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Abstract. We study the large time asymptotic behavior of solutions of the doubly de-
generate parabolic equation ut = div(u

m−1|Du|p−2Du) − uq with an initial condition
u(x, 0) = u0(x). Here the exponents m, p and q satisfy m+p > 3, p > 1 and q > m+p−2.
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1. Introduction

The objective of this article is to study the large time asymptotic behavior of weak

solutions of nonlinear parabolic equations of the type

ut = div(um−1|Du|p−2Du) − uq in S = R
N × (0,∞),(1.1)

u(x, 0) = u0(x) on R
N .(1.2)

Here p > 1,m(p−1) > 1, q > 1,N > 1 and u0(x) ∈ L1(RN ) is a nonnegative function.

Equation (1.1) has been suggested as a mathematical model for a variety of problems

in mechanics, physics and biology, one can see [3], [5], [1] etc. The existence of a

nonnegative solution of (1.1)–(1.2), defined in some weak sense, is well established

(see [12] and [8]). In this paper we are interested in the behavior of solutions as

t → ∞. The elliptic method was used in several papers (see e.g. [4], [9]) to study

the asymptotic behavior of the solutions of the porous media and the p-Laplacian

equations. Also by the elliptic method, J. Manfredi and V. Vespri studied the large

*The paper was supported by NSF of China (10571144), NSF for youth of Fujian province
in China (2005J037) and NSF of Jimei University in China.
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time behavior of the solution of the initial boundary problem without absorption−uq

in [7]. In details the large time behavior of the solution of the problem

ut = div(um−1|Du|p−2Du) in Ω × (0,∞),(1.3)

u(x, t) = 0 in ∂Ω × (0,∞),(1.4)

u(x, 0) = u0(x) on R
N(1.5)

was considered in [7].

In our paper we will study problem (1.1)–(1.2) in a way different from the elliptic

method which is used in [7], namely, we will compare the large time behavior of the

general solution of (1.1)–(1.2) to the Barenblatt-type solution of (1.1)–(1.2).

We begin with some preliminaries.

It is not difficult to verify that

Ec = t−l/µ
{[

b−
m(p− 1) − 1

mp
(Nµ)−1/(p−1)(|x|t−l/µ)p/(p−1)

]

+

}(p−1)/(m(p−1)−1)

is the Barenblatt-type solution of the Cauchy problem

ut = div(um−1|Du|p−2Du) in S = R
N × (0,∞),(1.6)

u(x, 0) = cδ(x) on R
N(1.7)

where l = (1 + (m − 1)/(p− 1))1−p, µ = m+ p− 3 + p/N , c =
∫

RN u0(x) dx, b is a

constant such that b =
∫

RN Ec(x, t) dx, and δ denotes the Dirac mass centered at the

origin.

Let

BR(x0) = {x ∈ R
N : |x− x0| < R}, BR = {x ∈ R

N : |x| < R}.

Definition 1.1. A nonnegative function u(x, t) is called a solution of (1.1)–(1.2)

if u satisfies

u ∈ C(0, T ;L1(RN )) ∩ L∞(RN × (τ, T ), u(m−1)/(p−1)Du ∈ Lp
loc(R

N × (0, T )),(1.8)

ut ∈ L1(RN × (τ, T )), ∀ τ > 0;
∫

S

[u(x, t)ϕt(x, t) − um−1|Du|p−2Du ·Dϕ− uqϕ] dxdt = 0, ∀ϕ ∈ C1
0 (S);(1.9)

lim
t→0

|u(x, t) − u0(x)| dx = 0.(1.10)

Definition 1.2. A nonnegative function U ∈ C(S \ (0)), U 6= 0 is called a very

singular solution of (1.1), if U satisfies (1.1) in the sense of distributions in S and

lim
t→0

∫

BR

U(x, t) dx = 0, ∀R > 0.
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Let U(x, t) = t1/(q−1)f(|x|t−1/β). Suppose f is the solution of the ordinary equa-

tion

(fm−1|f ′|p−2f ′)′ +
1

η
fm−1|f ′|p−2f ′ +

1

β
ηf ′ +

1

q
f − f q = 0,

f(η) > 0, f ′(0) = 0, lim
η→∞

ηp/(q−(m+p−2))f(η) = 0.

