Large-time Behavior of Solutions to the Equations of a Viscous Polytropic Ideal Gas (*).

Song Jiang

Abstract

First we prove for the equations of a viscous polytropic ideal gas in bounded annular domains in $\mathbb{R}^{n}(n=2,3)$ that (generalized) spherically symmetric solutions decay to a constant state exponentially as time goes to infinity. Then we show that solutions of the Cauchy problem in R are asymptotically stable if the initial specific volume is close to a constant in L^{∞} and weighted L^{2}, the initial velocity is small in weighted $L^{2} \cap L^{4}$, and the initial temperature is close to a constant in weighted L^{2}.

1. - Introduction.

In this paper we study the asymptotic behavior of solutions to the following equations in the domain $G_{n}(1 \leqslant n \leqslant 3)$:

$$
\begin{align*}
& \partial_{t} \varrho+\partial_{r}(\varrho v)+\frac{(n-1)}{r} \varrho v=0, \tag{1.1}\\
& \varrho\left(\partial_{t} v+v \partial_{r} v\right)=(\lambda+2 \mu)\left(\partial_{r}^{2} v+\frac{(n-1)}{r} \partial_{r} v-\frac{(n-1)}{r^{2}} v\right)-R \partial_{r}(\varrho \theta), \\
& c_{V} \varrho\left(\partial_{t} \theta+v \partial_{r} \theta\right)=\kappa \partial_{r}^{2} \theta+\kappa \frac{(n-1)}{r} \partial_{r} \theta-R \varrho \theta\left(\partial_{r} v+\frac{(n-1)}{r} v\right)+ \\
& +\lambda\left(\partial_{r} v+\frac{(n-1)}{r} v\right)^{2}+2 \mu\left(\partial_{r} v\right)^{2}+2 \mu \frac{(n-1)}{r^{2}} v^{2}, \\
& r \in G_{n}, t>0,
\end{align*}
$$

(*) Entrata in Redazione l'11 dicembre 1996, in versione riveduta 1129 maggio 1997.
Indirizzo dell'A.: Institute of Applied Physics and Computational Mathematics, P.O. Box 8009 (28 ${ }^{\#}$), Beijing 100088, P.R. China, email: js8s@mail.iapem.ac.en

Supported by the SFB 256 of the Deutsche Forschungsgemeinschaft at the University of Bonn, the Qidong research grant of the Ministry of Education and the CAEP of China.
where $G_{n}=\mathbb{R}$ for $n=1$ and $G_{n}=(a, b)(a>0)$ for $n=2,3 ; R, c_{V}, \kappa, \lambda, \mu$ are constants satisfying $R, c_{V}, \kappa, \mu>0, \lambda+2 \mu / n \geqslant 0$. For (1.1)-(1.3) we will consider the Cauchy problem in the case of $n=1$ and the following initial boundary value problem in the case of $n=2,3$:

$$
\begin{align*}
& \varrho(r, 0)=\varrho_{0}(r), \quad v(r, 0)=v_{0}(r), \quad \theta(r, 0)=\theta_{0}(r), \quad r \in G_{n} \quad \text { for } 1 \leqslant n \leqslant 3, \tag{1.4}\\
& v(a, t)=v(b, t)=0, \quad \theta_{r}(a, t)=\theta_{r}(b, t)=0, \quad t \geqslant 0 \quad \text { for } n=2 \text { or } 3 \tag{1.5}
\end{align*}
$$

The equations (1.1)-(1.3) describe the motion of a viscous polytropic ideal gas in \mathbb{R} in the case of $n=1$, or the spherically symmetric motion of a viscous polytropic ideal gas in the annular domain $\left\{x \in \mathbb{R}^{n}|\alpha<|x|<b\}\right.$ in the case of $n=2,3$ (cf. [1,5,10]), where ϱ, v, θ are the density, the velocity, and the absolute temperature, respectively; λ and μ are the constant viscosity coefficients, R, c_{V}, and κ are the gas constant, the specific heat capacity, and the thermal conductivity, respectively.

In two or three dimensions the global existence and large-time behavior of smooth solutions to the equations of a viscous polytropic ideal gas have been investigated for general domains only in the case of sufficiently small initial data (see e.g. [2, 3], [16][20], [27,28], where more general constitutive equations were considered). For large initial data the global existence of (generalized) solutions was shown in [4,5,25] resp. in [10] for the spherically symmetric motion in a bounded annular domain resp. in an exterior domain. The asymptotic behavior of the (spherically symmetric) solutions in the bounded annular domain, however, is not discussed in [4,5,25] (in [10] some largetime behavior of ϱ, v was discussed only for the case $n=3$).

In one dimension it is well known that global solutions exist. Moreover, for initial boundary value problems in bounded domains a solution converges to a steady state (exponentially) as $t \rightarrow \infty$ (see [1,8,9], [21]-[24]). For the Cauchy problem the large-time behavior of solutions is investigated only for small initial data. In [12,15] (also cf. [6]) decay rates of solutions were studied for the initial data sufficiently small at least in $H^{3}(\mathbb{R})$. Kanel, Kawashima, Nishida, and Okada [11,13,26] proved that if the $H^{1}(\mathbb{R})$ norm of the initial data is sufficiently small, then a (smooth) solution converges to a constant steady state as $t \rightarrow \infty$.

In the present paper first we prove the exponential decay of (generalized) solutions of (1.1)-(1.5) for $n=2$ or 3 . Then we show that in the case of $n=1$ (generalized) solutions of the Cauchy problem (1.1)-(1.4) converge to a constant steady state as $t \rightarrow \infty$ provided that the initial specific volume is close to a constant in L^{∞} and weighted L^{2}, the initial velocity is small in weighted $L^{2} \cap L^{4}$, and the initial temperature is close to a constant in weighted L^{2}.

To show the time-asymptotic behavior it is convenient to transform the system (1.1)-(1.3) to that in Lagrangian coordinates. The Eulerian coordinates (r, t) are connected to the Lagrangian coordinates (ξ, t) by the relation

$$
\begin{equation*}
r(\xi, t)=r_{0}(\xi)+\int_{0}^{t} \tilde{v}(\xi, \tau) d \tau \tag{1.6}
\end{equation*}
$$

where $\tilde{v}(\xi, t):=v(r(\xi, t), t)$, and

$$
r_{0}(\xi):=\eta^{-1}(\xi), \quad \eta(r):=\int_{d_{n}}^{r} s^{n-1} \varrho_{0}(s) d s, \quad r \in G_{n} ; \quad d_{n}:= \begin{cases}0, & n=1 \\ a, & n=2,3\end{cases}
$$

It should be noted that if $\inf \left\{\varrho_{0}(s) ; s \in \bar{G}_{n}\right\}>0$ (which will be assumed later), then η as a function of $r \in \bar{G}_{n}$ is invertible. $\underset{\substack{ \\(\xi, \xi, t)}}{\text { Denote }} L:=\int_{a}^{b} s^{n-1} \varrho_{0}(s) d s>0$. Using the equation (1.1), (1.6), and (1.5), we obtain $\partial_{t} \int_{d_{n}} s^{n-1} \varrho(s, t) d s=\delta_{n 1} v(0, t) \varrho(0, t)$ with $\delta_{i j}$ being the Kronecker delta, which by integration turns into

$$
\int_{d_{n}}^{n(\xi, t)} s^{n-1} \varrho(s, t) d s=\int_{d_{n}}^{r_{0}(\xi)} s^{n-1} \varrho_{0}(s) d s+\delta_{n 1} \int_{0}^{t}(v \varrho)(0, \tau) d \tau=\xi+\delta_{n 1} \int_{0}^{t}(v \varrho)(0, \tau) d \tau .
$$

Thus, under the assumption $\inf \left\{\varrho(s, t) ; s \in \bar{G}_{n}, t \geqslant 0\right\}>0$ (which is posteriori justified) we see that G_{n} is tranformed to Ω_{n} with $\Omega_{n}=\mathbb{R}$ if $n=1$ and $\Omega_{n}=(0, L)$ if $n=2,3$. Moreover we have

$$
\begin{equation*}
\partial_{\xi} r(\xi, t)=\left[r(\xi, t)^{n-1} \varrho(r(\xi, t), t)\right]^{-1} . \tag{1.7}
\end{equation*}
$$

For a function $\varphi(r, t)$ we write $\tilde{\varphi}(\xi, t):=\varphi(r(\xi, t), t)$. By virtue of (1.6) and (1.7),

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{\varphi}(\xi, t)=\partial_{t} \varphi(r, t)+v \partial_{r} \varphi(r, t) \tag{1.8}\\
\partial_{\xi} \tilde{\varphi}(\xi, t)=\partial_{r} \varphi(r, t) \partial_{\xi} r(\xi, t)=\frac{1}{r^{n-1} \varrho(r, t)} \partial_{r} \varphi(r, t)
\end{array}\right.
$$

Without danger of confusion we denote ($\varrho, \tilde{v}, \tilde{\theta})$ still by (ϱ, v, θ) and (ξ, t) by (x, t). We use $u:=1 / \varrho$ to denote the specific volume. Therefore, by virtue of (1.7)-(1.8), the equations (1.1)-(1.5) in the new variables (x, t) read:

$$
\begin{align*}
& u_{t}=\left(r^{n-1} v\right)_{x}, \tag{1.9}\\
& v_{t}=r^{n-1}\left[\beta \frac{\left(r^{n-1} v\right)_{x}}{u}-R \frac{\theta}{u}\right]_{x}, \quad x \in \Omega_{n}, t>0, \tag{1.10}\\
& c_{V} \theta_{t}=\kappa\left[\frac{r^{2 n-2} \theta_{x}}{u}\right]_{x}+\frac{1}{u}\left[\beta\left(r^{n-1} v\right)_{x}-R \theta\right]\left(r^{n-1} v\right)_{x}-2 \mu(n-1)\left(r^{n-2} v^{2}\right)_{x} \tag{1.11}
\end{align*}
$$ together with

$$
\begin{align*}
& u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad \theta(x, 0)=\theta_{0}(x), \quad x \in \Omega_{n}, \quad 1 \leqslant n \leqslant 3, \tag{1.12}\\
& v(0, t)=v(L, t)=0, \quad \theta_{x}(0, t)=\theta_{x}(L, t)=0, \quad t \geqslant 0, \quad n=2,3 . \tag{1.13}
\end{align*}
$$

