frequency region as follows:

χL, χM and χH ∈ C∞(Rn) are defined by

χL(ξ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, |ξ| ≤ 1
2
,

0, |ξ| ≥ 3
4
,

χH(ξ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, |ξ| ≥ 3,

0, |ξ| ≤ 2,
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χM(ξ) = 1 − χL(ξ) − χH(ξ).

For k ≥ 0 and 1 ≤ p ≤ ∞, let Wk,p(Rn) be the usual Sobolev spaces

Wk,p(Rn) :=
{

f : Rn → R; ‖ f ‖Wk,p(Rn) := ‖ f ‖Lp(Rn) + ‖|∇x|
k f ‖Lp(Rn) < ∞

}

,

where Lp(Rn) is the Lebesgue space for 1 ≤ p ≤ ∞ as usual. When p = 2, we denote

Wk,2(Rn) = Hk(Rn). For the notation of the function spaces, the domain Rn is often abbre-

viated. We frequently use the notation ‖ f ‖p = ‖ f ‖Lp(Rn) without confusion. Furthermore, in

the following C denotes a positive constant, which may change from line to line.

The paper is organized as follows. Section 2 presents some preliminaries. In Section

3, we show several point-wise estimates of the propagators for the corresponding linear

equation in the Fourier space. Section 4 is devoted to the proof of linear estimates, which

play crucial roles to get main results. In sections 5 and 6, we give the proof of our main

results.

2. Preliminaries

2. Preliminaries
In this section, we collect several basic facts on the Fourier multiplier theory, the decay

estimates of the solution for the heat equation and elementary inequalities to obtain the decay

property of the solutions.

2.1. Fourier multiplier.
2.1. Fourier multiplier. For f ∈ L2 ∩ Lp, 1 ≤ p ≤ ∞, let m(ξ) be the Fourier multiplier

defined by


−1[m f̂ ](x) = cn

∫

Rn

eix·ξm(ξ) f̂ (ξ)dξ.

We define Mp as the class of the Fourier multiplier with 1 ≤ p ≤ ∞:

Mp :=

{

m : Rn → R; measurable|

There exists a constant Ap > 0 such that ‖−1[m f̂ ]‖p ≤ Ap‖ f ‖p

}

.

For m ∈ Mp, we let

Mp(m) := sup
f�0

‖−1[m f̂ ]‖p

‖ f ‖p
.

The following lemma describes the inclusion among the class of multipliers.

Lemma 2.1. Let
1

p
+

1

p′
= 1 with 1 ≤ p ≤ p′ ≤ ∞. Then Mp = Mp′ and for m ∈ C∞(Rn),

it holds that

Mp(m) = Mp′(m).

Moreover, if m ∈ Mp, then m ∈ Mq for all q ∈ [p, p′] and

Mq(m) ≤ Mp(m) = Mp′(m).(2.1)

We recall the Carleson-Beurling inequality, which is used to show the Lp boundedness of

the Fourier multipliers.
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Lemma 2.2 (Carleson-Beurling’s inequality). If m ∈ Hs with s >
n

2
, then m ∈ Mr for all

1 ≤ r ≤ ∞. Moreover, there exists a constant C > 0 such that

M∞(m) ≤ C‖m‖
1− n

2s

2
‖m‖

n
2s

Ḣs
.(2.2)

For the proof of Lemmas 2.1 and 2.2, see [1].

2.2. Decay property of the solution of heat equations.
2.2. Decay property of the solution of heat equations. The following lemma is also

well-known as the decay property and approximation formula of the solution of the heat

equation. For the proof, see e.g., [3].

Lemma 2.3. Let n ≥ 1, ℓ ≥ 0, k ≥ k̃ ≥ 0 and 1 ≤ r ≤ q ≤ ∞. Then there exists a constant

C > 0 such that

(2.3) ‖∂ℓt∇
k
xet∆g‖q ≤ Ct

− n
2

( 1
r
− 1

q
)−ℓ− k−k̃

2 ‖∇k̃
xg‖r.

Moreover, if g ∈ L1 ∩ Lq, then it holds that

(2.4) lim
t→∞

t
n
2

(1− 1
q

)+ k
2 ‖∇k

x(et∆g − mGt)‖q = 0,

where m =

∫

Rn

g(y)dy.

2.3. Useful formula.
2.3. Useful formula. In this subsection, we recall useful estimates to show several results

in this paper. The following well-known estimate will be frequently used to obtain time

decay estimates.

Lemma 2.4. Let n ≥ 1, k ≥ 0 and 1 ≤ r ≤ 2. Then there exists a constant C > 0 such

that

(2.5) ‖ |ξ|ke−(1+t)|ξ|2‖r ≤ C(1 + t)−
n
2r
− k

2 .

The next lemma is also useful to compute the decay order of the nonlinear term in the

integral equation.

Lemma 2.5. (i) Let a > 0 and b > 0 with max{a, b} > 1. There exists a constant C > 0

depending only on a and b such that for t ≥ 0 it is true that

(2.6)

∫ t

0

(1 + t − s)−a(1 + s)−bds ≤ C(1 + t)−min{a,b}.

(ii) Let 1 > a ≥ 0, b > 0 and c > 0. There exists a constant C > 0, which is independent of t

such that for t ≥ 0 it holds that

(2.7)

∫ t

0

e−c(t−s)(t − s)−a(1 + s)−bds ≤ C(1 + t)−b.

The proof of Lemma 2.5 is well-known (see e.g. [22]).

3. Point-wise estimates in the Fourier space

3. Point-wise estimates in the Fourier space
In this section, we show point-wise estimates of the Fourier multipliers, which are im-

portant to obtain linear estimates in the next section. Now, we recall the Fourier multiplier

expression of the evolution operators to the linear problem. According to the notation of
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[10] and [11] we define the Fourier multipliers 0(t, ξ) and 1(t, ξ) as

0(t, ξ) :=
−λ−eλ+t + λ+eλ−t

λ+ − λ−
=

e−t|ξ|2 − |ξ|2e−t

1 − |ξ|2
,

1(t, ξ) :=
−eλ−t + eλ+t

λ+ − λ−
=

e−t|ξ|2 − e−t

1 − |ξ|2
,

and the evolution operators K0(t)g and K1(t)g to problem (1.1) by

K j(t)g := 
−1[ j(t, ξ)ĝ](3.1)

for j = 0, 1, where λ± are the characteristic roots computed through the corresponding

algebraic equations (see Section 3 of [11])

λ2 + (1 + |ξ|2)λ + |ξ|2 = 0.

Moreover, using the cut-off functions χk (k = L,M,H), we introduce the “localized” evolu-

tion operators by

K jk(t)g := 
−1[ jk(t, ξ)ĝ],(3.2)

where  jk(t, ξ) :=  j(t, ξ)χk, for j = 0, 1, k = L,M,H.

3.1. Estimates for the low frequency parts.
3.1. Estimates for the low frequency parts. We begin with the following point-wise

estimates on small |ξ| region in the Fourier space.