Then we can prove that U(x, t) is a very singular solution of (1.1); we will publish

this result in another paper.

Theorem 1.3. Let m(p − 1) > 1, q > m + p − 2. If Ec is a unique solution

of (1.6)–(1.7), then the solution u of (1.1)–(1.2) satisfies

(1.11) tl/µ|u(x, t) − Ec(x, t)| → 0 as t → ∞

uniformly on the sets {x ∈ R
N : |x| < at−l/µN , a > 0}, where

c =

∫

RN

u0(x) dx−

∫ ∞

0

∫

RN

uq(x, t) dxdt.

Theorem 1.4. Suppose m(p− 1) > 1, q > m+ p− 2 and

|x|αu0(x) 6 B, lim
|x|→∞

|x|αu0(x) = C,

where α, B and C are constants with α ∈ (0, p/(q − (m+ p− 2))). Then the solution

of (1.1)–(1.2) satisfies

t1/(q−1)u(x, t) → C∗ as t→ ∞

uniformly on the sets

{x ∈ R
N : |x| 6 at1/β, a > 0},

where C∗ = (1/(q − 1))1/(q−1) and β = (q − 1)/(q − (m+ p− 2)).

Theorem 1.5. Suppose 1 < m(p− 1), m+ p− 2 < q < m+ p− 2 + p/N and

|x|αu0(x) 6 B, a >
p

q − (m+ p− 2)
,

∫

RN

u0(x) dx > 0.

Assume that (1.1) has a unique very singular solution. Then the solution of (1.1)–

(1.2) satisfies

t1/(q−1)|u(x, t) − U(x, t)| → 0 as t→ ∞
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uniformly on the sets

{x ∈ R
N : |x| 6 at1/β},

where β = (q − 1)/(q − (m+ p− 2)).

R em a r k 1.6. For m = 1, the uniqueness of solutions of (1.6)–(1.7) is known

(see [2]). For m = 1, p = 2, the uniqueness of the very singular solution of (1.1) is

known, too (see [11]).

2. Proof of Theorem 1.3

Let u be a solution of (1.1). We define the family of functions

uk = kNu(kx, kNµt), k > 0.

It is easy to see that they are solutions of the problems

ut = div(um−1|Du|p−2Du) − k−vuq in S = R
N × (0,∞),(2.1)

u(x, 0) = u0k(x) on R
N ,(2.2)

where µ = m+p−3+p/N as before and v = q−m−p+2−p/N , u0k(x) = kNu0(x).

Lemma 2.1. For any s ∈ (0,m+ p− 2), uk satisfies

∫ T

0

∫

BR

us+m−2
k

(1 + us
k)2

|Duk|
2 dxdt 6 c(s,R, |u0|L1),(2.3)

∫ T

0

∫

BR

u
m+p−2+p/N−s
k dxdt 6 c(s,R, |u0|L1).(2.4)

P r o o f. From Definition 1.1, we are able to deduce (see [10]): ∀ϕ ∈ C1(S),

ϕ = 0 when |x| is large enough,

∫

RN

uk(x, t)ϕdx−

∫ T

0

∫

RN

(ukϕt − um−1
k |Duk|

p−2Duk ·Dϕ) dxdt(2.5)

6

∫

RN

u0k(x)ϕ(x, 0) dx.

