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Abstract. In this paper we analyze the decay and the growth for large time of weak

and strong solutions to the three-dimensional viscous Boussinesq system. We show that

generic solutions blow up as t→∞ in the sense that the energy and the Lp-norms of the

velocity field grow to infinity for large time for 1 ≤ p < 3. In the case of strong solutions

we provide sharp estimates both from above and from below and explicit asymptotic

profiles. We also show that solutions arising from (u0, θ0) with zero-mean for the initial

temperature θ0 have a special behavior as |x| or t tends to infinity: contrarily to the

generic case, their energy dissipates to zero for large time.

1. Introduction

In this paper we address the problem of the heat transfer inside viscous incompressible

flows in the whole space R3. Accordingly with the Boussinesq approximation, we neglect

the variations of the density in the continuity equation and the local heat source due to

the viscous dissipation. We rather take into account the variations of the temperature by

putting an additional vertical buoyancy force term in the equation of the fluid motion.

This leads us to the Cauchy problem for the Boussinesq system

(1.1)


∂tθ + u · ∇θ = κ∆θ

∂tu+ u · ∇u+∇p = ν∆u+ βθe3

∇ · u = 0

u|t=0 = u0, θ|t=0 = θ0.

x ∈ R3, t ∈ R+

Here u : R3×R+ → R3 is the velocity field. The scalar fields p : R3×R+ → R and θ : R3×
R+ → R denote respectively the pressure and the temperature of the fluid. Moreover,

e3 = (0, 0, 1), and β ∈ R is a physical constant. For the decay questions that we address

in this paper, it will be important to have strictly positive viscosities in both equations:

ν, κ > 0. By rescaling the unknowns, we can and do assume, without loss of generality,

that ν = 1 and β = 1. To simplify the notation, from now on we take the thermal diffusion

coefficient κ > 0 such that κ = 1.
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Like for the Navier–Stokes equations, obtained as a particular case from (1.1) putting

θ ≡ 0, weak solutions to (1.1) do exist, but their uniqueness is not known. The global

existence of weak solutions, or strong solutions in the case of small data has been studied

by several authors. See, e.g. [1], [11], [17], [18], [34]. Conditional regularity results for

weak solutions (of Serrin type) can be found in [9]. The smoothness of solutions arising

from large axisymmetric data is addressed in [2] and [24]. Further regularity issues on the

solutions have been discussed also [20, 15].

The goal of this paper is to study in which way the variations of the temperature affect

the asymptotic behavior of the velocity field. We point out that several different models are

known in the literature under the name of “viscous (or dissipative) Boussinesq system”.

The asymptotic behaviour of viscous Boussinesq systems of different nature have been

recently addressed, e.g., in [3, 12]. But the results therein cannot be compared with ours.

Only few works are devoted to the study of the large time behavior of solutions to (1.1).

See [21, 26]. These two papers deal with self-similarity issues and stability results for

solutions in critical spaces (with respect to the scaling). On the other hand, we will be

mainly concerned with instability results for the energy norm, or for other subcritical

spaces, such as Lp, with p < 3.

A simple energy argument shows that weak solutions arising from data θ0 ∈ L1 ∩ L2

and u0 ∈ L2
σ satisfy the estimates

‖u(t)‖2 ≤ C(1 + t)1/4

and

‖θ(t)‖2 ≤ C(1 + t)−3/4.

The above estimate for the temperature looks optimal, since the decay agrees with that

of the heat kernel. On the other hand the optimality of the estimate for the velocity field

is not so clear.

For example, in the particular case θ0 = 0, the system boils down to the Navier–

Stokes equations and in this simpler case one can improve the bound for the velocity into

‖u(t)‖2 ≤ ‖u0‖2. In fact, ‖u(t)‖2 → 0 for large time by a result of Masuda [28]. Moreover,

in the case of Navier–Stokes the decay of ‖u(t)‖2 agrees with the L2-decay of the solution

of the heat equation. See [35, 25, 39] for a more precise statement.

The goal of the paper will be to show that the estimate of weak solutions ‖u(t)‖2 ≤
C(1 + t)1/4 can be improved if and only if the initial temperature has zero mean. To

achieve this, we will establish the validity of the corresponding lower bounds for a class of

strong solutions.

