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Large-time Behavior of Solutions to the Equations 
of a Viscous Polytropic Ideal Gas (*). 

SONG JIANG 

A b s t r a c t .  - First we prove for the equations of a viscous polytropic ideal gas in bounded annular 
domains in R ~ ( n = 2, 3) that (generalized) spherically symmetric solutions decay to a con- 
stant state exponentially as time goes to infinity. Then we show that solutions of the Cauchy 
problem in R are asymptotically stable i f  the initial specific volume is close to a constant in 
L | and weighted L 2, the initial velocity is small in weighted L 2 A L t, and the initial tem- 
perature is close to a constant in weighted L 2. 

1. - I n t r o d u c t i o n .  

In this paper we study the asymptotic behavior of solutions to the following equa- 
tions in the domain Gn (1 ~< n <~ 3): 

( n -  1) 
(1.1) atQ + a~(Qv) + - -  Qv = 0 ,  

(1.2) 

(1.3) 

Q ( a t v + v a r v ) = ( , ~ + 2 t t ) ( a ~ v +  ( n - 1 )  arv ( n - l ) )  - - 7 -  j v - Ra,(Qe), 

( n - l )  ( ( n - I ) )  
Cv~(atO + va~O) = Ka~o + K a ~ O -  RQO a~v + v + 

r r 

+~,(a~v+ ( n - l )  )2 ( n - l )  
r v + 2/~(Srv) 2 + 2it r---- /--  v 2 , 

r e G n ,  t > 0 ,  
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where G~ = R for n = I and Gn = (a, b) (a > 0) for n = 2, 3; R,  Cv, K, )~, # are constants 
satisfying R,  Cy, K, ~ > 0, 2 + 2tdn >I O. For (1.1)-(1.3) we will consider the Cauchy 
problem in the case of n = 1 and the following initial boundary value problem in the 
case of n = 2 , 3 :  

(1.4) Q(r ,O)=~)o(r) ,  v(r,O)=vo(r),  O(r,O)=Oo(r), reG~ for l~<n~<3, 

(1.5) v(a, t) = v(b, t) = O, Or(a, t) = O~(b, t) = O, t I> 0 for n = 2 or 3 .  

The equations (1.1)-(1.3) describe the motion of a viscous polytropic ideal gas in R in 
the case of n = 1, or the spherically symmetric motion of a viscous polytropic ideal gas 
in the annular domain {x �9 R~la  < Ix I< b} in the case of n = 2, 3 (cf. [1, 5,10]), where 
r v, 0 are the density, the velocity, and the absolute temperature, respectively; 2 and/~ 
are the constant viscosity coefficients, R, Cv, and K are the gas constant, the specific 
heat capacity, and the thermal conductivity, respectively. 

In two or three dimensions the global existence and large-time behavior of smooth 
solutions to the equations of a viscous polytropic ideal gas have been investigated for 
general domains only in the case of sufficiently small initial data (see e.g. [2, 3], [16]- 
[20], [27,28], where more general constitutive equations were considered). For large 
initial data the global existence of (generalized) solutions was shown in [4, 5, 25] resp. 
in [10] for the spherically symmetric motion in a bounded annular domain resp. in an 
exterior domain. The asymptotic behavior of the (spherically symmetric) solutions in 
the bounded annular domain, however, is not discussed in [4, 5, 25] (in [10] some large- 
time behavior of Q, v was discussed only for the case n = 3). 

In one dimension it is well known that global solutions exist. Moreover, for initial 
boundary value problems in bounded domains a solution converges to a steady state 
(exponentially) as t -~ r162 (see [1, 8, 9], [21]-[24]). For the Cauchy problem the large-time 
behavior of solutions is investigated only for small initial data. In [12,15] (also cf. [6]) 
decay rates of solutions were studied for the initial data sufficiently small at least in 
H3(R). Kanel, Kawashima, Nishida, and Okada[ll ,13,26] proved that if the H i ( R )  - 
norm of the initial data is sufficiently small, then a (smooth) solution converges to a 
constant steady state as t -~  ~ .  

In the present paper first we prove the exponential decay of (generalized) solutions 
of (1.1)-(1.5) for n = 2 or 3. Then we show that in the case of n = 1 (generalized) sol- 
utions of the Cauchy problem (1.1)-(1.4) converge to a constant steady state as t o  
provided that the initial specific volume is close to a constant in L | and weighted L z, 
the initial velocity is small in weighted L 2 N L 4, and the initial temperature is close to a 
constant in weighted L z. 

To show the time-asymptotic behavior it is convenient to transform the system 
(1.1)-(1.3) to that in Lagrangian coordinates. The Eulerian coordinates" (r, t) are con- 
nected to the Lagrangian coordinates (~, t) by the relation 

(1.6) 
t 

r(~, t) = ro(~) + ~)(~, 7:) d r ,  
0 
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(1.7) 

F o r  
(1.7), 

where  ~)(~, t) := v(r(~, t), t), and 

[0,  n =  1 
ro(~) := r ] - l (~) ,  ~](r) := f s n - l ~ o ( s ) d s ,  r �9  d~:=  l 

dn a ,  n = 2 ,  3 .  

I t  should be noted that  if inf {r s �9 G~} > 0 (which will be assumed later), then y as 
b 

a function of r � 9  G~ is invertible. Denote L : =  [sn- lQo(S)ds  > 0. Using the equation 
r(~, t) a J 

(1.1), (1.6), and (1.5), we obtain at ~ sn-~Q(s, t) ds = 5~1v(0, t) Q(0, t) with 5~j being 
dn 

the Kronecker  delta, which by integrat ion turns  into 

r(~, t) ro(~) t t 

~ sn - l~ ( s , t )  ds = f sn-lQo(s) ds+~nl](VQ)(O,v)dv--~+(Snl~(vQ)(O,v)dv.  
d n d~ 0 0 

Thus, under  the assumption inf{~(s ,  t); s �9 Gn, t I> 0} > 0 (which is posteriori  justified) 
we see tha t  G~ is t ranformed to Qn with $2~ = R if n = 1 and tg~ = (0, L) if n = 2, 3. 
Moreover we have 

a~r(~, t) = [r(~, t F - ~ e ( r ( ~ ,  t), t)] -~ . 

a function of(r, t) we write ~(~, t ) : =  q~(r(~, t), t). By virtue of (1.6) and 

I at ~(~, t) = atqg(r, t) + varcf(r, t ) ,  

(1.8) l 3 ~ ( ~ ,  t) = arq~(r, t) a~r(~, t) - rn_lQ(r,1 t) t) .  