Let

(2.6) ψR ∈ C∞
0 (B2R), 0 6 ψR 6 1, ψR = 1 on BR, |DψR| 6 cR−1.
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By an approximate procedure we can choose ϕ = (us
k/(1 + us

k))ψp
R in (2.5); then

∫

RN

∫ uk(x,t)

0

zs

1 + zs
dzψp

R(x) dx(2.7)

+ s

∫ t

h

∫

RN

us+m−2
k

(1 + us
k)2

|Duk|
pψp

R(x) dxdτ

6 − p

∫ t

h

∫

RN

us+m−1
k

1 + us
k

|Duk|
p−2ψp−1

R (x)Duk ·DψR dxdτ

+

∫

RN

∫ uk(x,h)

0

zs

1 + zs
dzψp

R(x) dx,

where 0 < h < t. Notice that
∣

∣

∣

∣

∫ t

h

∫

RN

us+m−1
k

1 + us
k

|Duk|
p−2ψp−1

R (x)Duk ·DψR dxdτ

∣

∣

∣

∣

(2.8)

6

∫ t

h

∫

RN

[

ε

(

u
(s+m−2)·(p−1)/p
k

(1 + us
k)2(p−1)/p

|Duk|
p−1ψp−1

R

)p/(p−1)

+ c(ε)

(

u
(s+m−1−(s+m−2))·(p−1)/p
k

(1 + us
k)1−2(p−1)/p

|DψR|

)p]

dxdt

=

∫ t

h

∫

RN

[

ε

(

us+m−2
k

(1 + us
k)2

|Duk|
pψp

R + c(ε)
up+m−2

k

(1 + us
k)2−p

|DψR|
p

]

dxdt,

(2.9)

∫

RN

∫ uk(x,h)

0

zs

1 + zs
dzψp

R(x) dx 6

∫

RN

u(x, kNµh) dx,

hence by (2.7)–(2.9) we obtain

sup
0<t<T

∫

RN

∫ uk(x,t)

0

zs

1 + zs
dz dx+

∫ t

h

∫

RN

us+m−2
k

(1 + us
k)2

|Duk|
pψp

R dxdτ(2.10)

6 c

∫

RN

u(x, kNµh) dx+ c

∫ t

h

∫

RN

up+s+m−2
k

(1 + us
k)2−p

|DψR|
p dxdτ.

Because uk ∈ L∞(RN × (h, T )) ∩ L1(ST ), p+m− 2 > 0, we have

(2.11) lim
R→∞

∫ t

h

∫

RN

up+s+m−2
k

(1 + us
k)2−p

|DψR|
p dxdτ = 0.

Let R→ ∞, h→ 0 in (2.10). Then

sup
0<t<T

∫

RN

∫ uk(x,t)

0

zs

1 + zs
dz dx+

∫∫

St

us+m−2
k

(1 + us
k)2

|Duk|
p dxdτ(2.12)

6 c

∫

RN

u0(x) dx.
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Thus

(2.13) sup
0<t<T

∫

B2R

uk(x, t) dx+

∫ T

0

∫

B2R

us+m−2
k

(1 + us
k)2

|Duk|
p dxdτ 6 c(R).

Let

u1 = max{uk(x, t), 1}, w = u
(m+p−2−s)/p
1 .

By Sobolev’s imbedding inequality (see [6]), for ξ ∈ C1
0 (B2R), ξ > 0, we have

(
∫

RN

ξpwr dx

)1/r

6 c

(
∫

RN

|D(ξw)|p
)s/p(∫

B2R

wp/(m+p−2−s) dx

)((1−θ)(m+p−2)−s)/p

,

where

θ =
(m+ p− 2 − s

p
−

1

r

)( 1

N
−

1

p
+
m+ p− 2 − s

p

)−1

,

r =
p(m+ p− 2 + p/N − s)

m+ p− 2 − s
.

It follows that
∫∫

ST

ξpwr dxdt(2.14)

6 c

∫∫

ST

|D(ξw)|p dxdt

× sup
t∈(0,T )

(
∫

B2R

wp/(m+p−2−s) dx

)(r−p)(m+p−2−s)/p

.