Here $\Omega_{n}=\mathbb{R}$ if $n=1$ and $\Omega=(0, L)$ if $n=2,3 ; u_{0}=1 / \varrho_{0}, \beta=\lambda+2 \mu$, and by virtue of (1.6), $r \equiv r(x, t)$ is determined by

$$
\left\{\begin{array}{l}
r(x, t)=r_{0}(x)+\int_{0}^{t} v(x, \tau) d \tau, \quad x \in[0, L], \quad t \geqslant 0 \tag{1.14}\\
r_{0}(x):=\left\{\left(d_{n}\right)^{n}+n \int_{0}^{x} u_{0}(y) d y\right\}^{1 / n}
\end{array}\right.
$$

For the formulation of the main result we introduce the following notation: H^{m} and $\|\cdot\|_{H^{m}}(m \geqslant 0$ integer $)$ denote $H^{m}\left(\Omega_{n}\right)$ and its norm ($1 \leqslant n \leqslant 3$), respectively. $\|\cdot\|$ and $\|\cdot\|_{L^{p}}$ denote the norms in $L^{2}\left(\Omega_{n}\right)$ and $L^{p}\left(\Omega_{n}\right)(1 \leqslant p \leqslant \infty)$, respectively. Q_{T} stands for the domain $\Omega_{n} \times(0, T)(1 \leqslant n \leqslant 3)$. For a vector valued function $f=\left(f_{1}, \ldots, f_{m}\right)$ we put $\left|\left|\left|f\left\|:=\left|\left|\left|f_{1}\left\|\left|+\ldots+\left|\left|\left|f_{m}\right| \|\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$, where $\left.\left.| \| \cdot\right|\right| \mid$ denotes a norm.

As mentioned in the introduction the global existence of (generalized) solutions to (1.9)-(1.14) has been established. In the case of $n=1$ Kazhikhov [1,14] proved that if for some positive constants $\bar{u}, \bar{\theta}, u_{0}-\bar{u}, v_{0}, \theta_{0}-\bar{\theta} \in H^{1}$, and $u_{0}(x), \theta_{0}(x)>0$ on \mathbb{R}, then there exists a unique solution $\{u(x, t), v(x, t), \theta(x, t)\}$ with positive u and θ to the Cauchy problem (1.1)-(1.12) on $\mathbb{R} \times[0, \infty)$ such that for every $T>0$

$$
\begin{array}{r}
u-\bar{u} \in L^{\infty}\left([0, T], H^{1}\right), \quad v, \theta-\bar{\theta} \in L^{\infty}\left([0, T], H^{1}\right) \cap L^{2}\left([0, T], H^{2}\right) \tag{1.15}\\
u_{t}, v_{t}, \theta_{t} \in L^{2}\left(Q_{T}\right)
\end{array}
$$

In the case of $n=2,3$ Nikolaev [25] (also cf. [4,5]) showed that if $u_{0}, v_{0}, \theta_{0} \in H^{1}, u_{0}(x)$, $\theta_{0}(x)>0$ on $[0, L]$ and the initial data are compatible with the boundary conditions (1.13), then there exists a unique solution $\{u(x, t), v(x, t), \theta(x, t)\}$ with positive u and θ to (1.9)-(1.14) on $[0, L] \times[0, \infty)$ such that for every $T>0$

$$
\begin{equation*}
u \in L^{\infty}\left([0, T], H^{1}\right), \quad v, \theta \in L^{\infty}\left([0, T], H^{1}\right) \cap L^{2}\left([0, T], H^{2}\right) \tag{1.16}
\end{equation*}
$$

$$
u_{t}, v_{t}, \theta_{t} \in L^{2}\left(Q_{T}\right)
$$

Denote

$$
\left\{\begin{array}{l}
u^{*}:=\frac{1}{L} \int_{0}^{L} u_{0}(x) d x \tag{1.17}\\
\theta^{*}:=\frac{1}{c_{V} L} \int_{0}^{L}\left\{c_{V} \theta_{0}+\frac{v_{0}^{2}}{2}\right\}(x) d x \\
r^{*}(x):=\left(a^{n}+n u^{*} x\right)^{1 / n}, \quad x \in[0, L]
\end{array}\right.
$$

We assume for $n=2$ or 3 that λ and μ satisfy

$$
\begin{equation*}
n \lambda+2 \mu>0 \tag{1.18}
\end{equation*}
$$

Then the main result of the paper reads:

Theorem 1.1. - (i) Let $n=2$ or 3. Assume that (1.18) is satisfied. Let $\{u(x, t), v(x, t), \theta(x, t)\}$ be a solution of (1.9)-(1.14) in the function class indicated in (1.16). Then there are positive constants α, T_{0}, C, independent of t, such that

$$
\begin{equation*}
\left\|\left(u-u^{*}, v, \theta-\theta^{*}\right)(t)\right\|_{H^{1}}+\left\|r(t)-r^{*}\right\|_{H^{2}} \leqslant C e^{-\alpha t}, \quad \text { for any } t \geqslant T_{0} \tag{1.19}
\end{equation*}
$$

(ii) Let $n=1$ and $\{u(x, t), v(x, t), \theta(x, t)\}$ be a solution of (1.9)-(1.12) in the function class indicated in (1.15). Denote

$$
e_{0}^{2}:=\left\|u_{0}-\bar{u}\right\|_{L^{\infty}}^{2}+\int_{\mathrm{R}}\left(1+x^{2}\right)^{\gamma}\left\{\left(u_{0}-\bar{u}\right)^{2}+v_{0}^{2}+\left(\theta_{0}-\bar{\theta}\right)^{2}+v_{0}^{4}\right\} d x
$$

where $\gamma>1 / 2$ is an arbitray but fixed constant. Then there is a constant $\varepsilon \in(0,1]$, independent of u_{0}, v_{0}, θ_{0}, such that if $e_{0} \leqslant \varepsilon$, then

$$
\begin{equation*}
\|(u-\bar{u}, v, \theta-\bar{\theta})(t)\|_{L^{\infty}}+\left\|\left(u_{x}, v_{x}, \theta_{x}\right)(t)\right\| \rightarrow 0, \quad \text { as } t \rightarrow \infty \tag{1.20}
\end{equation*}
$$

Remark 1.1. - The same techniques work and a result analogous to Theorem 1.1 (i) holds when (1.13) is replaced by $\left.v\right|_{\partial \Omega_{n}}=0,\left.\theta\right|_{\partial \Omega_{n}}=1$.

We will prove (i) and (ii) of Theorem 1.1 in Sections 2 and 3, respectively.

2. - Proof of Theorem 1.1-(i).

In this section the same letter C (sometimes used as C_{1}, C_{2}) denotes various positive constants which are in particular independent of t and x. The proof of Theorem 1.1 (i) is essentially based on a careful examination of a priori estimates which are shown to be independent of t. The difficulties arise from the dependence on the time and spatial variables of the coefficients in the equations (1.9)-(1.11), but can be overcome in our approach by modifying an idea of Kazhikhov [1,14] for the one-dimensional case. The proof will be partitioned into several steps.

The first observation is that, by virtue of (1.7) and (1.14),

$$
\begin{equation*}
r_{t}(x, t)=v(x, t), \quad r^{n-1}(x, t) r_{x}(x, t)=u(x, t), \quad x \in[0, L], t \geqslant 0 \tag{2.1}
\end{equation*}
$$

By (1.13)-(1.14) and (2.1) we obtain $r_{x}(0, t)=r^{1-n}(0, t) u(0, t)=a^{1-n} u(0, t)>0$ for all $t \geqslant 0$. Thus, if $r_{x}(x, t)>0$ is violated on $[0, L] \times[0, \infty)$, there are $y \in(0, L]$ and $\tau \in$ $\in[0, \infty)$ such that $r_{x}(x, t)>0$ for $0 \leqslant x<y, 0 \leqslant t \leqslant \tau$, but $r_{x}(y, \tau)=0$. So by continuity, $r_{x}(x, t) \geqslant 0$ for $x \in[0, y]$ and $t \in[0, \tau]$, and we have $r(y, \tau) \geqslant r(0, \tau)=a>0$. From (2.1) we get $0=r_{x}(y, \tau)=r^{1-n}(y, \tau) u(y, \tau)>0$ which is a contradiction. This shows
$r_{x}(x, t)>0$ for $0 \leqslant x \leqslant L, t \geqslant 0$. Therefore,

$$
\begin{equation*}
a=r(0, t) \leqslant r(x, t) \leqslant r(L, t)=b \quad \text { for } x \in[0, L], t \geqslant 0 . \tag{2.2}
\end{equation*}
$$

The following estimate embodies the dissipative character of viscosity and thermal diffusion and is motivated by the second law of thermodynamics.

Lemma 2.1. - There is a positive constant c_{0}, independent of t, such that

$$
\begin{equation*}
\int_{0}^{L} U(x, t) d x+\int_{0}^{t} \int_{0}^{L}\left(\frac{v_{x}^{2}}{u \theta}+\frac{\theta_{x}^{2}}{u \theta^{2}}\right) d x d s \leqslant c_{0}, \quad \forall t \geqslant 0 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
U(x, t):=\left\{v^{2} / 2+R(u-\log u-1)+c_{V}(\theta-\log \theta-1)\right\}(x, t) \tag{2.4}
\end{equation*}
$$

Proof. - Using (1.9)-(1.11), we obtain after a straightforward calculation that

$$
\begin{align*}
& U_{t}+\frac{\beta}{u \theta}\left(r^{n-1} v\right)_{x}^{2}+\frac{\kappa}{u \theta^{2}}\left(r^{n-1} \theta_{x}\right)^{2}=\left[r^{n-1} v\left(\frac{\beta}{u}\left(r^{n-1} v\right)_{x}-R \frac{\theta}{u}\right)\right]_{x}+ \tag{2.5}\\
& +R\left(r^{n-1} v\right)_{x}+\kappa\left[\left(1-\frac{1}{\theta}\right) \frac{r^{2 n-2} \theta_{x}}{u}\right]_{x}-2(n-1) \mu\left(1-\frac{1}{\theta}\right)\left(r^{n-2} v^{2}\right)_{x}
\end{align*}
$$

Recalling $2 \mu+n \lambda, 2 \mu+(n-1) \lambda>0$, we utilise (2.1) to arrive at

$$
\begin{equation*}
\frac{\beta}{u \theta}\left(r^{n-1} v\right)_{x}^{2}-2 \mu(n-1) \frac{\left(r^{n-2} v^{2}\right)_{x}}{\theta}= \tag{2.6}
\end{equation*}
$$

$$
\begin{aligned}
=\frac{1}{u \theta}\left\{(n-1)(2 \mu+(n-1) \lambda)\left(r^{-1} u v+\frac{\lambda r^{n-1} v_{x}}{2 \mu+(n-1) \lambda}\right)^{2}\right. & \left.+\frac{2 \mu(2 \mu+n \lambda)}{2 \mu+(n-1) \lambda} r^{2 n-2} v_{x}^{2}\right\} \geqslant \\
& \geqslant \frac{2 \mu(2 \mu+n \lambda)}{(2 \mu+(n-1) \lambda)} \frac{r^{2 n-2} v_{x}^{2}}{u \theta} .
\end{aligned}
$$

By virtue of Taylor's theorem, $\int_{0}^{L} U(x, 0) d x \leqslant C\left(1+\left\|\left(u_{0}, v_{0}, \theta_{0}\right)\right\|^{2}\right)$. So If we integrate (2.5) over $[0, L] \times[0, t](t \geqslant 0)$, use (1.13) and (2.6), we obtain (2.3).