Without  danger  of confusion we denote (~, ~, 0) still by (Q, v, 0) and (~, t) by (x, t). 
We use u : =  1/Q to denote the specific volume. Therefore,  by virtue of (1.7)-(1.8), the 
equations (1.1)-(1.5) in the new variables (x, t) read: 

n - 1  (1.9) ut = (r v)x , 

U U x 

xe tgn ,  t > 0 ,  

r2n-20 x ] 1 
(1.11) CvOt = IC -{- - -  [ ~ ( r  n -  i v )  x - R O ] ( r  n -  i v )  x - 2tt(n - 1 ) ( r n - 2 v 2 ) ~  

u x u 

toge ther  with 

(1.12) u(x ,O)=uo(x) ,  v(x ,O)=vo(x) ,  O(x,O)=Oo(x),  x � 9  1<<.n<<.3, 

(1.13) v(0, t) = v(L, t) = O, 0~(0, t) = O~(L, t) = O, t >1 O, n = 2, 3.  
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Here s ~ = R if n = 1 and t~ = (O, L) if n = 2, 3; uo = 1/Q o, fl = ~ + 2Ft, and by virtue of 
(1.6), r -  r(x, t) is determined by 

(1.14) 

t 

r ( x , t ) = r o ( x ) + ~ v ( x , v ) d v ,  x e [ 0 ,  L],  
0 

to(X) := dn)n + n f uo(y) gy . 
o 

t~>0, 

For the formulation of the main result we introduce the following notation: H m and 
I1" IIH~ (m ~> 0 integer) denote gm(~9~) and its norm (1 ~< n ~< 3), respectively. I1" II and 
I1" IILP denote the norms in L2(t9 ~) and LP(~gn) (1 ~< p ~< ~ ), respectively. QT stands for 
the domain t~ n • (0, T) (1 ~< n ~< 3). For a vector valued function f =  (fl, ..., fm) we 

put IIIflll := IIIfl III + ' "  § IIIf~ III, where Ill'Ill denotes a norm. 
As mentioned in the introduction the global existence of (generalized) solutions to 

(1.9)-(1.14) has been established. In the case of n = 1 Kazhikhov [1, 14] proved that if 
for some positive constants ~, 0, U o - ~ ,  Vo, 0 o - 0 ~ H  1, and Uo(X), Oo(X)> 0 on R, 
then there exists a unique solution {u(x, t), v(x, t), O(x, t)} with positive u and 0 to the 
Cauchy problem (1.1)-(1.12) on R • [0, ~ )  such that for every T >  0 

(1.15) u - ~ e L ~ ( [ 0 ,  T], H1),  v, 0 - O e L ~ ( [ 0 ,  T], H 1) AL2([0,  T], H2),  

Ut, vt, OteL2(QT). 

In the case of n = 2, 3 Nikolaev [25] (also cf. [4, 5]) showed that if Uo, Vo, 0 o e H 1, U0 (X), 
Oo(x) > 0 on [0, L] and the initial data are compatible with the boundary conditions 
(1.13), then there exists a unique solution {u(x, t), v(x, t), O(x, t)} with positive u and 
0 to (1.9)-(1.14) on [0, L] • [0, ~ )  such that for every T > 0  

(1.16) u e L  ~([0, T], H1),  V, OeL | T], H 1) A L2([0, T], H2),  

ut, vt, OteL2(QT). 

Denote 

(1.17) 

1 rL  

u* := --  |uo(x) dx,  
L J 

o 1jl 
: =  - -  CvO 0 + 

CV L 

r * ( x )  : =  (a n + n u * x )  TM , 

-~ (x) dx ; 

x e [0, L].  
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We assume for n = 2 or 3 that  ~ and tt satisfy 

(1.18) n)l + 2tt > 0 .  

Then the main result  of the paper  reads: 

THEOREM 1.1. - ( i ) L e t  n = 2  or 3. Assume that (1.18) is satisfied. Let 
{u(x,  t), v(x, t), O(x, t)} be a solution of  (1.9)-(1.14) in the function class indicated in 
(1.16). Then there are positive constants a, To, C, independent of t, such that 

(1.19) I I ( u - u * , v ,  O--O*)(t)llHl+llr(t)--r*llH2<<.Ce -at, for any t>~To . 

(ii) Let n = 1 and {u(x, t), v(x, t), O(x, t)} be a solution of (1.9)-(1.12) in the 
function class indicated in (1.15). Denote 

e~ := Ilu0 - ull~ ~ + ] (1  + x2)r {(u0 - ~)2 + v0 ~ + (00 - 0)~ + Vo 4 } dx 
R 

where 7 > 1/2 is an arbitray but fixed constant. Then there is a constant e �9 (0, 1], 
independent of Uo, Vo, 0 o, such that i f  eo ~ e, then 

(1.20) II(u - ~ ,  v ,  O - O)(t)IlL ~ + II(u~, v~, 0 ~)(t)II---) O, as t ---) r162 

REMARK 1.1. - The same techniques work and a result  analogous to Theorem 1.1 (i) 
holds when (1.13) is replaced by v[aQn = 0, 01 aQ~ = 1. 

We will prove (i) and (ii) of Theorem 1.1 in Sections 2 and 3, respectively. 

2. - P r o o f  o f  T h e o r e m  1.1-(i). 

In this section the salve letter C (sometimes used as C1, C2) denotes various positive 
constants which are in particular independent of t and x. The proof of Theorem 1.1 (i) is 
essentially based on a careful examination of a priori estimates which are shown to be 
independent of t. The difficulties arise from the dependence on the time and spatial 
variables of the coefficients in the equations (1.9)-(1.11), but  can be overcome in our ap- 
proach by modifying an idea of Kazhikhov [1,14] for the one-dimensional case. The 
proof will be partitioned into several steps. 