Since

|Dw|p 6 c
us+m−2

k

(1 + us
k)2

|Duk|
p a.e. on {uk > 1} and |Dw| = 0 on {uk 6 1},

we have
∫∫

ST

|D(ξw)|p dxdt 6 c

∫∫

ST

(ξp|Dw|p + wp|Dξ|p) dxdt(2.15)

6 c

[
∫∫

ST

|Dξ|pup+m−2−s
1 dxdt

+

∫ T

0

∫

B2R

us+m−2
k

(1 + us
k)2

|Duk|
p dxdt

]

.
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Hence, by (2.14), (2.15) and (2.13), we get

∫∫

ST

ξpu
m+p−2+p/N−s
1 dxdt 6 c(s,R, |u0|L1)

(

1 +

∫∫

ST

|Dξ|pup+m−2−s
1 dxdt

)

.

Let ξ = ψb
R, where ψR is the function satisfying (2.6) and b = N(m+ p− 2 − s)/p.

Then
∫∫

ST

ψpb
R u

m+p−2+p/N−s
1 dxdt

6 c(s,R, |u0|L1)

(

1 +

∫∫

ST

ψpb
R u

p+m−2+p/N−s
1 dxdt

)(m+p−2−s)/(m+p−2+p/N−s)

,

which implies (2.4) is true. �

Let Q̺ = B̺(x0) × (t0 − ̺p, t0) with t0 > (2̺)p and uk1 = max{uk, 1}.

Lemma 2.2. Each uk satisfies

(2.16) sup
Q̺

uk 6 c(̺, s1)

(
∫∫

Q2̺

up+m−3+s1

k1 dxdt

)1/s1

,

where c(̺, s1) depends on ̺ and s1, and s1 can be any number satisfying 0 < s1 <

1 + p/N .

Lemma 2.3. Each uk satisfies

(2.17)

∫ T

τ

∫

BR

um−1
k |Duk|

p dxdt 6 c(τ, R),

∫ T

τ

∫

BR

|ukt|
p dxdt 6 c(τ, R).

P r o o f. By Lemma 2.1 and 2.2, uk are uniformly bounded on every compact

set K ⊂ ST . Let ψR be a function satisfying (2.6) and let ξ ∈ C1
0 (0, T + 1) with

0 6 ξ 6 1, ξ = 1 if t ∈ (τ, T ). We choose η = ψp
Rξuk in (2.5) to obtain

1

2

∫

RN

u2
k(x, T )ψp

R dx+

∫∫

ST

um−1
k |Duk|

pψp
Rξ dxdt(2.18)

6
1

2

∫∫

ST

u2
kξ

′ψp
R dxdt− p

∫∫

ST

um
k |Duk|

p−2Duk ·DψRψ
p−1
R ξ dxdt.

Notice that
∫∫

ST

um
k |Duk|

p−1|DψR|ψ
p−1
R ξ dxdt(2.19)

6 ε

∫∫

ST

um−1
k |Duk|

pψp
Rξ dxdt+ c(ε)

∫∫

ST

up+m−1
k |DψR|

pξ dxdt.

By (2.18), (2.19), one knows that the first inequality of (2.17) is true.
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Now we will prove the second inequality of (2.17). Let

v(x, t) = ukr(x, t) = ruk(x, rm+p−3t), r ∈ (0, 1).

Then

vt(x, t) = div(vm−1|Dv|p−2Dv) − rm+p−2−qk−υvq,(2.20)

v(x, 0) = ruk(x, 0).(2.21)

Notice that rm+p−2−qk−υ > k−υ using the argument similar to that in the proof of

Theorem 1 of [12], one can prove

uk > ukr.

It follows that

uk(x, rm+p−3t) − uk(x, t)

(rm+p−3 − 1)t
>

r − 1

(1 − rm+p−3)t
uk(x, rm+p−3t).

Letting r → 1, we get

(2.22) ukt > −
uk

(m+ p− 3)t
.