As a corollary of Lemma 2.1 we have
Lemma 2.2. - There are positive constants α_{1}, α_{2}, independent of t, such that

$$
\begin{equation*}
\alpha_{1} \leqslant \int_{0}^{L} \theta(x, t) d x \leqslant \alpha_{2} \quad \forall t \geqslant 0, \tag{2.7}
\end{equation*}
$$

and for each $t \geqslant 0$ there is an $a(t) \in[0, L]$ satisfying

$$
\begin{equation*}
\alpha_{1} \leqslant \theta(a(t), t) \leqslant \alpha_{2} . \tag{2.8}
\end{equation*}
$$

Proof. - (2.3) implies

$$
\begin{equation*}
c_{V} \int_{0}^{L}(\theta(x, t)-\log \theta(x, t)-1) d x \leqslant c_{0}, \quad t \geqslant 0 . \tag{2.9}
\end{equation*}
$$

Therefore by virtue of the mean value theorem, for each $t \geqslant 0$ there is an $a(t) \in[0, L]$ such that $\theta(a(t), t)-\log \theta(a(t), t)-1 \leqslant\left(c_{V} L\right)^{-1} c_{0}$, from which it follows that $\zeta_{1} \leqslant$ $\leqslant \theta(a(t), t) \leqslant \zeta_{2}$ with ζ_{1}, ζ_{2} being two (positive) roots of the equation: $y-\log y-1=$ $=\left(c_{V} L\right)^{-1} c_{0}$. If we use (2.9) and apply Jensen's inequality to the convex function $y-$ $-\log y-1$, we obtain:

$$
\int_{0}^{L} \theta(x, t) d x-\log \int_{0}^{L} \theta(x, t) d x-1 \leqslant c_{V}^{-1} c_{0}, \quad t \geqslant 0 .
$$

Therefore $0<\zeta_{3} \leqslant \int_{0}^{L} \theta(x, t) d x \leqslant \zeta_{4}$ for $t \geqslant 0$, where ζ_{3}, ζ_{4} are two (positive) roots of the equation: $y-\log y-1=c_{V}{ }^{-1} c_{0}$. Taking $\alpha_{1}:=\min \left\{\xi_{1}, \xi_{3}\right\}$ and $\alpha_{2}:=\max \left\{\xi_{2}, \zeta_{4}\right\}$, we obtain (2.7)-(2.8).

Next we adapt and modify an idea of Kazhikhov [14] (also cf. [1]) for the one-dimensional case to give a representation for u.

Let

$$
\begin{equation*}
\sigma(x, t):=\beta \frac{\left(r^{n-1} v\right)_{x}}{u}-R \frac{u}{\theta}, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\phi(x, t):=\int_{0}^{t} \sigma(x, s) d s+\int_{0}^{x} r_{0}^{-(n-1)}(y) v_{0}(y) d y+(n-1) \int_{0}^{t} \int_{x}^{L} r^{-n}(y, s) v^{2}(y, s) d y d s \tag{2.11}
\end{equation*}
$$

Then by (1.10), a partial integration in the varivable t, and (2.1),

$$
\begin{equation*}
\phi_{x}(x, t)=r^{-(n-1)}(x, t) v(x, t) . \tag{2.12}
\end{equation*}
$$

Note that in view of (2.1) ϕ satisfies

$$
\begin{equation*}
\phi_{t}=\beta \frac{\left(r^{n-1} v\right)_{x}}{u}-R \frac{\theta}{u}+\frac{(n-1)}{n} \frac{\left(r^{n}\right)_{x}}{u} \int_{x}^{L} r^{-n} v^{2} d y . \tag{2.13}
\end{equation*}
$$

Multiplying (2.13) by u, using (1.9) and (2.12), we arrive at

$$
\begin{align*}
&(u \phi)_{t}-\left(r^{n-1} v \phi\right)_{x}=-v^{2}-R \theta+\beta\left(r^{n-1} v\right)_{x}+\frac{(n-1)}{n}\left(r^{n}\right)_{x} \int_{x}^{L} r^{-n} v^{2} d y= \tag{2.14}\\
&=-\frac{v^{2}}{n}-R \theta+\beta\left(r^{n-1} v\right)_{x}+\frac{(n-1)}{n}\left[r^{n} \int_{x}^{L} r^{-n} v^{2} d y\right]_{x} .
\end{align*}
$$

Keeping in mind that v vanishes on the boundary and $r(0, t)=a$, we integrate (2.14) over $[0, L] \times[0, t]$ to infer

$$
\begin{align*}
\int_{0}^{L}(u \phi)(x, t) d x= & \int_{0}^{L} u_{0}(x) \phi_{0}(x) d x-\int_{0}^{t} \int_{0}^{L}\left(\frac{v^{2}}{n}+R \theta\right) d x d s- \tag{2.15}\\
& -\frac{(n-1)}{n} a^{n} \int_{0}^{t} \int_{0}^{L} r^{-n} v^{2} d x d s,
\end{align*}
$$

where $\phi_{0}(x):=\phi(x, 0)$. It follows from integration of (1.9) over $[0, L] \times[0, t]$ and use of (1.13) that

$$
\begin{equation*}
\int_{0}^{L} u(x, t) d x=\int_{0}^{L} u_{0}(x) d x \equiv u^{*} \quad \text { for } t \geqslant 0 . \tag{2.16}
\end{equation*}
$$

Note that $u>0$. If we apply the mean value theorem to (2.15) and use (2.16), we conclude that for each $t \geqslant 0$ there is an $x_{0}(t) \in[0, L]$ such that

$$
\begin{equation*}
\phi\left(x_{0}(t), t\right)=\frac{1}{u^{*}} \int_{0}^{L} \phi(x, t) u(x, t) d x . \tag{2.17}
\end{equation*}
$$

Therefore from (2.11), (2.15), and (2.17) we get

$$
\begin{align*}
\int_{0}^{t} \sigma\left(x_{0}(t), s\right) d s & =\phi\left(x_{0}(t), t\right)-\int_{0}^{x_{0}(t)} r_{0}^{-(n-1)} v_{0} d y-(n-1) \int_{0}^{t} \int_{x_{0}(t)}^{L} r^{-n} v^{2} d y d s= \tag{2.18}\\
& =-\frac{1}{u^{*}} \int_{0}^{t} \int_{0}^{L}\left(\frac{v^{2}}{n}+R \theta\right) d x d s-\frac{(n-1) a^{n}}{n u^{*}} \int_{0}^{t} \int_{0}^{L} r^{-n} v^{2} d x d s- \\
& -(n-1) \int_{0}^{t} \int_{x_{0}(t)}^{L} r^{-n} v^{2} d x d s+\frac{1}{u^{*}} \int_{0}^{L} u_{0} \phi_{0} d x-\int_{0}^{x_{0}(t)} r_{0}^{-(n-1)} v_{0} d y
\end{align*}
$$

for any $t \geqslant 0$. Using (2.18), we can show

LEMMA 2.3. - We have the following representation

$$
\begin{equation*}
u(x, t)=\frac{D(x, t)}{B(x, t)}\left\{1+\frac{R}{\beta} \int_{0}^{t} \frac{\theta(x, s) B(x, s)}{D(x, s)} d s\right\}, \quad x \in[0, L], t \geqslant 0 \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
D(x, t):=u_{0}(x) \exp \left\{\frac{1}{\beta}\left[\frac{1}{u^{*}} \int_{0}^{L} u_{0} \phi_{0} d x-\int_{0}^{x} r_{0}^{-(n-1)} v_{0} d y+\int_{x_{0}(t)}^{x} \dot{r}^{-(n-1)} v d y\right]\right\} \tag{2.20}
\end{equation*}
$$

$$
\begin{align*}
& B(x, t):=\exp \left\{\frac { 1 } { \beta } \left[\frac{1}{u^{*}} \int_{0}^{t} \int_{0}^{L}\left(\frac{v^{2}}{n}+R \theta\right) d x d s+\right.\right. \tag{2.21}\\
&\left.\left.+\frac{(n-1) a^{n}}{n u^{*}} \int_{0}^{t} \int_{0}^{L} r^{-n} v^{2} d y d x d s+(n-1) \int_{0}^{t} \int_{x}^{L} r^{-n} v^{2} d y d s\right]\right\}
\end{align*}
$$

and $x_{0}(t) \in[0, L]$ is the same as in (2.17).