In particular, this means that very nice data (say, data that are smooth, fast decaying

and “small” in some strong norm) give rise to solutions that become large as t→∞: our

results imply the growth of the energy for strong solutions :

(1.2) c(1 + t)1/4 ≤ ‖u(t)‖2 ≤ C(1 + t)1/4, t >> 1.



DECAY AND GROWTH OF SOLUTIONS OF BOUSSINESQ (September 17, 2011) 3

The validity of the lower bound in (1.2) (namely, the condition c > 0), will be ensured

whenever the initial temperature is sufficiently decaying but∫
θ0 6= 0.

We feel that is important to point out here an erratum to the paper [23]. Unfortunately,

the lower bound in (1.2) contredicts a result in [23, Theorem 2.3], where the authors

claimed that ‖u(t)‖2 → 0 under too general assumptions, weaker than those leading to our

growth estimate. The proof of their theorem (in particular, of inequalities (5.6) and (5.8)

in [23]) can be fixed by putting different conditions on the data, including
∫
θ0 = 0. This is

essentially what we will do in part (b) of our Theorem 2.2 below. Similarity, the statement

of Theorem 2.4 in [23] contredicts our lower bound (1.6) below (inequalities (5.18)–(5.20)

in their proof do not look correct). This will be also corrected by our Theorem 2.2. We

would like to give credit to the paper [23] (despite the above mentioned errata), because

we got from there inspiration for our results of Sections 3 and 4.

Our main tool for establishing the the lower bound will be the derivation of exact

pointwise asymptotic profiles of solutions in the parabolic region |x| >>
√
t. This will

require a careful choice of several function spaces in order to obtain as much information

as possible on the pointwise behavior of the velocity and the temperature. A similar

method has been applied before by the first author in [6] in the case of the Navier–Stokes

equations, although the relevant estimates were performed there in a different functional

setting.

Even though several other methods developped for Navier–Stokes could be effective for

obtaining estimates from below (see, e.g., [13, 22, 30]), our analysis has the advantage of

putting in evidence some features that are specific of the Boussinesq system: in particu-

lar, the different behavior of the flow when |x3| → ∞ or when
√
x2

1 + x2
2 → ∞, due to

the verticality of the bouyancy forcing term θe3 (see Theorem 2.6 below). Moreover, the

analysis of solutions in the region |x| >>
√
t and our use of weighted spaces completely

explains the phenomenon of the energy growth: the variations of the temperature push

the fluid particles in the far field; even though in any bounded region the fluid particles

slow down as t→∞ (this effect is measured e.g. by the decay of the L∞-norm established

in Proposition 2.5), large portions of fluid globally carry an increasing energy during the

evolution. Our result thus illustrates the physical limitations of the Boussinesq approxima-

tion, at least for the study of heat convection inside fluids filling domains where Poincaré’s

inequality is not available, such as the whole space.

In fact, our method applies also to weighted Lp-spaces, so let us introduce the weighted

norm

‖f‖Lpr =

(∫
|f(x)|p(1 + |x|)pr dx

)1/p

.

Then we will show that strong solutions starting from suitably small and well decaying

data satisfy, for t > 0 large enough,

(1.3) c(1 + t)
1
2

(r+ 3
p
−1) ≤ ‖u(t)‖Lpr ≤ C(1 + t)

1
2

(r+ 3
p
−1)

,
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for all

r ≥ 0, 1 < p <∞, r +
3

p
< 3.

As before in (1.2), these lower bounds hold true with a constant c > 0 as soon as the initial

temperature has non-zero mean. Notice that in this case the Lp-norms asymptotically blow

up for large time if and only if p < 3.

The above restriction r + 3
p < 3 on the parameters is optimal. Indeed, under the

same conditions yielding to (1.3) we will also prove that when r ≥ 0, 1 ≤ p < ∞ and

r + 3
p ≥ 3, then one has ‖u(t)‖Lpr =∞, for all t > 0. The fact that the Lpr-norm becomes

infinite instanteneously for this range of the parameters is related to that the velocity field

immediately spatially spreads out and cannot decay faster than |x|−3 as |x| → ∞ for t > 0,

and this even if u0 ∈ C∞0 (R3).

As we observed before, the lower bound in (1.3) brakes down when
∫
θ0 = 0. In such

case, our decay estimates can be improved. We will establish the upper bound for weak

solutions

(1.4) ‖u(t)‖2 ≤ C ′(1 + t)−1/4

by the Fourier splitting method. This method was first introduced in [35]. We will need no

smallness assumption on u0 to prove (1.4). We have to put however a smallness condition

of the form

(1.5) ‖θ0‖1 < ε0.