The first observation is that, by virtue of (1.7) and (1.14), 

(2.1) r t ( x , t ) = v ( x , t ) ,  r ~ - l ( x , t ) r x ( x , t ) = u ( x , t ) ,  x � 9  L], t~>0.  

By  (1.13)-(1.14) and (2.1) we obtain r~(0, t) = r l - n ( 0 ,  t) u(0 ,  t) = a 1-nu(O, t) > 0 for 
all t i> 0. Thus, if r~(x, t) > 0 is violated on [0, L] • [0, ~ ), there  are y �9 (0, L] and v �9 
�9 [ 0, ~ ) such that  r~ (x, t) > 0 for 0 ~< x < y,  0 ~< t ~< 7, but  r~ (y,  7) = 0. So by continuity, 
r~(x, t) >I 0 for x e  [0, y] and t � 9  [0, v], and we have r(y, 7) I> r(0,  7) = a > 0. F rom 
(2.1) we get  0 = rx(y, 7) = r l - n ( y ,  v )u (y ,  7) > 0 which is a contradiction. This shows 
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rx(x, t) > 0 for 0 ~< x ~< L, t/> 0. Therefore, 

(2.2) a = r ( O , t ) < ~ r ( x , t ) < ~ r ( L , t ) = b  for x e [ 0 ,  L], t~>0. 

The following estimate embodies the dissipative character of viscosity and thermal dif- 
fusion and is motivated by the second law of thermodynamics. 

LEMMA 2.1. - There is a positive constant Co, independent of  t, such that 

(2.3) o f~ v(x, t) dx + ~  uo § uo2 dxds <- Co, v t  ~ o , 

where 

(2.4) U(x, t) := {v2/2 + R ( u -  l o g u -  1) + C v ( 0 - 1 o g 0 -  1)}(x, t). 

PROOF. - Using (1.9)-(1.11), we obtain after a straightforward calculation that 

(2.5) fl ( r n - l v ) 2 x + -  0 x ) 2 =  r n- fl 
Vt + - ~  uO 2 u 

[( 1)r n o ] 
+R(r~-Xv)x+K 1 -  u - 2 ( n - 1 ) / ~  1 - - ~  (r~-2v2)x.  

x 

Recalling 2tt + n~, 2tt + (n - 1) ~ > 0, we utilise (2.1) to arrive at 

(2.6) -~(r~- lv)ex  - 2tt(n - 1) (rn-2v2)x 
0 

( ~r n - 1Vx 
1 ( n - 1 ) ( 2 # + ( n - 1 ) ) [ )  r - l u v +  

uO 2tt + (n - 1) 2 
2 2tt(2/~ + n~) r2n_2v2) >1 

+ 2 # + ( n - 1 ) ~  

2tt(2tl + n;~) r2n-2v  2 

(2# + (n - 1 ) ;0 uO 
L 

By virtue of Taylor's theorem, f U(x, O) dx <~ C(1 + II(Uo, Vo, 0o)112). So If we inte- 
o 

grate (2.5) over [0, L] x [0, t] (t I> 0), use (1.13) and (2.6), we obtain (2.3). " 

As a corollary of Lemma 2.1 we have 

LEMMA 2.2. - There are positive constants al ,  a2, independent of t, such that 

L 
(2.7) a ~  fO(x , t )  dx<~a2 Vt~>0, 

o 
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and for  each t >~ 0 there is an a(t) �9 [0, L] satisfying 

(2.8) a l <. O(a(t), t) <~ a 2. 

PROOF. - (2.3) implies 

L 

(2.9) cvf  (0(x, t) - log O(x, t) - 1 )dx  <. Co, t/> 0.  
o 

Therefore by virtue of the mean value theorem, for each t I> 0 there is an a(t) e [0, L] 
such that O(a(t), t ) - logO(a( t ) ,  t ) -  1 ~ (cvL)- lco,  from which it follows that ~1 ~< 
<- O(a(t), t) <~ ~2 with ~1, ~2 being two (positive) roots of the equation: y - l o g y  - 1 = 
= (cvL) -~ Co. If we use (2.9) and apply Jensen's inequality to the convex function y -  
- log y - 1, we obtain: 

L L 

f O(x, t) dx - log ~ O(x, t) dx - 1 ~ c~71 co, 
o o 

t>~O. 

L 

Therefore 0 < ~3 ~< ]O(x,  t) dx ~< ~4 for t i> 0, where ~3, ~4 are two (positive) roots o f  
o 

the equation: y - logy - 1 = c~71co. Taking a l  := min{~l,  ~3} and as  := max { ~ ,  ~4}, 
we obtain (2.7)-(2.8). �9 

Next we adapt and modify an idea of Kazhikhov [14] (also cf. [1]) for the one-dimen- 
sional case to give a representation for u. 

Let 

( r  n - i v )  x u 

(2.10) o ( x , t ) : = f l  R - - ,  
u 0 

(2.11) 
t x t L 

q~(x, t ) :=  ~a(x, s ) d s  +~r0-(n-1)(y)Vo(y)dy + ( n - 1 ) f  I r - n ( y  , s ) v Z ( y ,  s ) d y d s .  
o o o x 

Then by (1.10), a partial integration in the varivable t, and (2.1), 

(2.12) ~ ( x ,  t) = r-(n-1)(x,  t ) v (x ,  t). 