Lemma 3.1. Let n ≥ 1 be an integer and |ξ| ≤ 1/2. Then there exists a constant C > 0

such that

|e−t|ξ|2 − e−t|ξ|2| ≤ Ce−(1+t)|ξ|2 ,(3.3)

|∇ξ(e
−t|ξ|2 − e−t|ξ|2)| ≤ Ce−(1+t)|ξ|2(1 + t)|ξ|,(3.4)

|∇2
ξ(e
−t|ξ|2 − e−t|ξ|2)| ≤ Ce−(1+t)|ξ|2(1 + t + t2|ξ|2).(3.5)

Proof. The proof is straightforward. Noting |ξ| ≤
1

2
, we easily see that

|e−t|ξ|2 − e−t|ξ|2| ≤ C(e−t|ξ|2 + e−t) ≤ Ce−(1+t)|ξ|2 ,

and

|∇ξ(e
−t|ξ|2 − e−t|ξ|2)| ≤ Ce−t|ξ|2 t|ξ| +Ce−t|ξ| ≤ Ce−(1+t)|ξ|2(1 + t)|ξ|,

which prove the estimates (3.3) and (3.4), respectively. Finally we show the estimate (3.5).

Taking the second derivative and using |ξ| ≤
1

2
again, we have

|∇2
ξ(e
−t|ξ|2 − e−t|ξ|2)| = 2|∇ξ(e

−t|ξ|2 tξ − e−tξ)|

≤ C(e−t|ξ|2(|tξ|2 + t) + e−t)

≤ Ce−(1+t)|ξ|2(1 + t + t2|ξ|2),

which is the desired estimate (3.5), and the proof is complete. �
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The following estimates are useful to obtain the decay property and the large time behav-

ior of the evolution operator K1(t)g.

Lemma 3.2. Let n ≥ 1 be an integer and |ξ| ≤ 1/2. Then there exists a constant C > 0

such that

|e−t|ξ|2 − e−t| ≤ Ce−(1+t)|ξ|2 ,(3.6)

|∇ξ(e
−t|ξ|2 − e−t)| ≤ Ce−(1+t)|ξ|2 t|ξ|,(3.7)

|∇2
ξ(e
−t|ξ|2 − e−t)| ≤ Ce−(1+t)|ξ|2(t + t2|ξ|2).(3.8)

Proof. The proof is standard. We have (3.6) by similar arguments to (3.3). When k > 0,

by applying ∇k
ξ
(e−t|ξ|2 − e−t) = ∇k

ξ
e−t|ξ|2 , (3.7) and (3.8) can be derived. �

As an easy consequence of Lemmas 3.1 and 3.2, we arrive at the point-wise estimates for

the Fourier multipliers with small |ξ|.

Corollary 3.3. Under the assumptions as in Lemmas 3.1 and Lemma 3.2, it holds that

| jL(t, ξ)| ≤ Ce−(1+t)|ξ|2χL,(3.9)

|∇ξ jL(t, ξ)| ≤ Ce−(1+t)|ξ|2(1 + t)|ξ|χL +Ce−
t
4 |χ′L|,(3.10)

|∇2
ξ jL(t, ξ)| ≤ Ce−(1+t)|ξ|2(1 + t + t2|ξ|2)χL +Ce−

t
4 (|χ′L| + |χ

′′
L |)(3.11)

for j = 0, 1.

Proof. The estimates (3.9), (3.10) and (3.11) for j = 1 are shown by the same argument.

Here we only show (3.11) with j = 0. We first note that

|∇k
ξ(1 − |ξ|

2)−1| ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C|ξ|, for k = 1,

C, for integers k ≥ 0.
(3.12)

In addition, it is easy to see that

(3.13) |∇k
ξ0L(t, ξ)| ≤ Ce−

t
4

on supp χ′
L
∪ suppχ′′

L
by (3.3) - (3.5) and (3.12) with k = 0, 1. Thus, a direct calculation,

(3.12), (3.13) and Lemma 3.1 show that

|∇2
ξ0L(t, ξ)| ≤ C

∣

∣

∣

∣

∣

∣

∇2
ξ

⎛

⎜

⎜

⎜

⎜

⎝

e−t|ξ|2 − e−t|ξ|2

1 − |ξ|2
χL

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

≤ CχL|∇
2
ξ(e
−t|ξ|2 − e−t|ξ|2)| +CχL|ξ||∇ξ(e

−t|ξ|2 − e−t|ξ|2)|

+CχL|e
−t|ξ|2 − e−t|ξ|2| +Ce−

t
4 (|χ′L| + |χ

′′
L |)

≤ CχL(1 + t + t2|ξ|2)e−(1+t)|ξ|2 +CχL|ξ|
2e−(1+t)|ξ|2

+CχLe−(1+t)|ξ|2 +Ce−
t
4 (|χ′L| + |χ

′′
L |)

≤ Ce−(1+t)|ξ|2(1 + t + t2|ξ|2)χL +Ce−
t
4 (|χ′L| + |χ

′′
L |),

which is the desired estimate (3.11) with j = 0. The proof of Corollary 3.3 is now complete.

�
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The following result plays an important role to obtain asymptotic profiles of the evolution

operators K0(t)g and K1(t)g.

Corollary 3.4. Under the same assumption as in Lemmas 3.1 and Lemma 3.2, it holds

that

| jL(t, ξ) − e−t|ξ|2χL| ≤ C|ξ|2e−(1+t)|ξ|2χL,(3.14)

|∇ξ( jL(t, ξ) − e−t|ξ|2χL)| ≤ Ce−(1+t)|ξ|2 |ξ|(1 + t|ξ|2)χL +Ce−
t
4 |χ′L|,(3.15)

|∇2
ξ( jL(t, ξ) − e−t|ξ|2χL)|(3.16)

≤ Ce−(1+t)|ξ|2(1 + t|ξ|2 + t2|ξ|4)χL +Ce−
t
4 (|χ′L| + |χ

′′
L |)

for j = 0, 1.

Proof. We first consider the case j = 0. Combining the estimate (3.9) with j = 1 and the

fact that

(3.17) 0L(t, ξ) − e−t|ξ|2χL = |ξ|
2
1L(t, ξ),

one can get (3.14) with j = 0. In order to show (3.15) and (3.16), by using (3.17) again we

see that

|∇k
ξ(0L(t, ξ) − e−t|ξ|2χL)|(3.18)

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C(|ξ||1L(t, ξ)| + |ξ|2|∇ξ1L(t, ξ)|) for k = 1,

C(|1L(t, ξ)| + |ξ||∇ξ1L(t, ξ)| + |ξ|2|∇2
ξ
1L(t, ξ)|) for k = 2.

Combining (3.18) and (3.10) with j = 1 yields the estimate (3.15) with j = 0. We now apply

this argument again to (3.10) with j = 1 replaced by (3.11) with j = 1, to obtain the estimate

(3.16) with j = 0. Finally we prove (3.14) - (3.16) with j = 1. Noting that

(3.19) 1L(t, ξ) − e−t|ξ|2χL =
e−t|ξ|2 |ξ|2 − e−t

1 − |ξ|2
χL,

and applying a similar argument to (3.6), one gets (3.14) with j = 1. Moreover, using

∇k
ξ
(e−t|ξ|2 |ξ|2 − e−t) = ∇k

ξ
(e−t|ξ|2 |ξ|2) for k > 0, we can deduce that

|∇ξ(e
−t|ξ|2 |ξ|2 − e−t)| ≤ C|ξ|(1 + t|ξ|2)e−t|ξ|2 ,(3.20)

|∇2
ξ(e
−t|ξ|2 |ξ|2 − e−t)| ≤ C(1 + t|ξ|2 + t2|ξ|4)e−t|ξ|2 .(3.21)

Therefore, by (3.14) with j = 1 and (3.20), we obtain (3.15) with j = 1. Likewise, we use

(3.14) and (3.15) with j = 1 and (3.21) to meet (3.16) with j = 1, and the corollary follows.