Proof. - Using (1.9) we may write (1.10) in the form

$$
\begin{equation*}
r^{-(n-1)} v_{t}=\beta[\log u]_{x t}-R\left[\frac{\theta}{u}\right]_{x} \quad\left(\Leftrightarrow r^{-(n-1)} v_{t}=\sigma_{x}\right) \tag{2.22}
\end{equation*}
$$

Integrate (2.22) over $[0, t]$, then integrate over $\left[x_{0}(t), x\right]$ with respect to x. If we integrate by parts with respect to t, utilise (2.1) and (2.18), we infer

$$
\begin{aligned}
& \beta \log u- R \int_{0}^{t} \frac{\theta}{u} d s=\beta \log u_{0}+\int_{0}^{t} \sigma\left(x_{0}(t), s\right) d s+\int_{x_{0}(t)}^{x} \int_{0}^{t} r-(n-1) \\
& v_{t} d s d y= \\
&=\beta \log u_{0}-\frac{1}{u^{*}} \int_{0}^{t} \int_{0}^{L}\left(\frac{v^{2}}{n}+R \theta\right) d x d s-\frac{(n-1) a^{n}}{n u^{*}} \int_{0}^{t} \int_{0}^{L} r^{-n} v^{2} d x d s- \\
&-(n-1) \int_{0}^{t} \int_{x}^{L} r^{-n} v^{2} d y d s+\int_{x_{0}(t)}^{x} r^{-(n-1)} v d y+\frac{1}{u^{*}} \int_{0}^{L} u_{0} \phi_{0} d x-\int_{0}^{x} r_{0}^{-(n-1)} v_{0} d y
\end{aligned}
$$

which, when the exponentials are taken, turns into

$$
\begin{equation*}
\frac{B(x, t)}{D(x, t)}=\frac{1}{u(x, t)} \exp \left(\frac{R}{\beta} \int_{0}^{t} \frac{\theta(x, s)}{u(x, s)} d s\right) \tag{2.23}
\end{equation*}
$$

Multiplying (2.23) by $R \theta / \beta$ and integrating over [$0, t$], we arrive at

$$
\exp \left(\frac{R}{\beta} \int_{0}^{t} \frac{\theta(x, s)}{u(x, s)} d s\right)=1+\frac{R}{\beta} \int_{0}^{t} \frac{\theta(x, s) B(x, s)}{D(x, s)} d s
$$

Substituting this into (2.23), we obtain the lemma.

Now we are able to derive bounds on $u(x, t)$ by using the representation (2.19).

Lemma 2.4. - There are positive constants \underline{u} and \bar{u}, independent of t, such that

$$
\begin{equation*}
\underline{u} \leqslant u(x, t) \leqslant \bar{u} \quad \text { for any } x \in[0, L], t \geqslant 0 \tag{2.24}
\end{equation*}
$$

Proof. - Recalling the definition of $D(x, t)$, we have by (2.2), Cauchy-Schwarz's inequality, and Lemma 2.1 that

$$
\begin{equation*}
0<C^{-1} \leqslant D(x, t) \leqslant C, \quad \forall x \in[0,1], t \geqslant 0 \tag{2.25}
\end{equation*}
$$

Noting that $u>0$, we get from (2.2) and (2.7) that

$$
\begin{equation*}
\frac{B(x, s)}{B(x, t)} \leqslant \exp \left\{-\frac{R}{\beta u^{*}} \int_{s}^{t} \int_{0}^{L} \theta(x, s) d x d s\right\} \leqslant \exp \left\{-\frac{R \alpha_{1}(t-s)}{\beta u^{*}}\right\}, \quad t \geqslant s \geqslant 0 \tag{2.26}
\end{equation*}
$$

Similarly,
(2.27) $B(x, s) / B(x, t) \geqslant C e^{-C_{1}(t-s)}, \quad t \geqslant s \geqslant 0 ; \quad e^{C t} \geqslant B(x, t) \geqslant 1, \quad t \geqslant 0$
with C_{1} being independent of t, where we have used (2.2)-(2.3) and (2.7).
It is easy to see by (2.2) and (2.7) that

$$
\begin{aligned}
& \left|\theta^{1 / 2}(x, t)-\theta^{1 / 2}(a(t), t)\right| \leqslant \int_{0}^{L} \theta^{-1 / 2}(x, t)\left|\theta_{x}(x, t)\right| d x \leqslant \\
& \quad \leqslant\left(\int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x\right)^{1 / 2}\left(\int_{0}^{L} \theta u d x\right)^{1 / 2} \leqslant C\left[\int_{0}^{L}\left(\frac{\theta_{x}^{2}}{u \theta^{2}}\right)(x, t) d x\right]_{[0, L]}^{1 / 2} \max ^{1 / 2}(\cdot, t),
\end{aligned}
$$

which together with (2.8) gives

$$
\begin{align*}
& \frac{\alpha_{1}}{2}-C \max _{[0, L]} u(\cdot, t) \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x \leqslant \theta(x, t) \leqslant \tag{2.28}\\
& \leqslant 2 \alpha_{2}+C \max _{[0, L]} u(\cdot, t) \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x \quad \forall x \in[0, L], t \geqslant 0
\end{align*}
$$

Hence it follows from (2.19) and (2.25)-(2.28) that

$$
\begin{align*}
& u(x, t) \leqslant C+C \int_{0}^{t}\left(1+\max _{[0, L]} u(\cdot, s) \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x\right) e^{-(t-s) / C} d s \leqslant \tag{2.29}\\
& \leqslant C+C \int_{0}^{t} \max _{[0, L]} u(\cdot, s) \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x d s
\end{align*}
$$

Applying Gronwall's inequality to (2.29) and utilising (2.3), one gets $u(x, t) \leqslant \bar{u} \forall x \in$ $\in[0, L] \forall t \geqslant 0$ for some positive constant \bar{u} independent of t and x.

To complete the proof it remains to show the lower boundedness of u. To this end we make use of (2.3), (2.19), (2.25), (2.27), and (2.28) to infer

$$
\begin{align*}
& u(x, t) \geqslant \frac{R D(x, t)}{\beta} \int_{0}^{t} \frac{\theta(x, s) B(x, s)}{D(x, s) B(x, t)} d s \geqslant \tag{2.30}\\
& \geqslant C_{2} \int_{0}^{t}\left(\frac{\alpha_{1}}{2}-C \max _{[0, L]} u(\cdot, s) \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x\right) e^{-C_{1}(t-s)} d s \geqslant \\
& \geqslant \frac{C_{2} \alpha_{1}}{2 C_{1}}\left(1-e^{-C_{1} t}\right)-C e^{-C_{1} t / 2} \int_{0}^{t / 2} \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x d s-C \int_{t / 2}^{t} \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x d s \geqslant \frac{C_{2} \alpha_{1}}{4 C_{1}}>0
\end{align*}
$$

for all $t \geqslant T_{0}$ and some (large) $T_{0}>0$, where C_{2} is independent of t. Furthermore, from (2.19), (2.25), and (2.27) we get $u(x, t) \geqslant D(x, t) / B(x, t) \geqslant C^{-1} e^{-C t}$ for all $x \in[0, L]$ and $t \geqslant 0$. This combined with (2.30) shows that u is bounded from below. The proof is complete.

In the sequel we derive Sobolev-norm estimates of derivatives for u, v, θ by applying the energy method.

Recalling (2.10), using (1.9)-(1.10), we may write the equation (1.11) as follows

$$
\begin{equation*}
\left[c_{V} \theta+\frac{v^{2}}{2}\right]_{t}=\left[\kappa \frac{r^{2 n-2} \theta_{x}}{u}+\sigma r^{n-1} v-2(n-1) \mu r^{n-2} v^{2}\right]_{x} . \tag{2.31}
\end{equation*}
$$

Multiply (2.31) by $c_{v} \theta+v^{2} / 2$ and integrate. If we integrate by parts with respect to x,
and make use of (2.1)-(2.2), Cauchy-Schwarz's inequality, and (2.24), we obtain that
(2.32) $\frac{1}{2} \int_{0}^{L}\left[c_{V} \theta+\frac{v^{2}}{2}\right]^{2}(x, t) d x \leqslant$

$$
\leqslant C-\frac{c_{V} K}{2} \int_{0}^{t} \int_{0}^{L} \frac{r^{2 n-2} \theta_{x}^{2}}{u} d x d s+C \int_{0}^{t} \int_{0}^{L}\left(r^{2 n-2} v_{x}^{2} v^{2}+v^{4}+\theta^{2} v^{2}\right) d x d s
$$

To bound the term $\int_{0}^{t} \int_{0}^{L} r^{2 n-2} v_{x}^{2} v^{2} d x d s$, we multiply (1.10) by v^{3}, integrate over $[0, L] \times[0, t]$, integrate by parts with respect to x, and utilise (2.1)-(2.2), CauchySchwarz's inequality, and (2.24) to get

$$
\begin{equation*}
\frac{1}{4} \int_{0}^{L} v^{4}(x, t) d x \leqslant C-\frac{\beta}{\bar{u}} \int_{0}^{t} \int_{0}^{L} r^{2 n-2} v^{2} v_{x}^{2} d x d s+C \int_{0}^{t} \int_{0}^{L}\left(v^{4}+v^{2} \theta^{2}\right) d x d s \tag{2.33}
\end{equation*}
$$

We multiply (2.32) by $\beta /(2 \bar{u} C)$ and add the resulting inequality to (2.33) to obtain, with the help of (2.2)-(2.3) and (2.24), the result

$$
\begin{align*}
\int_{0}^{L}\left(\theta^{2}+v^{4}\right)(x, t) d x & +\int_{0}^{t} \int_{0}^{L}\left(v^{2} v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant \tag{2.34}\\
& \leqslant C+C \int_{0}^{t} \max _{[0, L]} v^{2}(\cdot, s) d s+C \int_{0}^{t} \max _{[0, L]} v^{2}(\cdot, s) \int_{0}^{L} \theta^{2}(x, s) d x d s .
\end{align*}
$$

On the other hand, by (2.2)-(2.3), (2.7) and (2.24),

$$
\begin{equation*}
\int_{0}^{t} \max _{[0, L]} v^{2}(\cdot, s) d s \leqslant \int_{0}^{t}\left(\int_{0}^{L}\left|v_{x}\right| d x\right)^{2} d s \leqslant \int_{0}^{t} \int_{0}^{L} \frac{v_{x}^{2}}{u \theta} d x \int_{0}^{L} u \theta d x d s \leqslant C, \quad t \geqslant 0 \tag{2.35}
\end{equation*}
$$

In view of (2.35), we apply Gronwall's inequality to (2.34) to obtain

Lemma 2.5.

$$
\begin{equation*}
\int_{0}^{L}\left(\theta^{2}+v^{4}\right)(x, t) d x+\int_{0}^{t} \int_{0}^{L}\left(v^{2} v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant C, \quad t \geqslant 0 \tag{2.36}
\end{equation*}
$$

Lemma 2.6.

$$
\begin{equation*}
\int_{0}^{L} u_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{L}\left(v_{x}^{2}+u_{x}^{2}+\theta u_{x}^{2}\right) d x d s \leqslant C, \quad t \geqslant 0 . \tag{2.37}
\end{equation*}
$$