Denote w = tβuk(x, t), β = 1/(m+ p− 3). By (2.22), wt > 0. By (2.1),

∫ T

τ

∫

B2R

tβwtψR dxdt(2.23)

= −

∫ T

τ

∫

B2R

um−1
k |Duk|

p−2Duk ·DψR dxdt

−

∫ T

τ

∫

B2R

k−υuq
kψR dxdt+ β

∫ T

τ

∫

B2R

t−1uk(x)ψR dxdt

6
β

τ

∫ T

τ

∫

B2R

uk dxdt

+

(
∫ T

τ

∫

B2R

um−1
k |Duk|

p dxdt

)(p−1)/p(∫ T

τ

∫

B2R

|DψR|
p dxdt

)1/p

.

From (2.13), (2.16) and (2.23) we obtain (2.17). �
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P r o o f of Theorem 1.3.

By Lemmas 2.1–2.3 and [2], there exists a subsequence {ukj} of {uk} and a func-

tion v such that on every compact set K ⊂ S

ukj → v in C(K), Dum
kj
⇀ Dvm in Lp

loc(ST ), |ukt|L1
loc(ST ) 6 c.

Similar to what was done in the proof of Theorem 2 in [12], we can prove that

v satisfies (1.1) in the sense of distributions.

We now prove v(x, 0) = cδ(x). Let χ ∈ C1
0 (BR). Then we have

∫

RN

uk(x, t)χ dx−

∫

RN

ϕkχ dx(2.24)

= −

∫ t

0

∫

RN

um−1
k |Duk|

p−2Duk ·Dχ dxds− k−υ

∫ t

0

∫

RN

uq
kχ dxds.

To estimate
∫ t

0

∫

RN u
m−1
k |Duk|

p−2Duk ·Dχ dxds, without losing generality, one can

assume that uk > 0. By Hölder inequality and Lemma 2.1,

∣

∣

∣

∣

∫ t

0

∫

RN

um−1
k |Duk|

p−2Duk ·Dχ dxds

∣

∣

∣

∣

(2.25)

6 c

(
∫ T

0

∫

B2R

us+m−2
k

(1 + us
k)2

|Duk|
p dxdt

)(p−1)/p

×

(
∫ T

0

∫

B2R

(1 + us
k)2(p−1)u

(p−1)(2−s−m)
k dxdτ

)1/p

6 c

(
∫ t

0

∫

B2R

(

u
(p−1)(2−s−m)
k1 + u

(p−1)(2+s−m)
k1 dxdτ

)1/p

6 c

(
∫ t

0

∫

B2R

(

u
(p−1)(2−s−m)
k1

)

m+p−2+p/N−s
(p−1)(s+2−m) dxdt

)

(p−1)(s−2−m)
m+p−2+p/N−s

1
p

td,

where s ∈ (0, 1/N), d = ((m−s−1)Np+(s−2)N+p−s+2)/((m+p−2)N+p−s)< 1

because p > (N + 3)/(2N + 1), uk1 = max(uk, 1).

Hence from (2.24) we get

∣

∣

∣

∣

∫

RN

uk(x, t)χ dx−

∫

RN

ϕkχ dx+ k−υ

∫ t

0

∫

RN

uq
kχ dxds

∣

∣

∣

∣

(2.26)

=

∣

∣

∣

∣

∫

RN

uk(x, t)χ dx−

∫

RN

ϕkχ(k−1x) dx+

∫ Nµt

0

∫

RN

uq
kχ(k−1x) dxdτ

∣

∣

∣

∣

6 ctd.