We do not know if it is possible to get rid of (1.5) to establish (1.4). Such smallness condi-

tion however looks natural as it respects the natural scaling invariance of the system (1.1).

As before, the decay estimate (1.4) is optimal for generic solutions satisfying
∫
θ0 = 0.

Indeed, when we start from localized and small velocity, we can establish the upper-lower

bounds for strong solutions

(1.6) c′(1 + t)
1
2

(r+ 3
p
−2) ≤ ‖u(t)‖Lpr ≤ C

′(1 + t)
1
2

(r+ 3
p
−2)

,

for all

r ≥ 0, 1 < p <∞, r +
3

p
< 4.

Similarily as before, the validity of the lower bound (the condition c′ > 0) now requires a

non vanishing condition in the first moments of θ.

1.1. Notations. We denote by C∞0 the space of smooth functions with compact support.

The Lp-will be denoted by ‖ · ‖p and in the case p = 2 we will simply write ‖ · ‖. Moreover,

V = {φ ∈ C∞0 | ∇ · φ = 0},

Lpσ denotes the completion of V under the norm ‖ · ‖p, and V the closure of V in H1
0

We will adopt the following convention for the Fourier transform of integrable functions:

Ff(ξ) = f̂(ξ) =
∫
f(x)e−2πix·ξ dx. Here and throughout the paper all integral without

integration limits are over the whole R3.

The notations Lp,q and Lpr have a different meaning. For 1 < p < ∞ and 1 ≤ q ≤ ∞,

Lp,q denotes the classical Lorentz space. For the definition and the basic inequalities
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concerning Lorentz spaces (namely the generalisation of the straightforward Lp-Lq Hölder

and Young convolution inequalities) the reader can refer to [27, Chapter 2]. Here we just

recall that Lp,p agrees with the usual Lebesgue space Lp, and Lp,∞ agrees with the weak

Lebesgue space Lpw (or Marcinkiewicz space)

Lpw = {f : Rn → C, measurable , ‖f‖Lpw <∞}.

The quasi-norm

‖f‖Lpw = sup
t>0

t[λf (t)]
1
p

is equivalent to the natural norm on Lp,∞, for 1 < p <∞. Here as it is usual we defined

λf (s) = λ{x : f(x) > s}

where λ denotes the Lebesgue measure. On the other hand, for 1 ≤ p ≤ ∞ and 0 ≤ r ≤ ∞,

Lpr is the weighted Lebesgue space, consisting of the functions f such that (1+ |x|)qf ∈ Lp.
Notice that the bold subscript σ introduced above is not a real parameter: in the notation

Lpσ, this subscript simply stands for “solenoidal”.

To denote general constants we use C which may change from line to line. In certain

cases we will write C(α) to emphasize the constants dependence on α.

We denote by et∆ the heat semigroup. Thus, et∆u0 =
∫
gt(x − y)u0(y) dy, where

gt(x) = (4π)−3/2e−|x|
2/(4t) is the heat kernel.

We denote by E(x) the fundamental solution of −∆ in R3. The partial derivatives of

E are denoted by Exj , Exj ,xk , etc.

1.2. Organization of the paper. All the main results are stated without proof in Sec-

tion 2. The statement of our theorems are splitted into two parts: part (a) is devoted to

the properties of solutions in the general case (where the integral
∫
θ0 is not necessarily

zero). In Part (b) of our theorems we are concerned with the special case
∫
θ0 = 0.

The rest of the paper is organized as follows. Sections 3-4 are devoted to the proof of

our results on weak solutions and Sections 5-6 to strong solutions. In Section 7 we collect

a few technical remarks.

2. Statement of the main results

2.1. Results on weak solutions. We will consider weak solutions to the viscous Boussi-

nesq equations and establish existence and natural decay estimates in Lp spaces, 1 ≤ p <
∞, for the temperature, together with bounds for the growth of the velocities. Such esti-

mates rely on the fact that in both equations of the system (1.1) we have a diffusion term.

They complete those of obtained in [16] where there was no temperature diffusion.

We start recalling the basic existence result of weak solutions to the system (1.1). See,

e.g., [9, 16].