�

3.2. Estimates for the middle and high frequency parts.
3.2. Estimates for the middle and high frequency parts. The following lemma states

that the middle part for |ξ| has a sufficient regularity and decays fast.

Lemma 3.5. Let n ≥ 1 and k ≥ 0. Then there exists a constant C > 0 such that

|∇k
ξ jM(t, ξ)χM | ≤ Ce−

t
4χM(3.22)
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for j = 0, 1.

Proof. The support of the middle part ∇k
ξ
 jM(t, ξ)χM is compact and does not contain a

neighborhood of the origin ξ = 0. Therefore, we can estimate the polynomial of |ξ| by a

constant. This implies the desired estimate (3.22), and the proof is now complete. �

The rest part of this subsection is devoted to the point-wise estimates for the high fre-

quency parts K jH(t)g for j = 0, 1.

Lemma 3.6. Let n = 1, 2, 3, ε > 0 and α ∈ {2,
n

2
+ ε}. Then it holds that

(3.23) ∇k
ξ

(

|ξ|2−α

1 − |ξ|2
χH

)

∈ L2(Rn)

for k = 0, 1, 2.

Proof. It is easy to see that

(3.24) ∇k
ξ

(

|ξ|2−α

1 − |ξ|2

)

= O(|ξ|−α−k)

as |ξ| → ∞ and 2(−α − k) < −n. Moreover the support of
|ξ|2−α

1 − |ξ|2
χH does not have a

neighborhood of |ξ| = 1. Summing up these facts, we can assert (3.23), and the proof is

complete. �

Lemma 3.7. Let n ≥ 1 and |ξ| ≥ 3. Then there exists a constant C > 0 such that

|∇ξ(e
−t|ξ|2 − e−t)| ≤ Ce−t|ξ|2 t|ξ|,(3.25)

|∇2
ξ(e
−t|ξ|2 − e−t)| ≤ Ce−t|ξ|2(t + t2|ξ|2).(3.26)

Proof. Applying ∇k
ξ
(e−t|ξ|2 − e−t) = ∇k

ξ
e−t|ξ|2 for k > 0 again, we easily have Lemma 3.7.

�

Corollary 3.8. Under the same assumptions as in Lemma 3.7, there exists a constant

C > 0 such that

|1H(t, ξ)| ≤ Ce−t|ξ|−2χH ,(3.27)
∣

∣

∣∇ξ1H(t, ξ)
∣

∣

∣ ≤ Ce−
t
2 |ξ|−2( χH + |χ

′
H |),(3.28)

∣

∣

∣∇2
ξ1H(t, ξ)

∣

∣

∣ ≤ Ce−
t
2 |ξ|−2( χH + |χ

′
H | + |χ

′′
H |).(3.29)

Proof. Since (3.27) - (3.29) are shown by the similar way, we only check the validity of

(3.29). We first note that
∣

∣

∣ j(t, ξ)χ
′
H

∣

∣

∣ +
∣

∣

∣∇ξ j(t, ξ)χ
′
H

∣

∣

∣ +
∣

∣

∣ j(t, ξ)χ
′′
H

∣

∣

∣ ≤ Ce−
t
2 (|χ′H | + |χ

′′
H |)(3.30)

for j = 0, 1. Indeed, the support of χ′
H

and χ′′
H

is compact and does not include a neighbor-

hood of ξ = 0. So, the direct calculation and (3.24) - (3.26) show
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|∇2
ξ1(t, ξ)|(3.31)

≤ C|∇2
ξ(e
−t|ξ|2)||ξ|−2 +C|∇ξe

−t|ξ|2 ||∇ξ(1 − |ξ|
2)−1| +Ce−t|ξ|2 |∇2

ξ(1 − |ξ|
2)−1|

≤ Ce−te−ct|ξ|2
{

(t + t2|ξ|2)|ξ|−2 + |ξ|−3t|ξ| + |ξ|−4)
}

≤ Ce−
t
2 |ξ|−2

for |ξ| ≥ 3. Thus combining (3.30) and (3.31), we see

|∇2
ξ1H(t, ξ)| ≤ CχH |∇

2
ξ1(t, ξ)| +Ce−

t
2 (|χ′H | + |χ

′′
H |)

≤ Ce−
t
2 |ξ|−2( χH + |χ

′
H | + |χ

′′
H |),

which is the desired conclusion. �

The following estimates are useful for the estimates for K0H(t)g.

Corollary 3.9. Under the same assumptions as in Lemma 3.7, there exists a constant

C > 0 such that

∣

∣

∣0(t, ξ)|ξ|−( n
2
+ε)χH

∣

∣

∣ ≤ Ce−t|ξ|−( n
2
+ε)χH ,(3.32)

∣

∣

∣

∣

∇ξ

(

0(t, ξ)|ξ|−( n
2
+ε)χH

)

∣

∣

∣

∣

≤ Ce−
t
2 |ξ|−( n

2
+ε)( χH + |χ

′
H |),(3.33)

∣

∣

∣

∣

∇2
ξ

(

0(t, ξ)|ξ|−( n
2
+ε)χH

)

∣

∣

∣

∣

≤ Ce−
t
2 |ξ|−( n

2
+ε)( χH + |χ

′
H | + |χ

′′
H |).(3.34)

Proof. Let k = 0, 1, 2. Observing the fact that
∣

∣

∣

∣

∣

∣

∇k
ξ

⎛

⎜

⎜

⎜

⎜

⎝

e−t|ξ|2 |ξ|−( n
2
+ε) − e−t|ξ|2−( n

2
+ε)

1 − |ξ|2
χH

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

(3.35)

≤

∣

∣

∣

∣

∣

∣

∇k
ξ

⎛

⎜

⎜

⎜

⎜

⎝

e−t|ξ|2 |ξ|−( n
2
+ε)

1 − |ξ|2
χH

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

+ e−t

∣

∣

∣

∣

∣

∣

∇k
ξ

(

|ξ|2−( n
2
+ε)

1 − |ξ|2
χH

)
∣

∣

∣

∣

∣

∣

,

we see that the first factor in the right hand side of (3.35) satisfy the following estimates
∣

∣

∣

∣

∣

∣

e−t|ξ|2 |ξ|−( n
2
+ε)

1 − |ξ|2
χH

∣

∣

∣

∣

∣

∣

≤ Ce−t|ξ|−( n
2
+ε)−2χH ,(3.36)

∣

∣

∣

∣

∣

∣

∇ξ

⎛

⎜

⎜

⎜

⎜

⎝

e−t|ξ|2 |ξ|−( n
2
+ε)