Letting now k → ∞, t→ 0, we obtain

lim
t→0

∫

RN

v(x, t)χ dx = χ(0)

(
∫

RN

ϕ(x) dx−

∫ ∞

0

∫

RN

uq dxdt

)

.
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Thus

v(x, 0) = cδ(x), c =

∫

RN

ϕ(x) dx−

∫ ∞

0

∫

RN

uq dxdt,

v(x, t) is a solution of (1.3)–(1.4). By the assumption on uniqueness of solution, we

have v(x, t) = Ec(x, t) and the whole sequence {uk} converges to Ec as k → ∞. Set

t = 1. Then

uk(x, 1) = kNu(kx, kNµ) → Ec(x, 1)

uniformly on every compact subset of RN . Thus writing kx = k′, kNµ = t′, and

dropping the prime again, we see that

t1/µu(x, t) → Ec(xt
1/(Nµ), 1) = t1/µEc(x, t)

uniformly on the sets {x ∈ R
N : |x| 6 at1/(Nµ)}, a > 0. Thus Theorem 1.3 is true.

�

3. Proofs of Theorem 1.4 and 1.5

Let u be a solution of (1.1)–(1.2) and let uk(x, t) = kδu(kx, kβt), k > 0. If

δ = 1/(q − (m+ p− 2)), β = (q − 1)/(q − (m+ p− 2)), then

ukt = div(um−1
k |Duk|

p−2Duk) − uq
k,(3.1)

uk(x, 0) = ϕk(x) = kδϕ(kx).(3.2)

Lemma 3.1. The solution uk of (3.1)–(3.2) satisfies

(3.3) uk(x, t) 6 C∗t−1/(q−1), C∗ =
( 1

q − 1

)1/(q−1)

.

P r o o f. We consider the regularized problem of (3.1), namely,

(3.4) ukt = div((um−1
k + ε)(|Duk|

2 + ε)(p−2)/2Duk) − uq
k.

By the uniqueness of the solution of (3.1)–(3.2), we can prove that

ukε → uk as ε→ 0 in C(K)

on every compact set K ⊂ S, where ukε are the solutions of (3.4), (3.2). By compu-

tation, it is easy to show that C∗(t− t0)
−1/(q−1) is a solution of (3.4) in RN × (t0,∞),

t0 > 0. For any δ1 > 0, we choose δ0 ∈ (0, δ1) such that

|ukε(x, δ1)|L∞(RN ) 6 C∗(δ1 − δ0)
−1/(q−1).
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Hence by the comparison principle, we have

ukε(x, t) 6 C∗(t− t0)
−1/(q−1), t > δ1.

The proof of Lemma 3.1 is completed by letting δ1 → 0 and ε→ 0. �

Lemma 3.2. Each uk satisfies

(3.5)

∫ T

τ

∫

BR

|Duk|
p 6 c(τ, R),

∫ T

τ

∫

BR

|ukt| dxdt 6 c(τ, R),

where τ ∈ (0, T ).

P r o o f. The proof of Lemma 3.2 is similar to that of Lemma 2.3. �

P r o o f of Theorem 1.4. By Lemma 3.1, {uk} are uniformly bounded on every

compact set of S. Hence by [2], there exists a subsequence {ukj} and a function

U ∈ C(S) such that

ukj → U in C(K)

and

U(x, t) 6 C∗t−1/(q−1).

We now prove that U(x, t) = C∗t−1/(q−1). Let us introduce the function

(3.6) ϕA
k = min{ϕk, A}

and denote by V A
Kε the solution of (3.4) with initial value (3.6). By the comparison

principle,

(3.7) V A
Kε 6 ukε,

where ukε is the solution of (3.4), (3.2).

Define

VA = C∗
(

t+
A1−q

q − 1

)−1/(q−1)

,

which is the solution of (3.4) with initial value

(3.8) VA(x, 0) = A.

Notice that

lim
k→∞

ϕA
k (x) = lim

k→∞
min

{

A,
ϕ(kx)|kx|αkδ−α

|x|α

}

= A.
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Using the uniqueness of solution of (3.4), (3.8), we can prove (see [6])

V A
kε → VA as k → ∞ in C(K),

where K is a compact set in S. Moreover, by [2] and [12]

V A
kε → V A

k ukε → uk as k → ∞ in C(K)

uniformly in K, where V A
k is the solution of (1.1) with initial value (3.6). It follows

that

V A
k → VA as k → ∞ in C(K).