Note that in view of (2.1) q~ satisfies 

(2.13) 
n L ( n - l )  ( r ) ~ f  ~)t-~fl ( rn - l v ) x  R 0 + r _ ~ v e d y  

u u n u 
x 
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Multiplying (2.13) by u ,  using (1.9) and (2.12), we arrive at 

(n  - 1) 
(2.14) ( u r  (rn-lv~b)x-= - v 2 - R O  + f l (r~- lv)~ + - -  

n 

L 
(rn)~ f r - ~ v 2  dy = 

x 

v (. 1 [i ] R O + f l ( r n - l v ) x +  ~ r r - n v 2  dy 
n n 

Keeping in mind that v vanishes on the boundary and r(0,  t) = a,  we integrate (2.14) 
over [0, L] • [0, t] to infer 

_ t L v . ~  2 
(2.15) t) dx = fuo(x) Co(x)  dx +RO d x d s -  

0 0 n 

t L 

__(n-1) a n f  f r - n v 2  dxds  
n o o 

where ~o(X) := q~(x, 0). I t  follows from integration of (1.9) over [0, L] • [0, t] and use 
of (1.13) that  

L L 

(2.16) f u(x ,  t) dx = f Uo(X) dx -- u*  for t > /0 .  
0 0 

Note that  u > 0. If  we apply the mean value theorem to (2.15) and use (2.16), we con- 
clude that  for each t I> 0 there is an xo(t) e [0, L] such that  

(2.17) 
L 

1 
t) = f r t) u(x, t) dx . 

0 

Therefore from (2.11), (2.15), and (2.17) we get 

t 
(2.18) f a(Xo (t), s) ds = ~b(xo(t), t) - 

0 

Xo(t) t L 
f r o ( n - l ) v o d y - ( n - 1 ) ]  f r - n v 2 d y d s  = 

0 0 xo(t) 

l t L ( v 2  ) (n-1)antf 
- u * f f  - - + R O  d x d s \  n n u *  o o f  r - n v 2 d x d s -  

t L 

-(n-1)f f~ 
0 xo(t) 

-nv2 dxds  + - -  
L xo(t) 

1 f U o ~ o d x _  f ro(n_l)vodY 
U* 0 0 

for any t i> O. Using (2.18), we can show 
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LEMMA 2.3. - We have the following representation 

(2.19) R f~ o(x, s)B(x, s) } D( x , t____~) 1 + D( x , s) ds , x e [0, L], t i> 0,  
u(x, t) - B(x,  t) -ff o 

where 

{[ r ]} 1 1 f U o ~ o d x -  r o ( ' - i ) v o d y +  f r - ( ~ - l ) v d y  , (2.20) D(x, t) := Uo(X) exp -~ -~7 o o ~o(t) 

{1[ 1 ) 
- -  + RO dx ds + (2.21) B ( x , t ) : = e x p  ~ ~ o  o x n 

+ (n-1)a~ f fr-nv2dydxds+(n-1)f f r -nv~dyd~ , 
nu* o o o x 

and xo(t) e [0, L] is the same as in (2.17). 

PROOF. - Using (1.9) we may write (1.10) in the form 

Integrate (2.22) over [0, t], then integrate over [xo(t), x] with respect to x. If  we inte- 
grate by parts with respect to t, utilise (2.1) and (2.18), we infer 

, t f ~  
~log~-Rf ~ ds=~logu0+ f~(~o(t),s)ds+ fr-(n-1)vtdsdy= 

U 
0 0 xo(t) 0 

- f l l o g u o - - ~ - ~ J J [  n +RO dx ds 
t L 

( n -  1)a ~ f [r_~v2dxds_ 
n u  $ 

o o 

t L x 

- ( n - 1 ) f  fr-nv2dyds+ f r-(~- 
0 x xo(t) 

L x 
1 

1)vdy + - ~  f U o r  ]ro(n-1)vody , 
o o 

which, when the exponentials are taken, turns into 

t O ( X ,  S)  B(x,t___2 _ 1 exp R f u(x,s)  
(2.23) D(x, t) u(x,  t) -ff o ds ) . 
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Multiplying (2.23) by RO/fl and integrating over [0, t], we arrive at 

exp 
_ _  R O(x, s ) B ( x ,  s) 

t O(x, s) ds = 1 + - -  D(x, s) 
o u(x, s) ~ o 

ds.  

Substituting this into (2.23), we obtain the lemma. �9 

Now we are able to derive bounds on u(x, t) by using the representation (2.19). 

LEMMA 2.4. - There are positive constants u and ~, independent of t, such 
that 

(2.24) u<.u(x,t)<<.~ for any xe[O,L] ,  t>~O. 

P R O O F .  - Recalling the definition of D(x, t), we have by (2.2), Cauchy-Schwarz's in- 
equality, and Lemma 2.1 that 

(2.25) O<C-~<~D(x,t)<~C, Yxe [0, 1], t>~0. 

Noting that u > 0, we get from (2.2) and (2.7) that 

- - ~ < e x p  O( x, s ) dx d~ <~ exp , t t>s1>O. (2.26) B(x, t) ~u * ~u * 
s O  

Similarly, 

(2.27) B(x, s)/B(x, t) >t Ce - C l ( t - s )  , t ~ s ~ O ;  eCt>~B(x , t )~ l ,  t~O 

with C1 being independent of t, where we have used (2.2)-(2.3) and (2.7). 
It is easy to see by (2.2) and (2.7) that 

L 

101/2(x, t ) -  OU2(a(t), t) l< ~ o-~/2(x, t)IO~(x, t) l dx<. 
o 

(f  ,/21Le, IIJ )'/2 <~ - ~  dx Ou dx <~ C [ t( l : \ u O  2 ] 

1/2 

(x, t)dxJ maxul/2("EO, L] t), 
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which together with (2.8) gives 

(2.28) 
L 2 

a--Zl - C max u(" t) tO, L] O~oz dx <<" O(x' t) <~ 
o 

L 2 

<,.2a.2+Cmaxu(. , t )  I_O:  dx Vxe[O,L] ,  t~>0. 
[0, L] n O  2 

0 

Hence it follows from (2.19) and (2.25)-(2.28) that 

O~ 
(2.29) u(x, t) ~< C + 1 + max u(., s) - - ~  dx e -(t-s)/c ds <~ 

[o, L] 0 

t L 2 

<~ C + C ~ m a x  u(. ,  s) [o, L] -~o 2 dxds  " 
0 0 

Applying Gronwall's inequality to (2.29) and utilising (2.3), one gets u(x, t) <. -~ Vx 
[0, L] Vt I> 0 for some positive constant ~ independent of t and x. 