Proof. - By virtue of (2.1)-(2.2) and (2.24),

$$
\begin{equation*}
\left(r^{n-1} v\right)_{x}^{2}=\left(r^{n-1} v_{x}+(n-1) r^{-1} u v\right)^{2} \geqslant r^{2 n-2} v_{x}^{2} / 2-C v^{2} \geqslant a^{2 n-2} v_{x}^{2} / 2-C v^{2} \tag{2.38}
\end{equation*}
$$

So multiplying (1.10) by v and integrating, we integrate by parts with respect to x, use
Cauchy-Schwarz's inequality, (2.7), (2.24), and (2.35)-(2.36), to deduce

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{L} v^{2}(x, t) d x+\frac{\beta a^{2 n-2}}{2 \bar{u}} \int_{0}^{t} \int_{0}^{L} v_{x}^{2} d x d s \leqslant \tag{2.39}\\
& \leqslant C+C \delta^{-1} \int_{0}^{t} \int_{0}^{L}\left(\theta_{x}^{2}+v^{2}+\theta v^{2}\right) d x d s+\delta \int_{0}^{t} \int_{0}^{L} \theta u_{x}^{2} d x d s \leqslant \\
& \leqslant C \delta^{-1}+\delta \int_{0}^{t} \int_{0}^{L} \theta u_{x}^{2} d x d s, \quad(0<\delta<1 \text { constant })
\end{align*}
$$

With the help of (1.9), we may write (1.10) in the form $\beta\left[u_{x} / u\right]_{t}=r^{-(n-1)} v_{t}+$ $+R\left[\theta_{x} / u-\theta u_{x} / u^{2}\right]$. Multiply this by u_{x} / u and integrate. After utilising (2.3), (2.24), and (2.36), we infer

$$
\begin{align*}
\frac{\beta}{2} \int_{0}^{L}\left[\frac{u_{x}}{u}\right]^{2}(x, t) d x & +\frac{R}{2} \int_{0}^{t} \int_{0}^{L} \frac{\theta u_{x}^{2}}{u^{3}} d x d s \leqslant \tag{2.40}\\
& \leqslant C+\int_{0}^{t} \int_{0}^{L} r^{-(n-1)} v_{t} \frac{u_{x}}{u} d x d s+C \int_{0}^{t} \int_{0}^{L} \frac{\theta_{x}^{2}}{u}\left(1+\frac{1}{\theta^{2}}\right) d x d s
\end{align*}
$$

Noting that $\left[u_{x} / u\right]_{t}=\left[u_{t} / u\right]_{x}$, the second term on the right hand side of (2.40) can be estimated, with the help of integration by parts, and (1.9), (2.1)-(2.3), (2.24) and (2.35), as follows:

$$
\begin{align*}
& \int_{0}^{t} \int_{0}^{L} r^{-(n-1)} v_{t} \frac{u_{x}}{u} d x d s=\left.\int_{0}^{L} r^{-(n-1)} v \frac{u_{x}}{u} d x\right|_{0} ^{t}+ \tag{2.41}\\
& \quad+(n-1) \int_{0}^{t} \int_{0}^{L} r^{-n} v^{2} \frac{u_{x}}{u} d x d s-\int_{0}^{t} \int_{0}^{L} r^{-(n-1)} v\left[\frac{u_{t}}{u}\right]_{x} d x d s \leqslant \\
& \quad \leqslant C+\frac{\beta}{4} \int_{0}^{L}\left[\frac{u_{x}}{u}\right]^{2}(x, t) d x+C \int_{0}^{t} \max _{[0, L]} v^{2} \int_{0}^{L} u_{x}^{2} d x d s+\frac{2}{\underline{u}} \int_{0}^{t} \int_{0}^{L} v_{x}^{2} d x d s .
\end{align*}
$$

Substituting (2.41) into (2.40), taking (2.2)-(2.3), (2.24), and (2.36) into account, one gets
(2.42)

$$
\begin{aligned}
\frac{\beta}{4 \bar{u}^{2}} \int_{0}^{L} u_{x}^{2}(x, t) d x+\frac{R}{2 \bar{u}^{3}} \int_{0}^{t} \int_{0}^{L} \theta & u_{x}^{2} d x d s \leqslant \\
& \leqslant C+C \int_{0}^{t} \max _{[0, L]} v^{2} \int_{0}^{L} u_{x}^{2} d x d s+\frac{2}{\underline{u}_{0}} \int_{0}^{t} \int_{0}^{L} v_{x}^{2} d x d s
\end{aligned}
$$

Multiplying (2.42) by $\underline{u} \beta a^{2 n-2} /(8 \bar{u})$, and adding the resulting inequality to (2.39), we obtain for an appropriately small but fixed $\delta \in(0,1)$ that

$$
\int_{0}^{L} u_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{L}\left(v_{x}^{2}+\theta u_{x}^{2}\right) d x d s \leqslant C+C \int_{0}^{t} \max _{[0, L]} v^{2} \int_{0}^{L} u_{x}^{2} d x d s, \quad t \geqslant 0
$$

In view of (2.35), we apply Gronwall's inequality to the above inequality to obtain

$$
\begin{equation*}
\int_{0}^{L} u_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{L}\left(v_{x}^{2}+\theta u_{x}^{2}\right) d x d s \leqslant C, \quad \forall t \geqslant 0 \tag{2.43}
\end{equation*}
$$

Finally, it follows from (2.24), (2.28), (2.43), and (2.3) that

$$
\frac{\alpha_{1}}{2} \int_{0}^{t} \int_{0}^{L} u_{x}^{2} d x d s \leqslant \int_{0}^{t} \int_{0}^{L} \theta u_{x}^{2} d x d s+C \int_{0}^{t} \int_{0}^{L} \frac{\theta_{x}^{2}}{u \theta^{2}} d x \int_{0}^{L} u_{x}^{2} d x d s \leqslant C, \quad t \geqslant 0
$$

from which and (2.43), (2.37) follows. This completes the proof.
In the following lemma we bound v_{t} in the $L^{2}((0, L) \times(0, \infty))$-norm.
Lemma 2.7.

$$
\begin{equation*}
\int_{0}^{L} v_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{L} v_{t}^{2} d x d s \leqslant C, \quad \forall t \geqslant 0 \tag{2.44}
\end{equation*}
$$

$$
\begin{equation*}
|v(x, t)| \leqslant C, \quad \forall x \in[0, L], t \geqslant 0 \tag{2.45}
\end{equation*}
$$

Proof. - We first note that by (2.8) and Cauchy-Schwarz's inequality,

$$
\begin{align*}
\max _{[0, L]} \theta(\cdot, t) \leqslant C+C \max _{[0, L]} \mid \theta(\cdot, t)- & \theta(a(t), t) \mid \leqslant \tag{2.46}\\
& \leqslant C+C \int_{0}^{L}\left|\theta_{x}\right| d x \leqslant C+C\left\|\theta_{x}(t)\right\|, \quad t \geqslant 0
\end{align*}
$$

Multiply (1.10) by v_{t} and integrate over [$\left.0, L\right] \times[0, t]$. Integrating by parts, using (2.1)-(2.3), (2.24), (2.35)-(2.37), and (2.46), taking into account that ($\left.r^{n-1} v_{t}\right)_{x}=$
$=\left(r^{n-1} v\right)_{x t}-(n-1)\left(r^{n-2} v^{2}\right)_{x}$ and $\left|\left(r^{n-2} v^{2}\right)_{x}\right| \leqslant C\left\{v^{2}+\left(r^{n-1} v\right)_{x}^{2}\right\}$, we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{t}\left\|v_{i}\right\|^{2} d s+\frac{\beta}{2 \bar{u}}\left\|\left(r^{n-1} v\right)_{x}(t)\right\|^{2} \leqslant \tag{2.47}\\
& \leqslant C+C \int_{0}^{t} \int_{0}^{L}\left\{\frac{\left|\left(r^{n-1} v\right)_{x}\right|}{u}\left(v^{2}+\left(r^{n-1} v\right)_{x}^{2}\right)+\theta_{x}^{2}+\theta^{2} u_{x}^{2}\right\} d x d s \leqslant \\
& \leqslant C+C \int_{0}^{t}\left\{\max _{[0, L]}\left|\frac{\left(r^{n-1} v\right)_{x}}{u}\right|+\max _{[0, L]} v^{2}\right\}\left\|\left(r^{n-1} v\right)_{x}\right\|^{2} d s
\end{align*}
$$

Here $\max \left|\left(r^{n-1} v\right)_{x} / u\right|$ can be bounded as follows, using (2.10), Sobolev's imbedding theorem ($H^{1} \hookrightarrow L^{\infty}$), and (2.24), (1.10), (2.1)-(2.2), and (2.46)

$$
\begin{align*}
\beta\left|\frac{\left(r^{n-1} v\right)_{x}}{u}\right| & (x, t) \leqslant|\sigma|+R \frac{\theta}{u} \leqslant C\left(1+\|\sigma\|+\left\|\sigma_{x}\right\|+\max _{[0, L]} \theta\right) \leqslant \tag{2.48}\\
& \leqslant C\left(1+\max _{[0, L]} v^{2}+\left\|v_{x}\right\|^{2}+\left\|\theta_{x}\right\|^{2}+\left\|v_{i}\right\|\right), \quad \forall x \in[0, L], t \geqslant 0 .
\end{align*}
$$

Inserting (2.48) into (2.47) and recalling that $\left|\left(r^{n-1} v\right)_{x}^{2}\right| \leqslant C\left(v^{2}+v_{x}^{2}\right)$, we get from (2.24), (2.35), and (2.37) that

$$
\begin{align*}
& \frac{1}{4} \int_{0}^{t}\left\|v_{t}\right\|^{2} d s+\frac{\beta}{2 \bar{u}}\left\|\left(r^{n-1} v\right)_{x}(t)\right\|^{2} \leqslant \tag{2.49}\\
& \leqslant C+C \int_{0}^{t}\left(\max _{[0, L]} v^{2}+\left\|v_{x}\right\|^{2}+\left\|\theta_{x}\right\|^{2}\right)\left\|\left(r^{n-1} v\right)_{x}\right\|^{2} d s
\end{align*}
$$

Applying Gronwall's inequality to (2.49) and taking account of (2.35)-(2.37), we conclude that $\int_{0}^{t}\left\|v_{t}\right\|^{2} d s+\left\|\left(r^{n-1} v\right)_{x}(t)\right\|^{2} \leqslant C$ for $t \geqslant 0$, which combined with (2.3) and (2.37)-(2.38) yields (2.44). Finally, (2.45) follows from Sobolev's inequality, (2.3), and (2.44). The proof is complete.