1 − |ξ|2
χH

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

≤ Ce−
t
2 |ξ|−( n

2
+ε)−2( χH + |χ

′
H |),

∣

∣

∣

∣

∣

∣

∇2
ξ

⎛

⎜

⎜

⎜

⎜

⎝

e−t|ξ|2 |ξ|−( n
2
+ε)

1 − |ξ|2
χH

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

≤ Ce−
t
2 |ξ|−( n

2
+ε)−2( χH + |χ

′
H | + |χ

′′
H |),

as in Corollary 3.8. Furthermore, by using (3.24) with α =
n

2
+ ε, and (3.31) with j = 1, the

second factor in the right hand side of (3.35) is estimated as follows

e−t

∣

∣

∣

∣

∣

∣

∇k
ξ

(

|ξ|2−( n
2
+ε)

1 − |ξ|2
χH

)
∣

∣

∣

∣

∣

∣

≤ Ce−
t
2 |ξ|−

n
2
−ε−kχH .(3.37)

Summing up these estimates (3.35) - (3.37), one can conclude (3.32) - (3.34). �
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4. Linear estimates

4. Linear estimates
In this section, we shall study an important decay property of the solution u(t, x) to the

corresponding linear equation:

(4.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂2
t u − ∆u + ∂tu − ∆∂tu = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn

in order to handle with the original semi-linear problem (1.1). Our purpose is to show

the following proposition, which suggests large time behaviors of the solution to the linear

problem above in L1 ∩ L∞ framework.

Proposition 4.1. Let n = 1, 2, 3 and ε > 0. Assume that (u0, u1) ∈ (W
n
2
+ε,1 ∩W

n
2
+ε,∞) ×

(L1 ∩ L∞). Then, there exists a unique solution u ∈ C([0,∞); L1 ∩ L∞) to problem (4.1) such

that

‖u(t, ·)‖Lq(Rn) ≤ C(1 + t)
− n

2
(1− 1

q
)
,(4.2)

‖u(t, ·) − M̃Gt‖Lq(Rn) = o(t
− n

2
(1− 1

q
)
) (t → ∞)(4.3)

for q ∈ [1,∞], where M̃ =

∫

Rn

(u0(y) + u1(y))dy.

4.1. Decay estimates for “localized” evolution operators.
4.1. Decay estimates for “localized” evolution operators. In this subsection, we pre-

pare several decay properties of the evolution operators.

Lemma 4.2. Let n = 1, 2, 3, 1 ≤ r ≤ q ≤ ∞. Then there exists a constant C > 0 such that

‖K jL(t)g‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)
‖g‖r(4.4)

for j = 0, 1.

Lemma 4.3. Let n = 1, 2, 3, ε > 0 and 1 ≤ r ≤ q ≤ ∞. Then there exists a constant

C > 0 such that

(4.5) ‖K0H(t)g‖q ≤ Ce−
t
2 ‖|∇x|

n
2
+εg‖q,

‖K1H(t)g‖q ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ce−
t
2 ‖g‖r for n = 1,

Ce−
t
2 ‖g‖q for n = 2, 3,

(4.6)

and

‖K jM(t)g‖q ≤ Ce−
t
2 ‖g‖r for j = 0, 1.(4.7)

Proof of Lemma 4.2. To show (4.4), it is sufficient to show that

‖K jL(t)g‖∞ ≤ C(1 + t)−
n
2 ‖g‖1,(4.8)

‖K jL(t)g‖q ≤ C‖g‖q(4.9)

for 1 ≤ q ≤ ∞. Indeed, once we have (4.8) and (4.9), the Riesz-Thorin complex interpolation

theorem yields (4.4). So, we first show (4.8). By the Hausdorff-Young inequality and (2.5),

we see that
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‖K jL(t)g‖∞ ≤ C‖ jL(t, ξ)ĝ‖1 ≤ ‖ jL(t)‖1‖ĝ‖∞

≤ ‖e−(1+t)|ξ|2‖1‖g‖1 = C(1 + t)−
n
2 ‖g‖1,

which show the desired estimate (4.8). Next, we prove (4.9) by applying (2.2). Then by

using (3.9) - (3.11) and (2.5), we can assert the upper bounds of ‖∇k
ξ
 jL(t)‖2 for k = 0, 1, 2

as follows:

‖∇k
ξ jL(t)‖2 ≤ C(1 + t)−

n
4
+ k

2 .(4.10)

Therefore for n = 1, we apply (4.10) with k = 0, 1 and (2.2) with s = 1 to have

M∞( jL(t)) ≤ C‖ jL(t)‖
1− 1

2

2
‖ jL(t)‖

1
2

Ḣ1
(4.11)

≤ C‖ jL(t)‖
1− 1

2

2
‖∇ξ jL(t)‖

1
2

2

≤ C(1 + t)−
1
4 (1 + t)−

1
4
+ 1

2 ≤ C.

On the other hand, for n = 2, 3, we use (4.10) with k = 0, 2 and (2.2) with s = 2 to see

M∞( jL(t)) ≤ C‖ jL(t)‖
1− n

4

2
‖ jL(t)‖

n
4

Ḣ2
(4.12)

≤ C‖ jL(t)‖
1− n

4

2
‖∇2
ξ jL(t)‖

n
4

2

≤ C(1 + t)−
n
4

(1− n
4

)(1 + t)
n
4

(− n
4
+1) ≤ C.

By combining (4.11), (4.12) and (2.1) one can obtain

Mq( jL(t)) ≤ M∞( jL(t)) ≤ C

for 1 ≤ q ≤ ∞, which proves the desired estimate (4.9) by the definition of Mq. �

Proof of Lemma 4.3. Firstly, we remark that (4.5) and (4.6) can be derived by the same

idea. Hence we only check (4.6). As in the proof of Lemma 4.2, we only need to show

‖K1H(t)g‖∞ ≤ Ce−t‖g‖1,(4.13)

for n = 1 and

‖K1H(t)g‖q ≤ Ce−
t
2 ‖g‖q,(4.14)

for 1 ≤ q ≤ ∞ and n = 1, 2, 3. For n = 1, the Hausdorff-Young inequality and (3.27) yield

‖K1H(t)g‖∞ ≤ ‖1H(t, ξ)ĝ‖1 ≤ Ce−t‖ |ξ|−2χH‖1‖ĝ‖∞ ≤ Ce−t‖g‖1,

since |ξ|−2χH ∈ L1(R), which is the desired estimate (4.13). In order to show (4.14), we

again apply the same argument as (4.9). Indeed, by (3.27) - (3.29), we see

‖∇k
ξ1H(t, ξ)‖2 ≤ Ce−

t
2(4.15)

for k = 0, 1, 2. Here we have just used the fact that

|ξ|−2( χH + |χ
′
H | + |χ

′′
H |) ∈ L2(Rn)

for n = 1, 2, 3. Therefore, we apply (4.15) with k = 0, 1, (2.1) and (2.2) with s = 1 to have
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Mq(1H(t)) ≤ M∞(1H(t)) ≤ C‖1H(t)‖
1− 1

2

2
‖1H(t)‖

1
2

Ḣ1
(4.16)

≤ C‖1H(t)‖
1− 1

2

2
‖∇ξ1H(t)‖

1
2

2

≤ Ce−
t
2 ,

for the case n = 1. When n = 2, 3, by (4.15) with k = 0, 2, (2.1) and (2.2) with s = 2 one

can find that

Mq(1H(t)) ≤ M∞(1H(t)) ≤ C‖1H(t)‖
1− n

4

2
‖1H(t)‖

n
4

Ḣ2
(4.17)

≤ C‖1H(t)‖
1− n

4

2
‖∇2
ξ1H(t)‖

n
4

2

≤ Ce−
t
2 .