To complete the proof it remains to show the lower boundedness of u. To this end 
we make use of (2.3), (2.19), (2.25), (2.27), and (2.28) to infer 

RD(x,  t) ; O(x, s) B(x, s) ds >>- 
(2.30) u(x, t) >>. fl o D(x, s )B(x ,  t) 

) >~ C 2 (%1 -- C max u(., s) dx e -c,(t-s) ds >i 
J [  2 [O,L~ 

t / 2L  2 t L  2 I I - -  iioo  2o1 C2al ( l_e_Cl t )_Ce_C, t / z  Ox d x d s - C  - - - ~ d x d s > ~ - -  >O 
2C1 o o u02 t/2 o 4C1 

for all t I> To and some (large) To > 0, where C2 is independent of t. Furthermore, from 
(2.19), (2.25), and (2.27) we get u(x, t)>-D(x, t)/B(x, t)>I C - l e  -ct for all x e  [0, L] 
and t >I 0. This combined with (2.30) shows that u is bounded from below. The proof is 
complete. �9 

In the sequel we derive Sobolev-norm estimates of derivatives for u, v, 0 by apply- 
ing the energy method. 

Recalling (2.10), using (1.9)-(1.10), we may write the equation (1.11) as follows 

(2.31) + o r n - l v  -- 2(n - 1) Itr~-2V2]x" 

Multiply (2.31) by CvO + v2/2 and integrate. If we integrate by parts with respect to x, 
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and make use of (2.1)-(2.2), Cauchy-Schwarz's inequality, and (2.24), we obtain 
that 

(2.32) -~ cvO + - ~  (x, t) dx <<. 

t L ^ 2 n - 2 ~ 2  t L 

f f f r(rzn-2v2v2+v4+O2vZ)dxds. <~ C Cv K .r ~ X dx ds + C 1 
2 u O0 O0 

t L 

To bound the term f f r 2 n - 2 v : v 2 d x d s ,  w e  multiply (1.10) by v a, integrate over 
0 0 

[0, L] x [0, t], integrate by parts with respect to x, and utilise (2.1)-(2.2), Cauchy- 
Schwarz's inequality, and (2.24) to get 

(2.33) 
L t L 

1 Iv4(x,t) dx<C fl ; f r 2 ~ - 2  2 2 f f  - -- v % d x d s + C  (v4+v202)dxds. 
-4~ Uoo oo 

We multiply (2.32) by fi/(2 ~C) and add the resulting inequality to (2.33) to obtain, 
with the help of (2.2)-(2.3) and (2.24), the result 

(2.34) 
L t L 

f(o 2 -~-V4)(X, t)dx -}- f f(v2v: + o )dxd  
0 0 0 

t t L 

~< C + C f max V 2 (  �9 , 8 ) d s  + C [ m a x  V2(" , s)  f 0 2 ( X ,  8 ) d x d s .  
[o, L] J [o, L] 

0 0 0 

On the other hand, by (2.2)-(2.3), (2.7) and (2.24), 

(2.35) fmaxv2(.,s)ds<~ f Ilvxldx ds~ f V; dxfuOdxds<.C, 
J [0, L] 

o o d oo uO o 

t~>0. 

In view of (2.35), we apply Gronwall's inequality to (2.34) to obtain 

LEMMA 2.5. 

(2.36) 
L t L  

(0 e + v4)(x,  t) dx + (v v x + 0~) dxds  <~ C,  
0 00  

t>~O. 



SONG JIANG: Large-time behavior of solutions to the equations etc. 265 

LEMMA 2.6. 

L t L  

(287) fu:(x, t)dx + f f(v2 + u: + On2)d~ds ~- c ,  t >~ o 
o o o  

PROOF. - By virtue of (2.1)-(2.2) and (2.24), 

(2.38) (rn-lv)~=(r~-lv~+(n-1)r- luv)2>~r2~-2v~/2-Cv2>~a2~-2v~/2-Cv 2 . 

So multiplying (1.10) by v and integrating, we integrate by parts with respect to x, use 
Cauchy-Schwarz's inequality, (2.7), (2.24), and (2.35)-(2.36), to deduce 

f L  fL ~ a 2 n _  2 t L 1 r f ,, 

(2.39) -2 - 2~ 
o o o  

t L  t L  

<.c+c~- l f  f(o~+v~+Ov2)dxds+~f fOu:dxe~<. 
O 0  O 0  

t L 

~- c~ -1 + ~ f ~ ou: ~x ~ ,  (o < ~ < 1 constant). 
o o 

With the help of (1.9), we may write (1.10) in the form f l[uJu]t=r-(nol)vt+ 
+ R [ O J u -  OuJu2]. Multiply this by uJu  and integrate. After utilising (2.3), (2.24), 
and (2.36), we infer 

(2.40) ~ (x, t) dx + --  - -  dx ds <<. 
2 oJoJ u 3 

t L t f o_~ ( 1 )  
~ C q -  f fr-(n-1)vtUX d x d 8 t - c f  1 +  ~-~ d x ~ .  

O 0  U O 0  

Noting that  [uJu]t = [ut/u]~, the second term on the right hand side of (2.40) can be 
estimated, with the help of integration by parts, and (1.9), (2.1)-(2.3), (2.24) and (2.35), 
as follows: 

t L L 

(2.41) ffr-(=-l)vtU--~dxds=fr-(~-l)vU-y-Xdx{: u 
o o o 

f f  f f  u~ + ( n -  1) r-~v 2 u---2-~ d x d s -  r-(n-1)V --~ dxds <~ 
O 0  U O 0  x 

ir ] ; <C+ fl u~ (x, t)  d x + C f m a x v 2  u}dxds+ dxds 
4 0 [ u  o Jr~ o Uo o 
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Substituting (2.41) into (2.40), taking (2.2)-(2.3), (2.24), and (2.36) into account, one 
gets 