Proposition 2.1. Let (θ0, u0) ∈ L2 × L2
σ. There exists a weak solution (θ, u) of the

Boussinesq system (1.1), continuous from R+ to L2 with the weak topology, with data

(u0, θ0) such that, for any T > 0,

θ ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2
σ), u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2

σ).
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Such solution satisfies, for all t ∈ [0, T ], the energy inequalities

(2.1) ‖θ(t)‖2 + 2

∫ t

0
‖∇θ(s)‖2 ds ≤ ‖θ0‖2.

and

(2.2) ‖u(t)‖2 + 2

∫ t

0
‖∇u(s)‖2 ds ≤ +C

(
‖u0‖+ t2‖θ0‖2

)
for all t ≥ 0, and some absolute constant C > 0.

One can improve the growth estimate on the velocity as soon as θ0 belongs to some Lp

space, with p < 2. For simplicity we will consider only the case θ0 ∈ L1 ∩ L2.

Moreover, it is natural to ask under which supplementary conditions on the initial

data one can insure that the energy of the fluid ‖u(t)‖2 remains uniformly bounded.

Theorem 2.2 provides an answer. Beside a smallness assumption on ‖θ0‖1, we need to

assume that
∫
θ0 = 0.

In addition, it is possible to prove that ‖u(t)‖ not only remains uniformly bounded, but

actually decays at infinity (without any rate). Explicit decay rates for ‖u(t)‖ can also be

prescribed provided the linear part e∆u0 decays at the appropriate rate.

Theorem 2.2. (a) Let (θ0, u0) ∈ L2 × L2
σ. Under the additional condition θ0 ∈ L1

the estimates on the weak solution constructed in Proposition 2.1 can be improved

into

‖θ(t)‖2 ≤ C(t+ 1)−
3
2 ,

‖u(t)‖2 ≤ C(t+ 1)
1
2 ,

(2.3)

Moreover, if θ0 ∈ L1 ∩ Lp, for some 1 ≤ p <∞, then

‖θ(t)‖p ≤ C(p)(t+ 1)
− 3

2
(1− 1

p
)
.

(b) (The
∫
θ0 = 0 case) In this part we additionally assume θ0 ∈ L1

1 and
∫
θ0 = 0.

Then there exists an absolute constant ε0 > 0 such that if

(2.4) ‖θ0‖1 < ε0

then the weak solution of the Boussinesq system (1.1) constructed in Proposi-

tion 2.1 satisfies, for some constant C > 0 and all t ∈ R+,

‖θ(t)‖2 ≤C(1 + t)−
5
2(2.5)

and

‖u(t)‖2 → 0 as t→∞.(2.6)

Moreover under the additional condition u0 ∈ L3/2 ∩ L2
σ, we have

‖u(t)‖2 ≤C(1 + t)−1/2.(2.7)
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The proof of part (a) of Theorem 2.2 is straightforward. Part (b) is more subtle: its

proof relies on an inductive argument: assuming that the approximate velocity un−1 grows

in L2 at most like t1/8 (which is actually better than provided by Proposition 2.1) we can

prove that the same growth estimate remains valid for un. A smallness condition on θ0 is

needed to insure that in the inequality ‖un(t)‖ ≤ C(1 + t)1/8 the constant can by taken

independently on n. With this improved control on the growth of the velocity, applying

the Fourier splitting method (introduced in [35]) and a few boot-strapping we can improve

our estimates up to the rates given in (2.5) and (2.7).

Remark 2.3. Solutions of the Boussinesq system (1.1) with energy decaying faster than t−1/2

might exist, but they are likely to be highly non-generic. Indeed, it seems difficult to

construct such solutions assuming only that the data belong to suitable function spaces

(possibly with small norms). The main obstruction is that one would need stringent can-

cellations properties on the data, which however turn out to be non-invariant under the

Boussinesq flow. A possible way to obtain such fast decaying solutions would be to start

with data satisfying some special rotational symmetries, as those described in [5].

2.2. Results on strong solutions. The best way to prove the optimality of the estimates

contained in Theorem 2.2 is to establish the corresponding lower bound estimates at least

for a subclass of solutions. For the study of the estimates from below we will limit our

considerations to a class of strong solutions. This is not a real restriction as lower bound

estimates established for solutions emanating from well localized, smooth and small data

are expected to remain valid in the larger class of weak solutions. Studying strong solutions

has also the advantage of better putting in evidence some interesting properties specific of

the Boussinesq system, such as the influence of the vertical buoyancy force on the pointwise

behavior of the fluid in the far-field.