As a result of Lemma 2.7 we have

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{L}\left(u_{x t}^{2}+v_{x x}^{2}\right)(x, s) d x d s+\int_{0}^{t} \max _{[0, L]} v_{x}^{2}(\cdot, s) d s \leqslant C, \quad t \geqslant 0 . \tag{2.50}
\end{equation*}
$$

In fact, by virtue of Sobolev's imbedding theorem ($W^{1,1} \hookrightarrow L^{\infty}$), max $v_{x}^{2}(\cdot, t) \leqslant$ $\leqslant C \varepsilon^{-1}\left\|v_{x x}(t)\right\|^{2}+\varepsilon\left\|v_{x x}(t)\right\|^{2}(0<\varepsilon<1)$, we get from (2.1)-(2.2), (2.24), and (2.35)-(2.37),
(1.10), (2.46), and (2.44) that

$$
\begin{aligned}
& \int_{0}^{t} \int_{0}^{L}\left(u_{x t}^{2}+v_{x x}^{2}\right) d x d s \leqslant C \int_{0}^{t} \int_{0}^{L}\left[\left(r^{n-1} v\right)_{x x}^{2}+v_{x}^{2}+u_{x}^{2} v^{2}+v^{2}\right] d x d s \leqslant \\
& \quad \leqslant C+C \int_{0}^{t} \int_{0}^{L}\left[\frac{\left(r^{n-1} v\right)_{x}}{u}\right]_{x}^{2} d x d s+C \int_{0}^{t} \int_{0}^{L} u_{x}^{2} v_{x}^{2} d x d s \leqslant \\
& \quad \leqslant C+C \int_{0}^{t} \int_{0}^{L} v_{t}^{2} d x d s+C \int_{0}^{t} \max _{[0, L]} \theta^{2} \int_{0}^{L} u_{x}^{2} d x d s+C \int_{0}^{t} \max _{[0, L]} v_{x}^{2} d s \leqslant C+\frac{1}{2} \int_{0}^{t}\left\|v_{x x x}\right\|^{2} d s,
\end{aligned}
$$

which implies (2.50).
We multiply (1.11) by θ_{t} and integrate, we obtain by the same arguments as used in Lemma 2.7 and (2.50) that

$$
\begin{equation*}
\int_{0}^{L} \theta_{x}^{2}(x, t) d x+\max _{[0, L]}|\theta(\cdot, t)|+\int_{0}^{t} \int_{0}^{L}\left(\theta_{t}^{2}+\theta_{x x}^{2}+\max _{[0, L]} \theta_{x}^{2}\right)(s) d s \leqslant C, \quad \forall t \geqslant 0 \tag{2.51}
\end{equation*}
$$

Now we are able to prove Theorem 2.1. By (2.37), (2.44), (2.50)-(2.51), and the identities

$$
\int_{0}^{L} v_{x} v_{x t} d x=-\int_{0}^{L} v_{x x} v_{t} d x, \quad \int_{0}^{L} \theta_{x} \theta_{x t} d x=-\int_{0}^{L} \theta_{x x} \theta_{t} d x
$$

we see that

$$
\int_{0}^{\infty}\left\{\left|\frac{d}{d t}\left\|u_{x}(t)\right\|^{2}\right|+\left|\frac{d}{d t}\left\|v_{x}(t)\right\|^{2}\right|+\left|\frac{d}{d t}\left\|\theta_{x}(t)\right\|^{2}\right|\right\} d t \leqslant C
$$

which together with (2.36)-(2.37) implies

$$
\begin{equation*}
\left\|u_{x}(t)\right\|^{2}+\left\|v_{x}(t)\right\|^{2}+\left\|\theta_{x}(t)\right\|^{2} \rightarrow 0, \quad \text { as } t \rightarrow \infty \tag{2.52}
\end{equation*}
$$

From (2.16) and Poincaré's inequality we get $\left\|u(t)-u^{*}\right\|_{H^{1}}+\|v(t)\|_{H^{1}} \rightarrow 0$ as $t \rightarrow \infty$. Recalling (1.13) and the definition of θ^{*}, we integrate (2.31) over $[0, L] \times[0, t]$ to infer

$$
\int_{0}^{L}\left\{\left(c_{V} \theta+v^{2} / 2\right)(x, t)-c_{V} \theta^{*}\right\} d x=0, \quad t \geqslant 0
$$

from which it follows with the help of Poincarés inequality and (2.45) that as $t \rightarrow \infty$

$$
\left\|\theta(t)-\theta^{*}\right\| \leqslant C\left\|c_{V} \theta(t)+v^{2}(t) / 2-c_{V} \theta^{*}\right\|+C\left\|v^{2}(t)\right\| \leqslant C\left(\left\|\theta_{x}\right\|+\|v(t)\|_{H^{1}}\right) \rightarrow 0
$$

To show $r(x, t) \rightarrow\left(a^{n}+n u^{*} x\right)^{1 / n}$ as $t \rightarrow \infty$ we note that by (2.1) and (1.14),

$$
\begin{equation*}
r^{n}(x, t)=r^{n}(0, t)+n \int_{0}^{x} u(y, t) d y=\left[r^{*}(x)\right]^{n}+n \int_{0}^{x}\left(u(y, t)-u^{*}\right) d y \tag{2.53}
\end{equation*}
$$

where $r^{*}(x)$ is defined by (1.17). It follows from (2.2) and (2.53) that $\left\|r(t)-r^{*}\right\| \leqslant$ $\leqslant C\left\|u(t)-u^{*}\right\|, t \geqslant 0$. Therefore, differentiating (2.53) with respect to x and recalling (2.2), we find that $\left\|r(t)-r^{*}\right\|_{H^{2}} \leqslant C\left\|u(t)-u^{*}\right\|_{H^{1}} \rightarrow 0$ as $t \rightarrow \infty$. We have known that for large $t\left\{u(x, t)-u^{*}, v(x, t), \theta(x, t)-\theta^{*}\right\}$ and $r(x, t)-r^{*}(x)$ become small in the $H^{1}-$ and H^{2}-norms respectively, thus we can apply arguments similar to those used in [26, Theorem 2.2] to obtain (1.19) in Theroem 1.1 (the exponential decay). This completes the proof of Theorem 1.1 (i).

3. - Proof of Theorem 1.1-(ii).

We use and modify an idea of Hoff [7] for barotropic fluids to prove Theorem 1.1 (ii) for the system (1.9)-(1.12) in the case of $n=1$. Let $e_{0} \leqslant 1$ be satisfied in this section. In what follows C or \widetilde{C} denotes a generic constant ($\geqslant 1$) which may depend at most on $\bar{u}, \bar{\theta}$, β, R, c_{V}, κ, and γ

Define $\phi(t):=\min \{1, t\}$. We first assume that u, θ satisfy

$$
\begin{equation*}
|u(x, t)-\bar{u}|, \quad \phi(t)|\theta(x, t)-\bar{\theta}| \leqslant \min \{\bar{u}, \bar{\theta}\} / 2 \quad \text { for all } x \in \mathbb{R}, t \geqslant 0 \tag{3.1}
\end{equation*}
$$

In the sequel we derive a priori estimates for u, v, θ under (3.1).
Following the same procedure as in the proof of Lemma 2.1 (recalling $n=1$), applying (3.1) and the mean value theorem, we can show

$$
\begin{align*}
\int_{\mathbb{R}} U(x, t) d x+\bar{\theta} \int_{1 \mathrm{R}}^{t} \int\left(\beta \frac{v_{x}^{2}}{u \theta}\right. & \left.+\kappa \frac{\theta_{x}^{2}}{u \theta^{2}}\right) d x d s=\int_{\mathbb{R}} U(x, 1) d x \leqslant \tag{3.2}\\
& \leqslant C \int_{\mathbb{R}}\left\{v^{2}+(u-\bar{u})^{2}+(\theta-\bar{\theta})^{2}\right\}(x, 1) d x, \quad \forall t \geqslant 1
\end{align*}
$$

where

$$
\begin{equation*}
U(x, t):=\left\{\frac{v^{2}}{2}+R \bar{\theta}\left(\frac{u}{\bar{u}}-\log \frac{u}{\bar{u}}-1\right)+c_{V}\left(\theta-\bar{\theta} \log \frac{\theta}{\bar{\theta}}-\bar{\theta}\right)\right\}(x, t) \tag{3.3}
\end{equation*}
$$

Now we estimate $\{u-\bar{u}, v, \theta-\bar{\theta}\}$ in a weighted L^{2}-norm for $0 \leqslant t \leqslant 1$. For simplicity we denote $\psi(x):=\left(1+x^{2}\right)^{\gamma}$ with γ being the same as in Theorem 1.1. Multiply (1.10) by $2 \psi v$ (recalling $n=1$) and integrate over $\mathbb{R} \times(0, t)(t \in[0,1])$. We integrate
by parts to arrive at

$$
\begin{align*}
& \int_{\mathbb{R}} \psi v^{2}(x, t) d x+\int_{0}^{t} \int_{\mathbb{R}} \psi v_{x}^{2} d x d s \leqslant \tag{3.4}\\
& \quad \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}} \psi\left((u-\bar{u})^{2}+v^{2}+(\theta-\bar{\theta})^{2}\right) d x d s, \quad t \in[0,1]
\end{align*}
$$