By the definition of Mq, with the help of (4.16) and (4.17), we obtain the desired estimate

(4.14) for n = 1, 2, 3.

Finally, we check (4.7). The proof of (4.7) is immediate. Indeed, we now apply the

argument for (4.4), with (4.10) replaced by (3.22) to obtain (4.7), and the proof of Lemma

4.3 is now complete. �

4.2. Asymptotic behavior of the low frequency part.
4.2. Asymptotic behavior of the low frequency part. In this subsection, we state that

the evolution operators  jL(t)g for j = 0, 1 are well-approximated by the solution of the

heat equation.

Lemma 4.4. Let n = 1, 2, 3, 1 ≤ r ≤ q ≤ ∞. Then there exists a constant C > 0 such that

‖K jL(t)g − et∆( χ̌L ∗ g)‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)−1
‖g‖r(4.18)

for j = 0, 1.

Proof. For the proof, we again apply the similar argument to the proof of Lemma 4.2.

Namely, we claim that

‖K jL(t)g − et∆( χ̌L ∗ g)‖∞ ≤ C(1 + t)−
n
2
−1‖g‖1,(4.19)

‖K jL(t)g − et∆( χ̌L ∗ g)‖q ≤ C(1 + t)−1‖g‖q,(4.20)

for 1 ≤ q ≤ ∞. Here we recall that (4.19), (4.20) and the Riesz-Thorin interpolation theorem

show (4.18). Therefore it suffices to prove (4.19) and (4.20) in order to get (4.18).

We first show (4.19). The Hausdorff - Young inequality, (3.14) and (2.5) with k = 2 and

r = 1 show

‖K jL(t)g − et∆(χ̌L ∗ g)‖∞ ≤ C‖( jL(t) − e−t|ξ|2χL)ĝ‖1

≤ C‖ jL(t) − e−t|ξ|2χL‖1‖ĝ‖∞

≤ C‖ |ξ|2e−(1+t)|ξ|2χL‖1‖g‖1 ≤ C(1 + t)−
n
2
−1‖g‖1,

which is the desired estimate (4.19).

Next, we prove (4.20). Observing (3.14) - (3.16) and (2.5), we get

‖∇k
ξ( jL(t) − e−t|ξ|2χL)‖2 ≤ C(1 + t)−

n
4
−1+ k

2(4.21)

for k = 0, 1, 2.
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In order to check (4.20) for the case n = 1, we apply (2.2) with s = 1 and (4.21) with

k = 0, 1 to get

M∞( jL(t) − e−t|ξ|2χL) ≤ C‖ jL(t) − e−t|ξ|2χL‖
1− 1

2

2
‖ jL(t) − e−t|ξ|2χL‖

1
2

Ḣ1
(4.22)

≤ C‖ jL(t) − e−t|ξ|2χL‖
1− 1

2

2
‖∇ξ( jL(t) − e−t|ξ|2χL)‖

1
2

2

≤ C(1 + t)
1
2

(− 1
4
−1)(1 + t)

1
2

(− 1
4
− 1

2
) ≤ C(1 + t)−1.

Namely, we have arrived at (4.20) with n = 1 since combining (2.1) and (4.22) gives (4.20).

In the case when n = 2, 3, we use (4.21) with k = 0, 2 and (2.2) with s = 2 to obtain

M∞( jL(t) − e−t|ξ|2χL) ≤ C‖ jL(t) − e−t|ξ|2χL‖
1− n

4

2
‖ jL(t) − e−t|ξ|2χL‖

n
4

Ḣ2

≤ C‖ jL(t) − e−t|ξ|2χL‖
1− n

4

2
‖∇2
ξ( jL(t) − e−t|ξ|2χL)‖

n
4

2

≤ C(1 + t)(− n
4
−1)(1− n

4
)(1 + t)−

n
4

n
4 = C(1 + t)−1.

That is, Mq( jL(t) − e−t|ξ|2χL) ≤ M∞( jL(t) − e−t|ξ|2χL) ≤ C(1 + t)−1 for 1 ≤ q ≤ ∞ by (2.1)

again. This shows (4.10) with n = 2, 3, which proves Lemma 4.4. �

4.3. Proof of Proposition 4.1.
4.3. Proof of Proposition 4.1. In this subsection, we shall prove Proposition 4.1.

We start with the observation that the results obtained in previous subsections guarantee

the decay property and large time behavior of the evolution operators K0(t) and K1(t).

Corollary 4.5. Let n = 1, 2, 3, ε > 0 and 1 ≤ r ≤ q ≤ ∞. Then there exists a constant

C > 0 such that

‖K0(t)g‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)
‖g‖r +Ce−

t
2 ‖ |∇x|

n
2
+εg‖q,(4.23)

‖K1(t)g‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)
‖g‖r +Ce−

t
2 ‖g‖q,(4.24)

‖(K0(t) − et∆)g‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)−1
‖g‖r +Ce−

t
2 ‖ |∇x|

n
2
+εg‖q,(4.25)

‖(K1(t) − et∆)g‖q ≤ C(1 + t)
− n

2
( 1

r
− 1

q
)−1
‖g‖r +Ce−

t
2 ‖g‖q.(4.26)

R 4.6. We note that under the statement above for n = 1, we see that

‖K1(t)g‖q ≤ C(1 + t)
− 1

2
( 1

r
− 1

q
)
‖g‖r,

‖(K1(t) − et∆)g‖q ≤ C(1 + t)
− 1

2
( 1

r
− 1

q
)−1
‖g‖r,

since Ce−
t
2 ‖g‖r is estimated by C(1 + t)

− 1
2

( 1
r
− 1

q
)−1
‖g‖r. The same reasoning can be applied to

the case q = r, namely,

‖K1(t)g‖q ≤ ‖g‖q,(4.27)

‖(K1(t) − et∆)g‖q ≤ C(1 + t)−1‖g‖q.(4.28)

Proof. The proof of the estimates (4.23) - (4.26) is similar. Here we only show the proof

of (4.23). Combining (4.4) with j = 0, (4.5) and (4.7) with j = 0, and the definition of the

localized operators, we see that

‖K0(t)g‖q ≤
∑

k=L,M,H

‖K0K(t)g‖q
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≤ C(1 + t)
− n

2
( 1

r
− 1

q
)
‖g‖r +Ce−

t
2 ‖g‖r +Ce−

t
2 ‖ |∇x|

n
2
+εg‖q

≤ C(1 + t)
− n

2
( 1

r
− 1

q
)
‖g‖r +Ce−

t
2 ‖ |∇x|

n
2
+εg‖q,

which show the desired estimate (4.23). This completes the proof of Corollary 4.5. �

By combining (4.25), (4.26) and (2.4), we can assert the approximation formula of the

evolution operators K0(t) and K1(t) in terms of the heat kernel for large t.