The existence of strong solutions to the system (1.1) will be insured by a fixed point

theorem in function spaces invariant under the natural scaling of the equation. Thus, if

u ∈ X , where X is a Banach space to be determined, we want to have, for all λ > 0,

‖uλ‖X = ‖u‖X , where uλ(x, t) = λu(λx, λ2t)

is the rescaled velocity. A suitable choice for norm of the space X , inspired by [10], is

(2.8) ‖u‖X = ess sup
x∈R3, t>0

(
√
t+ |x|)

∣∣u(x, t)
∣∣.

This choice for X is quite natural. Indeed, whenever |u0(x)| ≤ C|x|−1, the linear evolution

et∆u0 belongs to X and this paves the way for the application of the fixed point theorem

in such space.

More precisely, we define X as the Banach space of all locally integrable divergence-free

vector fields u such that ‖u‖X < ∞, and continuous with respect to t in the following

usual sense: u(t)→ u(0) in the distributional sense as t→ 0 and ess supx∈R3 |x| |u(x, t)−
u(x, t′)| → 0 as t→ t′ if t′ > 0.

In the same way, if θ belongs to a Banach space Y, we want to have

‖θλ‖Y = ‖θ‖Y , where θλ(x, t) = λ3θ(λx, λ2t)
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is the rescaled temperature. We then define a Banach space Y of scalar functions through

the norm

(2.9) ‖θ‖Y = ‖θ‖L∞t (L1) + ess sup
x∈R3, t>0

(
√
t+ |x|)3

∣∣θ(x, t)∣∣
and the natural continuity condition on the time variable as before.

The starting point of our analysis will be the following proposition providing a simple

construction of mild solutions (u, θ) ∈ X×Y. We will refer to them also as strong solutions.

Indeed, one could prove that such solutions turn out to be smooth, as one could check by

adapting to the system (1.1) classical regularity criteria for the Navier–Stokes equations

like that of Serrin [37]. See the paper [9]. The smoothness of these solutions, however,

plays no special role in our arguments.

Proposition 2.4. There exists an absolute constant ε > 0 such that if

(2.10) ‖θ0‖1 < ε, ess sup
x∈R3

|x|3|θ0(x)| < ε, ess sup
x∈R3

|x| |u0(x)| < ε

where u0 is a divergence-free vector field, then there is a constant C > 0 and a (mild)

solution (u, θ) ∈ X × Y of (1.1), such that

(2.11) ‖u‖X ≤ Cε and ‖θ‖Y ≤ Cε.

Moreover, these conditions define u and θ uniquely.

Next Proposition shows it is possible to obtain better space-time decay estimates pro-

vided one starts with suitably decaying data.

Proposition 2.5. (a) Let u0 and θ0 as in Proposition 2.4, and satisfying the addi-

tional decay estimates, for some 1 ≤ a < 3, b ≥ 3, and a constant C > 0,

|u0(x)| ≤ C(1 + |x|)−a,

|θ0(x)| ≤ C(1 + |x|)−b.
(2.12)

Then the solution constructed in Proposition 2.4 satisfies, for another constant

C > 0 independent on x and t,

(2.13) |u(x, t)| ≤ C inf
0≤η≤a

|x|−η(1 + t)(η−1)/2

and

(2.14) |θ(x, t)| ≤ C inf
0≤η≤b

|x|−η(1 + t)(η−3)/2.

(b) (the
∫
θ0 = 0 case) Assume now 2 ≤ a < 4, a 6= 3, and b ≥ 4 and let u0 and θ0

satisfying the previous assumptions. If, in addition,

(2.15)

∫
θ0 = 0 and θ0 ∈ L1

1,

then the decay of u and θ is improved as follows:

|u(x, t)| ≤ C inf
0≤η≤a

(1 + |x|)−η(1 + t)(η−2)/2,

|θ(x, t)| ≤ C inf
0≤η≤b

(1 + |x|)−η(1 + t)(η−4)/2.
(2.16)
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Recall that the fundamental solution of −∆ in R3 is E(x) = c|x|−1. Thus, in the

following asymptotic expansions, ∇Ex3 and ∇Exh,x3 are vectors whose components are

homogeneous functions of degree −3 and −4 respectively. In particular |∇Ex3(x)| ≤
C|x|−3 and |∇Exj ,x3(x)| ≤ C|x|−4.