Multiplying (1.9) by $2 \psi(u-\bar{u})$ and integrating, we easily see that

$$
\int_{\mathbb{R}} \psi(u(x, t)-\bar{u})^{2} d x \leqslant e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}} \psi(u-\bar{u})^{2} d x d s+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} \psi v_{x}^{2} d x d s
$$

which together with (3.4) gives

$$
\begin{align*}
& \int_{\mathbb{R}} \psi\left((u-\bar{u})^{2}+v^{2}\right)(x, t) d x+\int_{0}^{t} \int_{\mathbb{R}} \psi v_{x}^{2} d x d s \leqslant \tag{3.5}\\
& \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}} \psi\left((u-\bar{u})^{2}+v^{2}+(\theta-\bar{\theta})^{2}\right) d x d s
\end{align*}
$$

for all $t \in[0,1]$.
Let us denote $h(t):=\sup _{0 \leqslant s \leqslant t} \int_{\mathrm{R}} \psi\left\{v^{2}+(\theta-\bar{\theta})^{2}\right\}(x, s) d x$. Utilising (3.1), we obtain by the same arguments as used for (2.31)-(2.23) that

$$
\begin{equation*}
\int_{\mathrm{R}} \psi\left((\theta-\bar{\theta})^{2}+v^{4}\right)(x, t) d x+\int_{0}^{t} \int_{\mathrm{R}} \psi\left(v^{2} v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant \tag{3.6}
\end{equation*}
$$

$$
\leqslant C e_{0}^{2}+C h(t) \int_{0}^{t} \max _{\mathbb{R}}(\theta-\bar{\theta})^{2}(\cdot, s) d s+\int_{0}^{t} \int_{\mathbb{R}} \psi\left((\theta-\bar{\theta})^{2}+v^{4}+v^{2}\right) d x d s \leqslant
$$

$$
\leqslant C\left(e_{0}^{2}+h^{3}(t)\right)+C \int_{0}^{t} \int_{\mathbb{R}} \psi\left((\theta-\bar{\theta})^{2}+v^{4}+v^{2}\right) d x d s+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}} \psi \theta_{x}^{2} d x d s, \quad t \in[0,1]
$$

where we have also used the inequality $\|\cdot\|_{L^{\infty}} \leqslant C\|\cdot\|\left\|\partial_{x} \cdot\right\|$ for $\max (\theta-\bar{\theta})^{2}(\cdot, s)$.
Applying the generalized Gronwall inequality to (3.5) and (3.6), we find that for all $t \in[0,1]$

$$
\begin{align*}
& \int_{\mathrm{R}} \psi\left((u-\bar{u})^{2}+v^{2}+v^{4}+(\theta-\bar{\theta})^{2}\right)(x, t) d x+ \tag{3.7}\\
& \\
& \quad+\int_{0 \mathbb{R}}^{t} \int_{\mathrm{R}} \psi\left(v_{x}^{2}+v^{2} v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant C\left(e_{0}^{2}+h^{3}(t)\right)
\end{align*}
$$

By the definition of $h(t)$ and (3.7) we have $h(t) \leqslant C\left(e_{0}^{2}+h^{3}(t)\right)$ for all $t \in[0,1]$, which gives $h(t) \leqslant 2 C e_{0}^{2} \leqslant e_{0}$ for all $t \in[0,1]$ provided $e_{0} \leqslant 1 /(2 C)$. Therefore, in view of (3.7) we conclude

$$
\begin{align*}
& \int_{\mathbb{R}} \psi\left((u-\bar{u})^{2}+v^{2}+v^{4}+(\theta-\bar{\theta})^{2}\right)(x, t) d x+ \tag{3.8}\\
&+\int_{0}^{t} \int_{\mathrm{R}} \psi\left(v_{x}^{2}+v^{2} v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant C e_{0}^{2}, \quad t \in[0,1]
\end{align*}
$$

provided $e_{0} \leqslant 1 /(2 C)$. Using (3.1) and the mean value theorem, we get from (3.8) and (3.2) that

$$
\begin{equation*}
\int_{\mathbf{R}}\left\{v^{2}+(u-\bar{u})^{2}+(\theta-\bar{\theta})^{2}\right\}(x, t) d x+\int_{0}^{t} \int_{\mathbb{R}}\left(v_{x}^{2}+\theta_{x}^{2}\right) d x d s \leqslant C e_{0}^{2}, \quad \forall t \geqslant 0 \tag{3.9}
\end{equation*}
$$

provided $e_{0} \leqslant 1 /(2 C)$.
Next we derive Sobolev-norm estimates for u, v, θ. We define

$$
\begin{align*}
& A(t):=\sup _{0 \leqslant s \leqslant t}\left\{\|u-\bar{u}\|_{L^{\infty}}^{2}+\phi^{2}\left\|v_{x}\right\|^{2}+\phi^{4}\left\|\theta_{x}\right\|^{2}\right\}(s)+ \tag{3.10}\\
&+\int_{0}^{t}\left\{\phi^{2}\left\|v_{t}\right\|^{2}+\phi^{4}\left\|\theta_{t}\right\|^{2}+\left\|v_{x}\right\|^{2}\right\}(s) d s .
\end{align*}
$$

Multiply (1.10) by $\phi^{2} v_{t}$ and integrate. We integrate by parts, utilise (3.1), (3.9), and Cauchy-Schwarz's inequality to infer

$$
\begin{aligned}
& \phi^{2} \int_{\mathbb{R}} v_{x}^{2} d x+\int_{0}^{t} \int_{\mathbb{R}} \phi^{2} v_{t}^{2} d x d s \leqslant \\
& \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}} \phi^{2}\left|v_{x}\right|^{3} d x d s+C\left|\int_{0}^{t} \int_{\mathbb{R}} \phi^{2}\left[\left(\frac{1}{u}-\frac{1}{\bar{u}}\right) \theta\right]_{x} v_{t} d x d s\right| \leqslant \\
& \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}} \phi^{4} v_{x}^{4} d x d s+C \int_{\mathbb{R}}|u-\bar{u}| \phi\left|v_{x}\right| d x+ \\
&+C \int_{0}^{1} \int_{\mathbb{R}} \phi|u-\bar{u}| \theta\left|v_{x}\right| d x d s+C\left|\int_{0}^{t} \int_{\mathbb{R}} \phi^{2}\left[\left(\frac{1}{u}-\frac{1}{\bar{u}}\right) \theta\right]_{t} v_{x} d x d s\right| \leqslant \\
& \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}}^{t} \phi^{4} v_{x}^{4} d x d s+C \int_{0}^{t} \int_{\mathbb{R}}|u-\bar{u}|^{2} \phi^{4} \theta_{t}^{2} d x d s+\frac{1}{2} \phi^{2} \int_{\mathbb{R}} v_{x}^{2} d x,
\end{aligned}
$$

whence

$$
\begin{equation*}
\phi^{2} \int_{\mathbb{R}} v_{x}^{2} d x+\int_{0}^{t} \int_{\mathrm{R}} \phi^{2} v_{t}^{2} d x d s \leqslant C e_{0}^{2}+C \int_{0 \mathrm{R}}^{t} \int_{\mathrm{R}}^{4} \phi_{x}^{4} d x d s+A^{2}(t), \quad t \geqslant 0 \tag{3.11}
\end{equation*}
$$

where the second term on the right-hand side of (3.11) can be bounded as follows, using (3.1), (3.9), and $\|\cdot\|_{L^{\infty}}^{2} \leqslant C\|\cdot\|_{H^{1}}^{2}$, (1.10) and (3.2)

$$
\begin{align*}
& \int_{0}^{t} \int_{\mathbb{R}} \phi^{4} v_{x}^{4} d x d s \leqslant C \int_{0}^{t} \phi^{4} \max _{\mathbb{R}} v_{x}^{2} \int_{\mathbb{R}} v_{x}^{2} d x d s \leqslant \tag{3.12}\\
& \quad \leqslant C e_{0}^{2}+C \int_{0}^{t} \phi^{4} \max _{\mathbb{R}}\left(\beta \frac{v_{x}}{u}-R \frac{\theta}{u}+R \frac{\bar{\theta}}{\bar{u}}\right)_{\mathbb{R}}^{2} \int_{x} v_{x}^{2} d x d s \leqslant \\
& \quad \leqslant C e_{0}^{2}+C \int_{0}^{t} \phi^{4}\left(\left\|v_{x}\right\|^{2}+\|u-\bar{u}\|^{2}+\|\theta-\bar{\theta}\|^{2}+\left\|v_{t}\right\|^{2}\right)\left\|v_{x}\right\|^{2} d s \leqslant C\left(e_{0}^{2}+A^{2}(t)\right)
\end{align*}
$$

Inserting (3.12) into (3.11), one obtains

$$
\begin{equation*}
\phi^{2} \int_{\mathbb{R}} v_{x}^{2} d x+\int_{0}^{t} \int_{\mathbb{R}} \phi^{2} v_{t}^{2} d x d s \leqslant C\left(e_{0}^{2}+A^{2}(t)\right), \quad \forall t \geqslant 0 . \tag{3.13}
\end{equation*}
$$

Multiplying (1.11) by $\phi^{4} \theta_{t}$ and integrating, following the same arguments as used for (3.11)-(3.13), we deduce that

$$
\begin{align*}
& \phi^{4}(t)\left\|\theta_{x}(t)\right\|^{2}+\int_{0}^{t}\left\|\theta_{t}\right\|^{2} \phi^{4} d s \leqslant C e_{0}^{2}+C \int_{0}^{t} \int_{\mathbb{R}}\left(\phi^{4} v_{x}^{4}+\phi^{4}\left|v_{x}\right| \theta_{x}^{2}\right) d x d s \leqslant \tag{3.14}\\
& \leqslant C\left(e_{0}^{2}+A^{2}(t)\right)+C \int_{0}^{t} \phi^{8} \max _{\mathbb{R}} v_{x}^{2} \int_{\mathbb{R}} \theta_{x}^{2} d x d s \leqslant C\left(e_{0}^{2}+A^{2}(t)\right), \quad \forall t \geqslant 0 .
\end{align*}
$$

We are now able to derive pointwise bounds for $u-\bar{u}$. We may write (1.10) in the form (recalling $n=1$): $v_{t}=\beta[\log (u / \bar{u})]_{t x}-R[\theta / u-\bar{\theta} / \bar{u}]_{x}$. Integrating this over $(-\infty, x) \times(0, t)(t \in[0,1])$ and then taking the absolute value, making use of (3.1) and (3.8)-(3.9), we see that

$$
\begin{align*}
& |u-\bar{u}| \leqslant C\left|\log \frac{u}{\bar{u}}\right| \leqslant \tag{3.15}\\
\leqslant & C\left|u_{0}-\bar{u}\right|+C \int_{-\infty}^{x}\left(|v|+\left|v_{0}\right|\right) d y+C \int_{0}^{t}(|u-\bar{u}|+|q-\bar{\theta}|) d s \leqslant
\end{align*}
$$

$$
\begin{aligned}
& \leqslant C e_{0}+\left\|\psi^{1 / 2} v\right\|\left\|\psi^{-1 / 2}\right\|+C \int_{0}^{t}|u-\bar{u}| d s+C \int_{0}^{t}\|\theta-\bar{\theta}\|_{H^{1}} d s \leqslant \\
& \leqslant C e_{0}+C \int_{0}^{t}|u-\bar{u}| d s+C\left(\int_{0}^{t}\|\theta-\bar{\theta}\|_{H^{1}}^{2} d s\right)^{1 / 2} \leqslant C e_{0}+C \int_{0}^{t}|u-\bar{u}| d s, \quad t \in[0,1] .
\end{aligned}
$$