L t L 

(2.42) fl I u~(x, t) dx + R 4~---~ 2~--~ I I Ou~ dxds 
o o o 

t L t L 
2 

< ~ C + C [ m a x v 2 I u } d x d s + - - I I v ~ d x d s .  
J [0, L] U 

0 0 - - 0  0 

Multiplying (2.42) by ufia~-2/(8-g), and adding the resulting inequality to (2.39), we 
obtain for an appropriately small but fLxed d e (0, 1) that 

L t L t L 

fu2( ,t)d § f f(v2§ t> O. 
[0, L] 

0 0 0 0 0 

In view of (2.35), we apply Gronwall's inequality to the above inequality to obtain 

L t L 

(2.43) I u : ( x , t )  dx+I I (v :+Ou:)dxds<<-C,  Vt~>O. 
o o o 

Finally, it follows from (2.24), (2.28), (2.43), and (2.3) that 

t L  t L  t L  2 L 

a l  f fu:dxd <-f fOu:dxds+Cff--Ox dxfu:dxd  C, 
2 uO 2 ' 

O 0  O 0  O 0  0 

from which and (2.43), (2.37) follows. This completes the  proof. �9 

In the following lemma we bound vt in the L2((0, L) x (0, oo))-norm. 

L E M M A  2 . 7 .  

(2.44) 

(2.45) 

L t L 

+ f 
0 o 0 

Vt>~O, 

Iv(x,t)l<<.C, Vxe [0, L], t>~0. 

PROOF. - We first note that by (2.8) and Cauchy-Schwarz's inequality, 

(2.46) max 0(., t) <. C + Cmax I 0( �9 t) - O(a(t), t) I <. 
[0, L] [0, L] ' 

L 

<.c+cIIO~ldx<~C+Cllo~,(t)H, t>~o. 
o 

Multiply (1.10) by vt and integrate over [0, L] x [0, t]. Integrating by parts, using 
(2.1)-(2.3), (2.24), (2.35)-(2.37), and (2.46), taking into account that (rn-lvt).~. = 
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-= ( r n - l V ) x t -  ( n -  1)(r~-2v2)~ and I(rn-ev2)~ ]<<. C{v2 + (rn-lv)~},  we obtain 

(2.47) 
t 

1 fllv~ll2ds § ~ iI(r~_lv)~(t)[12 ~ 2-~ 
o 

7{ } <~ (r V)x I (V2~_(rn_lv)2)_~O2x~_O2U: dxds<~ <C~- [ n-1 
' U 

I } <~C+C[ (r~-lv)~ max + max v 2 ]](rn-lv)~]l 2 ds.  
o ~ LIO, L~ u Io, L~ 

Here max[ ( r  ~- l v)x/u ] can be bounded as follows, using (2.10), Sobolev's imbedding 
theorem (H 1 c.->L :~), and (2.24), (1.10), (2.1)-(2.2), and (2.46) 

(2.48) 
] (rn-lv)x (2~, ( ) 

t)~< i~1+ R _0 ~ C  1+  I]oll + I]o~!1 + m ~  O 
U U [o, L] 

C(1 + maXEo, L1 v2 + IIv~ 112 + lie~ii2 + IIv~ll), Yxe [0, L], t>~0. 

(r v)x ] <<. C(v 2 + v~ ), we get from Inserting (2.48) into (2.47) and recalling that I n-1 2 2 
(2.24), (2.35), and (2.37) that 

(2.49) -~ Ilvtll 2 ds + H(r - v)~(t)ll ~< 
2 {  o 

t 

o 

Applying Gronwall's inequality to (2.49) and taking account of (2.35)-(2.37), we conclude 
t 

that  f I]vt it s ds + II(rn-~v)~(t)I] 2 <<. C for t i> 0, which combined with (2.3) and (2.37)-(2.38) 
o 

yields (2.44). Finally, (2.45) follows from Sobolev's inequality, (2.3), and (2.44). The 
proof is complete. �9 

As a result of Lemma 2.7 we have 

t L t 

(2.50) f ~(u~et+v:~)(x,s)dxds+ f m a x v : ( . , s ) d s < ~ C ,  t ~ O .  
[0, L] 

0 0 0 

In fact, by virtue of Sobolev's imbedding theorem (WI'lc--~L~), m a x v } ( . , t ) ~  < 
~< Ce -1 ]]vx(t)]] 2 + clivx,(t)ll 2 (0 < e < 1), we get from (2.1)-(2.2), (2.24), and (2.35)-(2.37), 
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(1.10), (2.46), and (2.44) that 

t L  t L  

f f ( u ~ + v ~ ) d x d s ~ C f  f [ ( r  ~-1 2 2 2 ~  v)~ + v~ + u~ v + v 2] dxds  <~ 
O0 O0 

i j [  ( r n _ l v ) x ] :  f t ~  
<~ C + dxds  + C u~v~2 dxds  ~ 

U o o 

t L t L t t 

f f f f f 2 d s < - c + l  fll < . C + C  v t 2 d x d s + C  max02[o, L] U x2dxds+C maX%to, L] --2 v~ll2ds ' 
0 0 0 0 0 0 

which implies (2.50). 
We multiply (1.11) by O t and integrate, we obtain by the same arguments as used in 

Lemma 2.7 and (2.50) that  

L t L 

+ J J ( 0 ~  0 ~ + m a x 0 ~ / ( s )  d s < . C ,  Vt~>0. (2.51) f O~(x, t) dx + max ]0(., t) I + 
[0, L] [0, L] ] 

0 

Now we are able to prove Theorem 2.1. By (2.37), (2.44), (2.50)-(2.51), and the 
identities 

we see that  

L L L L 

fv v  dx= - fv=v dx, fo O dx= - fo xO d , 
0 0 0 0 

which together with (2.36)-(2.37) implies 

(2.52) Ilux(t)ll 2 + Ilvx(t)ll 2 + IIo~(t)ll ~ - ~ 0 ,  as t--~ ~ .  