We are now in the position of stating our main results on strong solutions. The first

theorem describes the asymptotic profiles of solutions in the parabolic region |x| >>
√
t.

Roughly, it states that all sufficiently decaying solutions (u, θ) of (1.1) behave in such

region like a potential flow.

Theorem 2.6.

(a) Let a > 3
2 and b > 3. Let (u, θ) be a (mild) solution of (1.1) satisfying the decay

estimates (2.13)-(2.14). Then the following profile for u holds:

(2.17) u(x, t) = et∆u0(x) +

(∫
θ0

)
t
(
∇Ex3

)
(x) + R(x, t)

where R(x, t) is a lower order term with respect to t∇Ex3(x) for |x| >>
√
t,

namely,

(2.18) lim
|x|√
t
→∞

R(x, t)

t|x|−3
= 0.

(b) (the
∫
θ0 = 0 case) Assume now a > 2 and b > 4. Assume also that

∫
θ0 = 0.

Let (u, θ) be a solution satisfying the decay condition (2.16). Then the following

profiles for uj (j = 1, 2, 3) hold:

(2.19) uj(x, t) = et∆u0(x)−∇Exjx3(x) ·
(∫ t

0

∫
y θ(y, s) dy ds

)
+ R̃(x, t)

where R̃ is a lower order term for |x| >>
√
t >> 1, namely

(2.20) lim
t,
|x|√
t
→∞

R̃(x, t)

t|x|−4
= 0.

The following remark should give a better understanding of the theorem.

Remark 2.7. (a) (The case
∫
θ0 6= 0). We deduce from the asymptotic profile (2.17)

the following: when |et∆u0(x)| << t|x|−3 (this happens, e.g., when we assume also

|u0(x)| ≤ C|x|−3 and |x| >>
√
t >> 1) and

∫
θ0 6= 0 then

(2.21) u(x, t) '
(∫

θ0

)
t
(
∇Ex3

)
(x), for |x| >>

√
t.

(The exact meaning of our notation and of statements (2.21) and (2.22) below is

made precise in the proof).

(b) (The
∫
θ0 = 0 case) We deduce from the profile (2.19) the following: when

|et∆u0(x)| << t|x|−4 (this happens, e.g., when we assume also |u0(x)| ≤ C|x|−4

and |x| >>
√
t >> 1) then

(2.22) uj(x, t) ' −∇Exjx3(x) ·
(∫ t

0

∫
y θ(y, s) dy ds

)
for |x| >>

√
t >> 1.
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A remarkable consequence of the previous theorem is the following.

Corollary 2.8.

(a) Let a > 3
2 , b > 3 and let (u, θ) be a solution as in Part (a) of Theorem 2.6. Then

for all r, p such that

r ≥ 0, 1 < p <∞, r +
3

p
< min{a, 3},

there exists t0 > 0 such that the solution satisfies the upper and lower estimates in

the weighted-Lp-norm

(2.23) φ(|m0|)
(
1 + t

) 1
2

(r+ 3
p
−1) ≤ ‖u(t)‖Lpr ≤ C

′(1 + t
) 1

2
(r+ 3

p
−1)

for all t ≥ t0. Here, m0 =
∫
θ0 and φ : R+ → R is some continuous function such

that φ(0) = 0 and φ(σ) > 0 if σ > 0.

(b) (the
∫
θ0 = 0 case) Under the assumptions of the previous item, with the stronger

conditions a > 2, b > 4 and the additional zero mean condition m0 = 0, let us set

m̃ = lim inft→∞
1
t

∣∣∣∫ t0∫ yθ(y, s) dy ds∣∣∣. Then, for all r, p such that

r ≥ 0, 1 < p <∞, r +
3

p
< min{a, 4},

we have

(2.24) φ
(
m̃
) (

1 + t
) 1

2
(r+ 3

p
−2) ≤ ‖u(t)‖Lpr ≤ C

′(1 + t
) 1

2
(r+ 3

p
−2)

for another suitable continuous function φ : R+ → R such that φ(0) = 0 and

φ(σ) > 0 for σ > 0.

Remark 2.9. When
∫
θ0 6= 0, we thus get by (2.23) the sharp large time behavior ‖u(t)‖Lpr '

t
1
2

(r+ 3
p
−1)

.