Letting ε→ 0 and k → ∞ in turn in (3.7), we get

VA(x, t) 6 V∞(x, t) = C∗t−1/(q−1) in S.

Since the lower bound holds for every A > 0, we conclude that

U(x, t) = V∞(x, t) = C∗t−1/(q−1) in S.

Thus

kp/(q−(m+p−2))u(kx, kβt) → C∗t−1/(q−1) as k → ∞.

Set t = 1. Then

kp/(q−(m+p−2))u(kx, kβ) → C∗ as k → ∞

uniformly on every compact subset of RN . Therefore if we set kx = x′, kβ = t′, and

omit the primes, we obtain

t1/(q−1)u(x, t) → C∗ as t→ ∞

uniformly on sets {x ∈ R
N : |x| 6 αt1/β} with α > 0 for t > 0 and so Theorem 1.4

is proved. �

P r o o f of Theorem 1.5. By Lemma 3.1 and [2], there exist a subsequence {ukj}

and a function U ∈ C(S) such that

(3.9) ukj → U in C(K).

By Lemma 3.2, we can prove that U satisfies (1.1) in the sense of distributions in a

manner similar to Theorem 2 of [12]. �

532



Acknowledgement. The author most sincerely thanks his advisor, Professor

Zhao Junning, for all his inspiring guidance, constructive discussions, and encour-

agement in preparation of this paper.

References

[1] E. Di Benedetto: Degenerate Parabolic Equations. Springer, New York, 1993.
[2] A.V.H. Ivanov: Hölder estimates for quasilinear doubly degenerate parabolic equations.
J. Sov. Math. 56 (1991), 2320–2347.

[3] A.S. Kalashnikov: Some problems of nonlinear parabolic equations of second order.
Uspekhi Math. Nauk 42 (1987), 135–176.

[4] S. Kamin, J. L. Vazquez: Fundamental solutions and asymptotic behaviour for the
p-Laplacian equation. Rev. Mat. Iberoam. 4 (1988), 339–354.

[5] O.A. Ladyzhenskaya: New equations for the description of motion of viscous incom-
pressible fluids and solvability in the large of boundary value problem for them. Tr.
Mat. Inst. Steklova 102 (1967), 95–118.

[6] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva: Linear and Quasilinear Equa-
tion of Parabolic Type. Trans. Math. Monographs 23. American Mathematical Society
(AMS), Providence, 1968.

[7] J. Manfredi, V. Vespri: Large time behavior of solutions to a class of doubly nonlinear
parabolic equations. Electron. J. Differ. Equ. 1994/02 (1994), 1–16.

[8] T. Masayoshi: On solutions of some doubly nonlinear degenerate parabolic equations
with absorption. J. Math. Anal. Appl. 132 (1988), 187–212.

[9] M. Winkler: Large time behavior of solutions to degenerate parabolic equations with
absorption. NoDEA, Nonlinear Differ. Equ. Appl. 8 (2001), 343–361.

[10] Z. Wu, J. Zhao, J. Yin, H. Li: Nonlinear Diffusion Equations. Word Scientific, Singa-
pore, 2001.

[11] J. Yang, J. Zhao: The asymptotic behavior of solutions of some doubly degenerate
nonlinear parabolic equations. Northeast. Math. J. 11 (1995), 241–252.

[12] J. Zhao, H. Yuan: The Cauchy problem of some nonlinear doubly degenerate parabolic
equations. Chin. Ann. Math., Ser. A 16 (1995), 181–196.

Author’s address: H. Zhan, School of Sciences, Jimei University, Xiamen 361021,
P.R.China, e-mail: hszhan@jmu.edu.cn.

533