Corollary 4.7. Let n = 1, 2, 3, ε > 0 and (g0, g1) ∈ (W
n
2
+ε,1 ∩W

n
2
+ε,q) × (L1 ∩ Lq). Then

it is true that

‖K j(t)g j − m jGt‖q = o(t
− n

2
(1− 1

q
)
),(4.29)

as t → ∞ for j = 0, 1, where m j =

∫

Rn

g j(y)dy.

Proof. For j = 0, we apply (4.25) and (2.4) to get

t
n
2

(1− 1
q

)
‖K0(t)g0 − m0Gt‖q

≤ t
n
2

(1− 1
q

)
‖(K0(t) − et∆)g0‖q + t

n
2

(1− 1
q

)
‖et∆g0 − m0Gt‖q

≤ C(1 + t)−1‖g0‖1 +Ce−
t
2 ‖ |∇x|

n
2
+εg‖q + t

n
2

(1− 1
q

)
‖et∆g0 − m0Gt‖q

→ 0

as t → ∞, which is the desired estimate (4.29) with j = 0. We now apply this argument with

(4.25) replaced by (4.26), to obtain the estimate (4.29) with j = 1, and Corollary 4.7 now

follows. �

Now, we are in a position to prove Proposition 4.1 by combining Corollaries 4.5 and

4.7. Proof of Proposition 4.1. We recall that the solution to (4.1) is expressed as u(t, ·) =

K0(t)u0 + K1(t)u1. Then it follows from (4.23) and (4.24) with r = 1,

‖u(t)‖q ≤ ‖K0(t)u0‖q + ‖K1(t)u1‖q ≤ C(1 + t)
− n

2
(1− 1

q
)
,

which is the desired estimate (4.2). Also we see at once (4.3). Indeed, (4.25), (4.26) with

r = 1 and (4.29) give

‖(u(t, ·) − M̃Gt)‖q ≤ ‖(K0(t) − et∆)u0‖q + ‖(K1(t) − et∆)u1‖q

+ ‖(et∆(u0 + u1) − M̃Gt‖q

≤ C(1 + t)
− n

2
(1− 1

q
)−1
+ o(t

− n
2

(1− 1
q

)
)

as t → ∞, which is the desired estimate (4.3). This proves Proposition 4.1. �

5. Existence of global solutions

5. Existence of global solutions
This section is devoted to the proof of Theorem 1.1. Here we prepare some notation,

which will be used soon. We define the closed subspace of C([0,∞); L1 ∩ L∞) as

X := {u ∈ C([0,∞); L1 ∩ L∞); ‖u‖X ≤ M},
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where

‖u‖X := sup
t≥0

{‖u(t)‖1 + (1 + t)
n
2 ‖u(t)‖∞}

and M > 0 will be determined later. We also introduce the mapping Φ on X by

(5.1) Φ[u](t) := K0(t)u0 + K1(t)u1 +

∫ t

0

K1(t − τ) f (u)(τ)dτ.

For simplicity of notation, we denote the integral term of (5.1) by I[u](t):

(5.2) I[u](t) :=

∫ t

0

K1(t − τ) f (u)(τ)dτ.

In this situation, we claim that

(5.3) ‖Φ[u]‖X ≤ M

for all u ∈ X and

(5.4) ‖Φ[u] − Φ[v]‖X ≤
1

2
‖u − v‖X

for all u, v ∈ X. For the proof of Theorem 1.1, it suffices to show (5.3) and (5.4). Indeed,

once we have (5.3) and (5.4), we see that Φ is a contraction mapping on X. Therefore it

is immediate from the Banach fixed point theorem that Φ has a unique fixed point in X.

Namely, there exists a unique global solution u = Φ[u] in X and Theorem 1.1 can be proved.

We remark that the linear solution K0(t)u0+K1(t)u1 is estimated suitably by linear estimates

stated in Proposition 4.1. In what follows, we concentrate on estimates for I[u](t) defined

by (5.2). Firstly we prepare several estimates of the norms for f (u) and f (u) − f (v), which

will be used below.

By using the mean value theorem, we can see that there exists θ ∈ [0, 1] such that

f (u) − f (v) = f ′(θu + (1 − θ)v)(u − v).

Therefore, by noting the definition of ‖ · ‖X , we arrive at the estimate

‖ f (u) − f (v)‖1 ≤ ‖ f
′(θu + (1 − θ)v)‖∞‖u − v‖1(5.5)

≤ C‖θu + (1 − θ)v‖
p−1
∞ ‖u − v‖1

≤ C(‖u‖
p−1
∞ + ‖v‖

p−1
∞ )‖u − v‖1

≤ C(1 + τ)−
n
2

(p−1)(‖u‖
p−1

X
+ ‖v‖

p−1

X
)‖u − v‖X

≤ C(1 + τ)−
n
2

(p−1)Mp−1‖u − v‖X

for u, v ∈ X. By the similar way, we have

‖ f (u) − f (v)‖∞ ≤ C(‖u‖
p−1
∞ + ‖v‖

p−1
∞ )‖u − v‖∞(5.6)

≤ C(1 + τ)−
np

2 Mp−1‖u − v‖X

for u, v ∈ X. If we take v = 0 in (5.5) and (5.6), and if we recall ‖u‖X ≤ M, we easily see that

‖ f (u)‖1 ≤ C(1 + τ)−
n
2

(p−1)Mp,(5.7)

‖ f (u)‖∞ ≤ C(1 + τ)−
np

2 Mp
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for u ∈ X.

Now, by using the above estimates in (5.7), let us derive the estimate of ‖I[u](t)‖1 for

n = 1, 2, 3.

To begin with, we apply (4.27) with q = 1, (5.8), (2.4) and (2.5) to have

‖I[u](t)‖1 ≤

∫ t

0

‖K1(t − τ) f (u)‖1 dτ ≤ C

∫ t

0

‖ f (u)‖1 dτ(5.8)

≤ C‖u‖
p

X

∫ t

0

(1 + τ)−
n
2

(p−1)dτ ≤ CMp,

since −
n

2
(p − 1) < −1 for p > 1 +

2

n
.

Secondly by the similar way to (5.8), we calculate ‖I[u](t) − I[v](t)‖1 as follows:

‖I[u](t) − I[v](t)‖1 ≤

∫ t

0

‖K1(t − τ)( f (u) − f (v))‖1 dτ(5.9)

≤ C

∫ t

0

‖ f (u) − f (v)‖1 dτ

≤ CMp−1‖u − v‖X

∫ t

0

(1 + τ)−
n
2

(p−1)dτ

≤ CMp−1‖u − v‖X ,

for u, v ∈ X, where we have just used (5.5) and (5.6).

For the proof of Theorem 1.1, it still remains to get the estimates for ‖Φ[u](t)‖∞ and

‖Φ[u](t) − Φ[v](t)‖∞.

Now, in order to obtain the estimate for ‖Φ[u](t)‖∞, we split the nonlinear term into two

parts:

‖I[u](t)‖∞ ≤

∫ t
2

0

‖K1(t − τ) f (u)‖∞ dτ +

∫ t

t
2

‖K1(t − τ) f (u)‖∞ dτ(5.10)

=: J1(t) + J2(t).