When
∫
θ0 = 0 and m̃ 6= 0 we have the faster sharp decay ‖u(t)‖Lpr ' t

1
2

(r+ 3
p
−2)

. The

condition m̃ 6= 0 is satisfied for generic solutions. It prevents θ to have oscillations at

large times.

3. The mollified Boussinesq system and existence of weak solutions

The existence of weak solutions to the Boussinesq system is well known, see [9]. Their

uniqueness, however, is an open problem. Moreover, we do not know if any weak solutions

satisfy the energy inequality and the decay estimates stated in Proposition 2.1. For this

reason, we now briefly outline another construction of weak solutions, which is well suited

for obtaining all our estimates.

We begin by introducing a mollified Boussinesq system. As the construction below is

a straightworward adaptation of that of Caffarelli, Kohn and Nirenberg, [8], we will be

rather sketchy. For completeness we recall the definition of the “retarded mollifier” as

given in [8]. Let ψ(x, t) ∈ C∞ such that

ψ ≥ 0,

∫ ∞
0

∫
ψdx dt = 1, suppψ ⊂ {(x, t) : |x|2 < t, 1 < t < 2}.
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For T > 0 and u ∈ L2(0, T ;L2
σ), let ũ : R3 × R→ R3 be

ũ =

{
u(x, t) if (x, t) ∈ R3 × (0, T ),

0 otherwise.

Let δ = T/n. We set

Ψδ(u)(x, t) = δ−4

∫
R4

ψ
(y
δ
,
τ

δ

)
ũ(x− y, t− τ) dydτ.

Consider, for n = 1, 2, . . . and δ = T/n, the mollified Cauchy problem

(3.1)


∂tθ

n + Ψδ(u
n−1) · ∇θn = ∆θn

∂tu
n +∇ · (Ψδ(u

n)⊗ un) +∇pn = ∆un + θne3

∇ · un = 0.

x ∈ R3, t ∈ R+

with data

(3.2) θn|t=0 = θ0 and un|t=0 = u0.

The iteration scheme starts with u0 = 0.

Note that since divu = 0, we also have div (Ψδ(u
n)) = 0, for t ∈ R+. At each step n, one

solves recursively n+ 1 linear equations: first one solves the transport-diffusion equation

(with smooth convective velocity) for the temperature; after θn is computed, solving the

second of (3.1) amounts to solving a linear equation on each strip R3 × (mδ, (m+ 1)δ),

for m = 0, 1, . . . , n− 1.

For solutions to (3.1) we have the following existence and uniqueness result,

Proposition 3.1. Let (θ0, u0) ∈ L2 × L2
σ. For each n ∈ {1, 2, . . . } there exists a unique

weak solution (θn, un, pn) of the approximating equations with data (3.2) such that, for

any T > 0,

θn ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2), un ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2
σ)

and

pn ∈ L5/3(0, T ;L5/3) + L∞(0, T ;L6)

Moreover, for all t > 0, θn and un satisfy the energy inequalities as in (2.1) and (2.2).

In particular, the sequences θn, un and pn, n = 1, 2, . . . are bounded in their respective

spaces.

Proof.

This can be proved using the Faedo-Galerkin method. As the the argument is standard

(see, e.g. [38, Theorem 1.1, Chapter III], or [8, Appendix]), we skip the details. We only

prove the condition on the pressure since this is the only change that we have to make

in [8].

Taking the divergence of the second equation in (3.1) we get p = pn1 + pn2 , where

∆pn1 = −
∑
i,j

∂i∂j(u
n
i u

n
j )

and

∆pn2 = ∂x3θ
n.
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Thus, pn1 ∈ L5/3(0, T ;L5/3) uniformly with respect to n, by the energy inequality for un,

interpolation, and the Calderon-Zygmund theorem, as proved in [8]. On the other hand,

−pn2 = Ex3 ∗ θ, where E(x) is the fundamental solution of −∆. Thus, Ex3(x) = c x3
|x|3

belongs to the Lorentz space L3/2,∞(R3). But θn ∈ L∞(0, T ;L2) uniformly with respect

to n, hence Young convolution inequality in Lorentz spaces (see [27, Chapter 2]) yields

pn2 ∈ L∞(0, T ;L6) uniformly with respect to n.