From (2.16) and Poincar6's inequality we get Ilu(t) - u * IIH I + ]Iv(t)HH 1 --~ 0 as t--~ ~ .  Re- 
calling (1.13) and the definition of 0",  we integrate (2.31) over [0, L] • [0, t] to 
infer 

L 

f { ( c v O + v 2 / 2 ) ( x , t ) - c v O * } d x = O ,  t>~O, 
o 

from which it follows with the help of Poincar6's inequality and (2.45) that as 
t ----> ~ 

IIo(t) - o *  II ~< CIIcvo(t) + v~ ( t ) / 2  - e v o *  II + CIIv~(t)ll <- c( l le~l l  + IIv(t)ll.1) --~o . 
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To show r(x, t ) ~  (an+ nu*x)  1/~ as t--) ~ we note that by (2.i) and (1.14), 

(2.53) 
x 

rn(x,  t )=rn(O,  t ) + n f u ( y ,  t )dy= [ r * ( x ) ] n + n f ( u ( y ,  t ) - u *  )dy ,  
o o 

where r*(x)  is defined by (1.17). It  follows from (2.2) and (2.53) that l i t ( t ) - r* l l  ~< 
Cllu(t) - u * II, t >>- O. Therefore, differentiating (2.53) with respect to x and recalling 

(2.2), we find that lit(t) - r* IIu 2 <~ ~lu(t) -- U* IIHI--~O as t--> ~ .  We have known that for 
large t{u(x, t ) -  u*,  v(x, t), O(x, t ) -  0"}  and r(x, t ) -  r*(x)  become small in the H 1- 
and H2-norms respectively, thus we can apply arguments similar to those used in [26, 
Theorem 2.2] to obtain (1.19) in Theroem 1.1 (the exponential decay). This completes 
the proof of Theorem 1.1 (i). 

3. - Proof  of Theorem 1.1-(ii). 

We use and modify an idea of Hoff[7] for barotropic fluids to prove Theorem 1.1 (ii) 
for the system (1.9)-(1.12) in the case of n = 1. Let eo ~< 1 be satisfied in this section. In 
what follows C or C denotes a generic constant ( i> 1 ) which may depend at most on ~, 0, 
fl, R, cv, K, and ?. 

Define ~ ( t ) :=min{1 ,  t}. We first assume that u, 0 satisfy 

(3.1) l u ( x , t ) - ~ l ,  ~(t) lO(x , t ) - -d l<min{~ , -d} /2  for a l l x ~ R ,  t>~0. 

In the sequel we derive a priori estimates for u, v, 0 under (3.1). 
Following the same procedure as in the proof of Lemma 2.1 (recalling n = 1 ), apply- 

ing (3.1) and the mean value theorem, we can show 

(3.2) f U(x, t) dx + fl u--oV~ + K ~uO 2 dx ds = U(x, 1) dx <. 
R R 

<. C f {v 2 + ( u - ~ ) 2  + (0 -0 )2}(x ,  1) dx , 
R 

Vt>~l,  

where 

(3.3) 
V 

U(x, t) := - -  
2 

,o Uu 1) ( o)} 
+Cv O - O l o g ~ - O  (x , t ) .  

Now we estimate { u - ~ ,  v, 0 - 0 }  in a weighted L2-norm for 0 ~< t ~< 1. For sim- 
plicity we denote qJ(x) := (1 + x2) y with ~/being the same as in Theorem 1.1. Multiply 
(1.10) by 2~v (recalling n = 1) and integrate over R • (0, t) (t e [0, 1]). We integrate 
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by parts to arrive at 

(3.4) 
t 

R 0 R 

t 

<~Ceo2+Cf f~((u-~)2+v2+(O--O)2)dxds,  t � 9  [0, 1]. 
0 R 

Multiplying (1.9) by 2~0(u-  g) and integrating, we easily see that 
t t 

1 f ,(u(x,t)- )2dx<.ee+Cf f,(u- )2dxds+- f f  :d ds 2 
R O R  O R  

which together with (3.4) gives 
t 

R 0 R 

for all t �9 [0, 1 ]. 

t 

0 R 

Let us denote h(t):= sup I F { v 2 +  ( 0 - 0 ) 2 } ( x ,  s)dx. Utilising (3.1), we obtain 

by the same arguments as used for (2.31)-(2.28) that 
t 

(3.6) J 
R 0 R 

t t 

0 0 R 

t t 
1 

2 
O R  O R  

where we have also used the inequality II" IlL ~ ~< CI]" IIIla~" II for max(O _D)2(., s), 
@plying the generalized Gronwall inequality to (8.5) and (3.6), we find that for all 

t e [ 0 ,  1] 

( 3 , 7 )  f ~2((U--U)2 ~-V2-]-V4-~ (O---O)2)(X, t) dx + 
R 

t 

2 2  + ~(v:  + v v~ + o~) dxds < C(e~ + h~(t)) .  
O R  
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By the definition of h(t) and (3.7) we have h(t) ~ C(eo ~ + h~(t)) for all t e [0, 1], which 
gives h(t) <<. 2Ce~ <<. eo for all t e [0, 1] provided eo < 1/(2C). Therefore, in view of (3.7) 
we conclude 

(3.8) f ~p((u-~)2 +v2 +v4 + (O--O)2)(x, t) d x +  
R 

t 

f f  ~ ~ Ce#, t~ + y~(v~+v vx+Ox) dxds~ [0 ,1]  
0 R 

provided eo <~ 1/(2C). Using (3.1) and the mean value theorem, we get from (3.8) and 
(3.2) that 

t 

(3.9) f{v~+(u-~)2+(O--O)2}(x,t)dx+ f f(v:+O~)dxds<.Ce3, Vt>>.O 
R 0 R 

provided eo ~< 1/(2 C). 
Next we derive Sobolev-norm estimates for u, v, O. We define 