To obtain the estimate of J1(t), we apply (4.24) with q = ∞ and r = 1 and (5.7) to have

J1(t) ≤ C

∫ t
2

0

(1 + t − τ)−
n
2 ‖ f (u)‖1 dτ +C

∫ t
2

0

e−
t−τ
2 ‖ f (u)‖∞ dτ(5.11)

≤ C(1 + t)−
n
2

∫ t
2

0

(1 + τ)−
n
2

(p−1)dτMp +Ce−
1
2

t

∫ t
2

0

(1 + τ)−
np

2 dτMp

≤ C(1 + t)−
n
2 Mp,

where we have used the fact that −
n

2
(p − 1) < −1.

For the term J2(t), by using (4.27) with q = ∞ and (5.7) we obtain

J2(t) ≤ C

∫ t

t
2

‖ f (u)‖∞ dτ ≤ C

∫ t

t
2

(1 + τ)−
np

2 dτMp ≤ C(1 + t)−
np

2
+1Mp,(5.12)

where we remark that the power in the right hand side −
np

2
+ 1 is strictly smaller than −

n

2

since −
np

2
+ 1 = −

n

2
(p − 1) + 1 −

n

2
and −

n

2
(p − 1) < −1. By combining (5.10) - (5.12), we
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arrive at

‖I[u](t)‖∞ ≤ J1(t) + J2(t) ≤ C(1 + t)−
n
2 Mp.(5.13)

Next, we estimate ‖Φ[u](t) − Φ[v](t)‖∞. Again, we divide ‖I[u](t) − I[v](t)‖∞ into two

parts:

‖I[u](t) − I[v](t)‖∞ ≤

∫ t
2

0

‖K1(t − τ)( f (u) − f (v))‖∞ dτ(5.14)

+

∫ t

t
2

‖K1(t − τ)( f (u) − f (v))‖∞ dτ

=: J3(t) + J4(t).

As in the proof of (5.11), we can deduce that

J3(t) ≤ C

∫ t
2

0

(1 + t − τ)−
n
2 ‖ f (u) − f (v)‖1 dτ(5.15)

+C

∫ t
2

0

e−
t−τ
2 ‖ f (u) − f (v)‖∞ dτ

≤ C(1 + t)−
n
2

∫ t
2

0

(1 + τ)−
n
2

(p−1)dτMp−1‖u − v‖X

+Ce−
1
2

t

∫ t
2

0

(1 + τ)−
np

2 dτMp−1‖u − v‖X

≤ C(1 + t)−
n
2 Mp−1‖u − v‖X ,

where we have used the fact that −
np

2
+ 1 < −

n

2
again. In the same manner as (5.12), we

can get

J4(t) ≤ C

∫ t

t
2

‖ f (u) − f (v)‖∞ dτ(5.16)

≤ C

∫ t

t
2

(1 + τ)−
np

2 dτMp−1‖u − v‖X

≤ C(1 + t)−
np

2
+1Mp−1‖u − v‖X .

Thus, (5.14) - (5.16) yield

‖I[u](t) − I[v](t)‖∞ ≤ J3(t) + J4(t) ≤ C(1 + t)−
n
2 Mp−1‖u − v‖X .(5.17)

By (4.23), (4.24), (5.8) and (5.13), we deduce that

‖Φ[u]‖X ≤ ‖K0(t)u0 + K1(t)u1‖X + ‖I[u]‖X

≤ C0(‖u0‖W
n
2
+ε,1
∩W

n
2
+ε,∞ + ‖u1‖L1∩L∞) +C1Mp(5.18)

for some C0 > 0 and C1 > 0.

Similar arguments can be applied to ‖Φ[u] − Φ[v]‖X by using (5.9) and (5.17), and then

one can assert that

(5.19) ‖Φ[u] − Φ[v]‖X ≤ ‖I[u] − I[v]‖X ≤ C2Mp−1‖u − v‖X
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for some C2 > 0. By choosing ‖u0‖W
n
2
+ε,1
∩W

n
2
+ε,∞ + ‖u1‖L1∩L∞ sufficiently small, we can make

sure the validity of the inequality such as

(5.20) C1Mp <
1

2
M, C2Mp−1 <

1

2
,

because of the relation M = 2C0(‖u0‖W
n
2
+ε,1
∩W

n
2
+ε,∞ + ‖u1‖L1∩L∞). By combining (5.18), (5.19)

and (5.20) one has the desired estimates (5.3) and (5.4), and the proof is now complete.

6. Asymptotic behavior of the solution

6. Asymptotic behavior of the solution
In this section, we show the proof of Theorem 1.2. For the proof of Theorem 1.2, we pre-

pare slightly general setting. Here, we introduce the function F = F(t, x) ∈ L1(0,∞; L1(Rn))

satisfying

‖F(t)‖q ≤ C(1 + t)
− n

2
(p−1)− n

2
(1− 1

q
)
,(6.1)

for 1 ≤ q ≤ ∞ and p > 1 +
2

n
. We can now formulate our main statement in this section.

Proposition 6.1. Let n ≥ 1 and p > 1 +
2

n
, and assume (6.1). Then it holds that

(6.2)

∥

∥

∥

∥

∥

∥

(∫ t

0

K1(t − τ)F(τ)dτ −

∫ ∞

0

∫

Rn

F(τ, y)dydτ ·Gt(x)

)
∥

∥

∥

∥

∥

∥

q

= o(t
− n

2
(1− 1

q
)
)

as t → ∞.

As a first step of the proof of Proposition 6.1, we split the integral terms into five parts.

Namely, we see that
∫ t

0

K1(t − τ)F(τ)dτ −

∫ ∞

0

∫

Rn

F(τ, y)dydτ ·Gt(x)

=

∫ t
2

0

(K1(t − τ) − e(t−τ)∆)F(τ)dτ +

∫ t

t
2

K1(t − τ)F(τ)dτ

+

∫ t
2

0

(e(t−τ)∆ − et∆)F(τ)dτ +

∫ t
2

0

(

et∆F(τ) −

∫

Rn

F(τ, y)dy ·Gt(x)

)

dτ

−

∫ ∞

t
2

∫

Rn

F(τ, y)dydτ ·Gt(x),

and here we set each terms as follows:

A1(t) :=

∫ t
2

0

(K1(t − τ) − e(t−τ)∆)F(τ)dτ,

A2(t) :=

∫ t

t
2

K1(t − τ)F(τ)dτ, A3(t) :=

∫ t
2

0

(e(t−τ)∆ − et∆)F(τ)dτ,

A4(t) :=

∫ t
2

0

(

et∆F(τ) −

∫

Rn

F(τ, y)dy ·Gt(x)

)

dτ

A5(t) := −

∫ ∞

t
2

∫

Rn

F(τ, y)dydτ ·Gt(x).



826 R. I  H. T

In what follows, we estimate each A j(t) for j = 1, · · · , 5, respectively.