An application of Gronwall's inequality to (3.15) yields

$$
\begin{equation*}
|u(x, t)-\bar{u}| \leqslant C e_{0}, \quad \forall x \in \mathbb{R}, t \in[0,1] \tag{3.16}
\end{equation*}
$$

To estimate $u-\bar{u}$ for $t \geqslant 1$ we denote $F:=\beta\left[v_{x} / u\right]-R[u / \theta]+R[\bar{u} / \bar{\theta}]$ and find that

$$
\beta\left[\frac{1}{u}-\frac{1}{\bar{u}}\right]_{t}+\frac{R \theta}{u}\left[\frac{1}{u}-\frac{1}{\bar{u}}\right]=-\frac{F}{u}-\frac{R(\theta-\bar{\theta})}{u \bar{u}}
$$

Multiplying this by $1 / u-1 / \bar{u}$, using (3.1), (3.10), and (3.9), we get

$$
\begin{aligned}
& {\left[\frac{1}{u}-\frac{1}{\bar{u}}\right]_{t}^{2}+C^{-1}\left[\frac{1}{u}-\frac{1}{\bar{u}}\right]^{2} \leqslant C\left(\|F\|_{L^{\infty}}^{2}+\|\theta-\bar{\theta}\|_{L^{\infty}}^{2}\right) \leqslant } \\
& \leqslant C\left(\|F\|^{2}+\left\|F_{x}\right\|^{2}+\|\theta-\bar{\theta}\|_{H^{1}}^{2}\right) \leqslant C e_{0}^{2}+\left\|\left(v_{x}, v_{t}, \theta_{x}\right)\right\|^{2}, \quad t \geqslant 1,
\end{aligned}
$$

which together with (3.9) and (3.13) gives

$$
\begin{align*}
|u(x, t)-\bar{u}|^{2} \leqslant C e_{0}^{2} & +C|u(x, 1)-\bar{u}|^{2}+ \tag{3.17}\\
& +C \int_{1}^{t} \|\left(v_{x}, v_{t}, \theta_{x} \|^{2} d s \leqslant C\left(e_{0}^{2}+A^{2}(t)\right), \quad \forall x \in \mathbb{R}, t \geqslant 1\right.
\end{align*}
$$

Combining (3.9), (3.13)-(3.14), and (3.16)-(3.17), we obtain $A(t) \leqslant \tilde{c}\left\{e_{0}^{2}+A^{2}(t)\right\}$ for $t \geqslant$ $\geqslant 0$, where $\tilde{c} \geqslant 1$ depends at most on $\bar{u}, \bar{\theta}, \beta, R, c_{V}, \kappa$, and γ. Hence we have

$$
\begin{equation*}
A(t) \leqslant 2 \tilde{c} e_{0}^{2}, \quad \text { for all } t \geqslant 0 \tag{3.18}
\end{equation*}
$$

provided $e_{0}<\min \{1 /(2 \tilde{c}), 1 /(2 C)\}$.
From (3.18), (3.10), and (3.9) we conclude that

$$
\begin{equation*}
|u(x, t)-\bar{u}|+\phi(t)|\theta(x, t)-\bar{\theta}| \leqslant A^{1 / 2}(t)+C\|\theta-\bar{\theta}\|^{1 / 2} \phi\left\|\theta_{x}\right\|^{1 / 2} \leqslant \tag{3.19}
\end{equation*}
$$

$$
\leqslant A^{1 / 2}(t)+C e_{0} A^{1 / 4}(t) \leqslant \sqrt{2 \tilde{c}} e_{0}\left(1+\widetilde{C} \sqrt{e_{0}}\right)<\min \{\bar{u}, \bar{\theta}\} / 3, \quad \forall x \in \mathbb{R}, t \geqslant 0
$$ provided $e_{0}<\min \left\{\bar{u} /(6 \sqrt{\tilde{c}}), \bar{\theta} /(6 \sqrt{\tilde{c}}), 1 /(3 \widetilde{C})^{2}, 1 /(2 \tilde{c}), 1 /(2 C)\right\}=: \varepsilon$.

For the initial data satisfying $e_{0}<\varepsilon$ we thus have proved that under (3.1) the estimate (3.19) holds. Since (3.19) is valid for $t=0$, by virtue of the continuity of u and θ, (3.19) remains valid for all $t \geqslant 0$. Hence (3.9), (3.18) hold for all $t \geqslant 0$. We now multiply (1.10) by u_{x} / u and integrate over $R \times(1, t)$. We make use of (1.9), (3.19), (3.9), and
(3.18) to deduce (cf. (2.40))

$$
\begin{equation*}
\int_{\mathbb{R}} u_{x}^{2}(x, t) d x+\int_{1}^{t}\left\|u_{x}\right\|^{2} d s \leqslant C\left(1+\left\|u_{x}(1)\right\|^{2}\right)<\infty, \quad t \geqslant 1 \tag{3.20}
\end{equation*}
$$

Similarly, if we multiply (1.10) resp. (1.11) by $v_{x x}$ resp. by $\theta_{x x}$ and integrate over $\mathbb{R} \times$ $\times(1, t)$, utilise (3.20), we have

$$
\begin{equation*}
\int_{1}^{t}\left(\left\|v_{x x}\right\|^{2}+\left\|\theta_{x x}\right\|^{2}\right) d s \leqslant C\left(1+\left\|u_{x}(1)\right\|^{2}\right)<\infty, \quad t \geqslant 1 \tag{3.21}
\end{equation*}
$$

From (3.18) and (3.20)-(3.21) we get by the same argument as used for (2.52) that $\left\|u_{x}(t)\right\|+\left\|v_{x}(t)\right\|+\left\|\theta_{x}(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$. From this, (3.9), and $\|\cdot\|\left\|_{L^{\infty}} \leqslant C\right\| \cdot\left\|\left\|\partial_{x} \cdot\right\|\right.$, (1.20) follows immediately. The proof is complete.

REFERENCES

[1] S. N. Antontsev - A. V. Kazhikhov - V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Amsterdam, New York (1990).
[2] K. Deckelnick, Decay estimates for the compressible Navier-Stokes equations in unbounded domains, Math. Z., 209 (1992), pp.115-130.
[3] K. Deckelnick, L^{2} Decay for the compressible Navier-Stokes equations in unbounded domains, Comm. PDE, 18 (1993), pp. 1445-1476.
[4] H.Fujita-Yashima - R. Benabidallah, Unicitè de la solution de l'équation monodimensionnelle ou à symétrie sphérique d'un gaz visqueux et calorifère, Rend. Circolo Mat. Palermo, Ser. II, XLII (1993), pp. 195-218.
[5] H. Fujita-Yashima - R. Benabidallah, Equation à symétrie sphérique d'un gaz visqueux et calorifère avec la surface libre, Ann. Mat. Pura Appl., CLXVIII (1995), pp. 75-117.
[6] D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Diff. Equations, 95 (1992), pp. 33-74.
[7] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Diff. Equations, 120 (1995), pp. 215-254.
[8] L. Hsiao -T. Luo, Large-time behavior of solutions for the outer pressure problem of a viscous heat-conductive one-dimensional real gas, Preprint, 1994.
[9] S. Jiang, On the asymptotic behavior of the motion of a viscous, heat-conducting, one-dimensional real gas, Math. Z., 216 (1994), pp. 317-336.
[10] S. JIang, Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Commun. Math. Phys., 178 (1996), pp. 339-374.
[11] Y. I. Kanel, Cauchy problem for the equations of gasdynamics with viscosity, Siberian Math. J., 20 (1979), pp. 208-218.
[12] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106A (1987), pp. 169-194.
[13] S. Kawashima - T. Nishida, Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto Univ., 21 (1981), pp. 825-837.
[14] A. V. Kazhikhov, To a theory of boundary value problems for equations of one-dimensional nonstationary motion of viscous heat-conduction gases, Boundary Value Problems for Hydrodynamical Equations (in Russian), No. 50, Inst. Hydrodynamics, Siberian Branch Akad., USSR. (1981), pp. 37-62.
[15] T.-P. Liu - Y. Zeng, Large time behavior of solutions of general quasilinear hyperbolicparabolic systems of conservation laws, Memoirs AMS, No. 599 (1997).
[16] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), pp. 337-342.
[17] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104.
[18] A. Matsumura - T. Nishida, Initial boundary value problems for the equations of motion of general fluids, Computing Meth. in Appl. Sci. and Engin. V (R. Glowinski - J. L. Lions, eds.), North-Holland, Amsterdam (1982), pp. 389-406.
[19] A. Matsumura - T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commnu. Math. Phys., 89 (1983), pp. 445-464.
[20] A. Matsumura - M. Padula, Stability of stationary flow of compressible fluids to large external potential forces, SAACM, 2 (1992), pp. 183-202.
[21] T. Nagasawa, On the outer pressure problem of the one-dimensional polytropic ideal gas, Japan J. Appl. Math., 5 (1988), pp. 53-85.
[22] T. NAGASAWA, Global asymptotics of the outer pressure problem with free boundary one-dimensional polytropic ideal gas, Japan J. Appl. Math., 5 (1988), pp. 205-224.
[23] T. Nagasawa, On the asymptotic behavior of the one-dimensional motion of the polytropic ideal gas with stress-free condition, Quart. Appl. Math., 46 (1988), pp. 665-679.
[24] T. Nagasawa, On the one-dimensional free boundary problem for the heat-conductive compressible viscous gas, Lecture Notes in Num. Appl. Anal., 10 (M. Mimura - T. Nishida, eds.), Kinokuniya/North-Holland, Tokyo (1989), pp. 83-99.
[25] V. B. Nikolaev, On the solvability of mixed problem for one-dimensional axisymmetrical viscous gas flow, Dinamicheskie zadachi Mekhaniki sploshnoj sredy, 63, Sibirsk. Otd. Acad. Nauk SSSR, Inst. Gidrodinamiki, 1983 (Russian).
[26] M. Okada - S. Kawashima, On the equations of one-dimensional motion of compressible viscous fluids, J. Math. Kyoto Univ., 23 (1983), pp. 55-71.
[27] M. Padula, Stability properties of regular flows of heat-conducting compressible fluids, J. Math. Kyoto Univ., 32 (1992), pp. 401-442.
[28] A. Valli - W. M. Zajączkowski, Navier-Stokes Equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), pp. 259-296.