(3.10) A(t) := sup {llu-ull~,~+c,~llv~,ll2+~,~lloxll~}(s)+ 
O<~s~t 

t 

§ f { ~) 21]Vt 112 § ~94110t 112 § ][Vx ]]2 } (8)  ds .  
o 

Multiply (1.10) by ~2vt and integrate. We integrate by parts, utilise (3.1), (3.9), and 
Cauchy-Schwarz's inequality to infer 

t 

R 0 R 

[( <~Ceo2+C f [~2]v~]3dxds+C ~ 1 
0 R U U 

x 

t 

~Ceo ~ § c]  f o~v: dxds +c  f lu-~, ,fv~ ldx § 
0 R R 

1 IoS  [( )] I +cf f~lu-~lOIvxldxds+C ~2 1 _1 0 v~dxds 
0 R U U t 

t t 

4 4 1 d?~fv~ dx ,  ~C~o~+Cf f~ v~d~ds+cf f l u - ~ l ~ 4 o ~ d ~ d s + -  2 
O R  O R  R 
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whence 

t t 

(3.11) ~fv:d~+ff~v:dxds~Ce#+Cff~v2d~ds+d2(t), t~O, 
R O R  O R  

where the second term on the right-hand side of (3.11) can be bounded as follows, using 
(3.1), (3.9), and I1" I1~ ~ ~< CII" II~ TM, (1.10) and (3.2) 

(3.12) 
t t 

ff~v:d~ds~Vf~maxv:fv:d~ds~ 
0 R 0 R 

( ~ C e 2 §  ~ v-~-x 

o u 

- -  + R  _ V x 
U / R  

t 

Ceo ~ + c f ~4  (llv~ II ~ + Ilu - ~11 ~ + I[o - ~ll 2 + IIv~ ll2)IIv~ II 2 ds <<. C(eo 2 + A e ( t ) ) .  
0 

Inserting (3.12) into (3.11), one obtains 

t 

(3.13) O2fV~dX§ Vt~O 
R 0 

Multiplying (1.11) by ~ 4 0  t and integrating, following the same arguments as used 
for (3.11)-(3.13), we deduce that 

(3.14) 
t t 

4 4 iv~lO~)dxds< ~ @ 4 ( t ) l l O x ( t ) l l 2 +  fllotl{2~) 4 ds<<.Ce~ + c f  f (o  vz +q5 4 
0 0 R 

t 

f 2 f e l  dxds ~< C(e3 § A2(t)), <<- C(e3 + A2(t)) + C r s max vx 
0 R 

Vt~ > O. 

We are now able to derive pointwise bounds for u -  ~. We may write (1.10) in 
the form (recalling n = 1): vt = fl[log(u/~)]tx- R[O/u-0/~]~. Integrating this over 
( -  oo, x) • (0, t) ( t e  [0, 1]) and then taking the absolute value, making use of (3.1) 
and (3.8)-(3.9), we see that 

(3.15) 

<~Cluo-~[+C ( I v l + l V o l ) d y + C  ( l u - ~ l + l q - - O I ) d s < ~  
--~ 0 
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t t 

-< Ceo + 1191~vl1119 1~211 + c~ l u - ~1 ds + c ~  Iio - o11., es .<  
o o 

* (!* ; <.Ceo+C~lu-~lds+C II0-0[l~ldS <Ceo+C lu-~lds, 
o 0 

An application of Gronwall's inequality to (3.15) yields 

(3.16) [u(x,t)-gl<.Ceo, V x e R ,  t e  [0, 1]. 

To estimate u - g  for t I> 1 we denote F:=fl[vJu]-R[u/O] +R[-g/0] and find 
that 

fl[1 _ul]t+__R0[lu _ 1 ]=  F R(O--O)u ug 

Multiplying this by 1/u- l /g ,  using (3.1), (3.10), and (3.9), we get 

+ - ~< C([[F[[~ + 110 - 011~) ~< 
u ~ u u 

-< C(llFIr + IJF~lJ ~ +IPo - 0Jr51) -< c d  + II(v~, vt, o ~)ll ~, t >~ 1,  

which together with (3.9) and (3.13) gives 

(3.17) lu(x, t)-gl~<.<Ce~+Clu(x, 1 ) - g ] 2 +  

t 

+Cfll(v~, vt, O~l]2ds<<-C(eo2+Ae(t)), VxeR, t>~l. 
1 

Combining (3.9), (3.13)-(3.14), and (3.16)-(3.17), we obtain A(t) < ~{e02 +A2(t)} for t I> 
I> 0, where 5 I> 1 depends at most on g, 0, fi, R, c,, Jr, and 7. Hence we have 

(3.18) A(t) ~< 25eo 2 , for all t I> 0 

provided eo < min { 1/(2~), 1/(2C)}. 
From (3.18), (3.10), and (3.9) we conclude that 

(3.19) [u(x, t ) - ~  I +r t ) - ~ l  <.A'2(t)+cllo--olll/2ollo~[Y2< 

<.A1/2(t)+CeoAX/4(t)<~r~eo(l+C~o)<min{g,-O}/3, V x e R ,  t~>0 

provided eo < min {g/(6 V~), 0/(6 V~), 1 / (3c)  2, 1/(2~), 1/(2c)} =: e. 
For the initial data satisfying eo < e we thus have proved that under (3.1) the esti- 

mate (3.19) holds. Since (3.19) is valid for t = 0, by virtue of the continuity of u and 0, 
(3.19) remains valid for all t i> 0. Hence (3.9), (3.18) hold for all t I> 0. We now multiply 
(1.10) by uJu and integrate over R x (1, t). We make use of (1.9), (3.19), (3.9), and 

t e  [0, 1]. 
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(3.18) to deduce (cf. (2.40)) 

t 

(3.20) ~ u } ( x , t )  dx+  ]llu~ll2 ds<<.C(l +llu~(1)ll2)< ~ , t ~  l .  
R 1 

Similarly, if we multiply (1.10) resp. (1.11) by v~  resp. by  0 ~  and integrate over R • 
• (1, t), utilise (3.20), we have 

t 

(3.21) f(l[v~][2+[lo~][2)ds<.C(l+Nu~(1)][2)< ~ ,  t>~l .  
1 

From (3.18) and (3.20)-(3.21) we get by  the same argument  as used for (2.52) that  
I[u~(t)ll + IIv~(t)ll + 110~(t)ll-oO as t--~ ~ .  F rom this, (3.9), and I[. H~ ~< CII" II II~x'll, (1.20) 
follows immediately. The proof is complete. 
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