Lemma 6.2. Under the same assumptions as in Proposition 6.1, there exists a constant

C > 0 such that

(6.3) ‖A1(t)‖q ≤ C(1 + t)
− n

2
(1− 1

q
)−1
,

(6.4) ‖A j(t)‖q ≤ Ct
− n

2
(1− 1

q
)− n

2
(p−1)+1

( j = 2, 5),

‖A3(t)‖q ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ct
− n

2
(1− 1

q
)−1

log(2 + t), p ≥ 1 + 4
n
,

Ct
− n

2
(1− 1

q
)− n

2
(p−1)+1

, 1 + 2
n
< p < 1 + 4

n
,

(6.5)

(6.6) ‖A4(t)‖q = o
(

t
− n

2
(1− 1

q
)
)

,

as t → ∞ for 1 ≤ q ≤ ∞.

Proof. First, we show (6.3). By (4.26) with r = 1 and (6.1) we see that

‖A1(t)‖q ≤

∫ t
2

0

‖(K1(t − τ) − e(t−τ)∆)F(τ)‖qdτ

≤ C

∫ t
2

0

(1 + t − τ)
− n

2
(1− 1

q
)−1
‖F(τ)‖1dτ +C

∫ t
2

0

e−
t−τ
2 ‖F(τ)‖qdτ

≤ C(1 + t)
− n

2
(1− 1

q
)−1

∫ t
2

0

(1 + τ)−
n
2

(p−1)dτ

+Ce−
t
2

∫ t
2

0

(1 + τ)
− n

2
(p−1)− n

2
(1− 1

q
)
dτ

≤ C(1 + t)
− n

2
(1− 1

q
)−1
,

which is the desired estimate (6.3). Next, we show (6.4) wit j = 2. By (4.27) and (6.1), we

see that

‖A2(t)‖q ≤

∫ t

t
2

‖K1(t − τ)F(τ)‖qdτ ≤ C

∫ t

t
2

‖F(τ)‖qdτ

≤ C

∫ t

t
2

(1 + τ)
− n

2
(1− 1

q
)− n

2
(p−1)

dτ

≤ C(1 + t)
− n

2
(1− 1

q
)− n

2
(p−1)+1

,

which is the desired estimate (6.4) with j = 2.

Thirdly, we show (6.4) with j = 5. By the combination of (6.1) and the direct computa-

tion, we get

‖A5(t)‖q ≤

∫ ∞

t
2

‖F(τ)‖1dτ‖Gt‖q

≤

∫ ∞

t
2

(1 + τ)−
n
2

(p−1)dτ‖Gt‖q ≤ Ct
− n

2
(1− 1

q
)− n

2
(p−1)+1

,

which is the desired estimate (6.4) with j = 5.
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Let us prove (6.5). To begin with, observe that there exists θ ∈ [0, 1] such that

Gt−τ(x − y) −Gt(x − y) = (−τ)∂tGt−θτ(x − y),

because of the mean value theorem on t. Then, we can apply (2.3) with k̃ = 0, ℓ = 1 and

r = 1 to have

‖A3(t)‖q ≤

∫ t
2

0

‖(e(t−τ)∆ − et∆)F(τ)‖qdτ

=

∫ t
2

0

τ‖∂te
(t−θτ)∆F(τ)‖qdτ

≤ C

∫ t
2

0

τ(t − τ)
− n

2
(1− 1

q
)−1
‖F(τ)‖1dτ

≤ Ct
− n

2
(1− 1

q
)−1

∫ t
2

0

τ(1 + τ)−
n
2

(p−1)dτ

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ct
− n

2
(1− 1

q
)−1

log(2 + t), p ≥ 1 + 4
n
,

Ct
− n

2
(1− 1

q
)− n

2
(p−1)+1

, 1 + 2
n
< p < 1 + 4

n
,

which implies (6.5).

Finally, we prove (6.6). To show the estimate for A4(t), we first divide the integrand into

two parts:

∫ t
2

0

(

et∆F(τ, x) −

∫

Rn

F(τ, y)dy ·Gt(x)

)

dτ(6.7)

=

∫ t
2

0

∫

|y|≤t
1
4

+

∫ t
2

0

∫

|y|≥t
1
4

(Gt(x − y) −Gt(x))F(τ, y)dydτ =: A41(t) + A42(t).

In what follows, we estimate A41(t) and A42(t), respectively. For the estimate of A41(t), we

apply the mean value theorem again on x to have

Gt(x − y) −Gt(x) = (−y) · ∇xGt(x − θ̃y)

with some θ̃ ∈ [0, 1], where · denotes the standard Euclid inner product. Then we arrive at

the estimate

‖A41(t)‖q ≤

∫ t
2

0

∫

|y|≤t
1
4

‖Gt(x − y) −Gt(x)‖Lq
x
|F(τ, y)|dydτ(6.8)

=

∫ t
2

0

∫

|y|≤t
1
4

∥

∥

∥(−y) · ∇xGt(x − θ̃y)
∥

∥

∥

L
q
x
|F(τ, y)|dydτ

≤ Ct
− n

2
(1− 1

q
)− 1

2
+ 1

4

∫ t
2

0

‖F(τ)‖1dτ

≤ Ct
− n

2
(1− 1

q
)− 1

4

∫ t
2

0

(1 + τ)−
n
2

(p−1)dτ ≤ Ct
− n

2
(1− 1

q
)− 1

4 ,

by direct calculations. On the other hand, for the term A42(t), we recall the fact that
∫ ∞

0

∫

Rn

|F(τ, y)|dydτ < ∞ implies
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lim
t→∞

∫ ∞

0

∫

|y|≥t
1
4

|F(τ, y)|dydτ = 0.

Thus we see that

‖A42(t)‖q ≤

∫ t
2

0

∫

|y|≥t
1
4

(‖Gt(x − y)‖Lq
x
+ ‖Gt(x)‖Lq

x
)|F(τ, y)|dydτ

≤ Ct
− n

2
(1− 1

q
)

∫ ∞

0

∫

|y|≥t
1
4

|F(τ, y)|dydτ,

so that

(6.9) t
n
2

(1− 1
q

)
‖A42(t)‖q → 0

as t → ∞. Therefore, by combining (6.7), (6.8) and (6.9) one has

‖A4(t)‖q ≤ ‖A41(t)‖q + ‖A42(t)‖q = o(t
− n

2
(1− 1

q
)
)

as t → ∞, which is the desired estimate (6.6). We complete the proof of Lemma 6.2. �

Proof of Proposition 6.1. For 1 ≤ q ≤ ∞, Lemma 6.2 immediately yields (6.4). Indeed,

from (6.2) and (6.3) - (6.6) it follows that

t
n
2

(1− 1
q

)

∥

∥

∥

∥

∥

∥

(∫ t

0

K1(t − τ)F(τ)dτ −

∫ ∞

0

∫

Rn

F(τ, y)dydτ ·Gt(x)

)
∥

∥

∥

∥

∥

∥

q

≤ Ct
n
2

(1− 1
q

)
5
∑

j=1

‖A j(t)‖q → 0

as t → ∞, which is the desired conclusion. �

Now we are in a position to prove Theorem 1.2. Proof of Theorem 1.2. From the proof

of Theorem 1.1, we see that the nonlinear term f (u) satisfies the condition (6.1). Then we

can apply Proposition 6.1 to F(τ, y) = f (u(τ, y)), and the proof is now complete. �
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