�
It follows from Proposition 3.1 that, extracting suitable subsequences, pn = pn1 + pn2 ,

where (pn1 ) converges weakly in L5/3(0, T ;L5/3) and pn2 converges in L∞(0, T ;L6) in the

weak-* topology. Moreover, (un) is convergent with respect to the topologies listed in [8, p.

828-829]. On the other hand (θn) will be convergent with respect to the same topologies,

because all estimates available for un hold also for θn.

No additional difficulty in the passage to the limit in the nonliner terms arises, in the

equation of the temperature other those already existing for the Navier–Stokes equations.

Hence, the distributional limit (θ, u, p) of a convergent subsequence of (θn, un, pn) is a

weak solutions of the Boussinesq system. This establishes Proposition 2.1.

�

We finish this section by establishing the natural Lp-estimates for the approximating

temperatures:

Lemma 3.2. Let (θ0, u0) ∈ L2 × L2
σ and let (θn, un, pn) be the solution of the mollified

Boussinesq system (3.1) for some n ∈ {1, 2, . . .}. Let also 1 ≤ p < ∞. If θ0 ∈ L1 ∩ Lp,
then

(3.3) ‖θn(t)‖p ≤ ‖θ0‖1
(c t
p

+A
)− 3

2
(1− 1

p
)
,

where A = A(p, ‖θ0‖1, ‖θ0‖p) and c > 0 is an absolute constant.

Proof. First notice that, for each n, θn is the solution of a linear transport-diffusion

equation with smooth and divergence-free velocity Ψ(un−1). The Lp decay estimates for

these equations are well known. We reproduce the same proof as in [14, 19]) expliciting

better the constants, as we will need the expressions of such constants later on.

A basic estimate (valid for 1 ≤ p ≤ ∞) is

(3.4) ‖θn(t)‖p ≤ ‖θ0‖p.

See [14, Corollary 2.6] for a nice proof of (3.4) that remains valid in the much more general

case of trasport equations with (or without) fractional diffusion.

We start with the case 2 ≤ p <∞. Multiplying the equation for θn by p|θn|p−2θn and

integrating we get

d

dt
‖θn(t)‖pp +

4(p− 1)

p
‖∇(|θn|p/2)(t)‖2 ≤ 0.

By the Sobolev embedding theorem, Ḣ1 ⊂ L6, hence

‖θn(t)‖p3p ≤ C‖∇(|θn|p/2)(t)‖2.
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The interpolation inequality yields

‖θn(t)‖p ≤ ‖θn(t)‖2/(3p−1)
1 ‖θn(t)‖3(p−1)/(3p−1)

3p .

Combining these two inequalities with the basic estimate ‖θn(t)‖1 ≤ ‖θ0‖1, we obtain the

differential inequality

d

dt
‖θn(t)‖pp ≤ −

4(p− 1)

Cp‖θ0‖2p/(3p−3)
1

(
‖θn(t)‖pp

)1+ 2
3p−3 .

Integrating this we get

‖θn(t)‖pp ≤
(

8 t

3Cp‖θ0‖(2p)/(3p−3)
1

+
1

‖θ0‖(2p)/(3p−3)
p

)−3(p−1)/2

.

and estimate (3.3) follows with

A =

(
‖θ0‖1
‖θ0‖p

)(2p)/(3p−3)

.

The case 1 ≤ p < 2 is deduced by interpolation.

�

In the p = 2 case, we obtain the following

Lemma 3.3. Let θ0 ∈ L1∩L2 and u0 ∈ L2
σ. Let (θn, un, pn) be the solution of the mollified

Boussinesq system (3.1) for some n ∈ {1, 2, . . .}. Then,

‖θn(t)‖ ≤ ‖θ0‖1
(
C t+A0

)−3/4
,

‖un(t)‖ ≤ ‖u0‖+ C ′‖θ0‖1 t1/4,
(3.5)

for two absolute constants C,C ′ > 0 and A0 =
(
‖θ0‖1/‖θ0‖2

)4/3
.

Proof. We only have to estimate the L2 norm of the velocity. We make use of the identity

d

dt
‖un(t)‖22 =

∫
un∂tu

n,

that can be justified exactly as for the mollified Navier-Stokes equations, see [8] and [35].

Multiplying the velocity equation in the Boussinesq system (3.1) by un and integrating

we get

(3.6)
d

dt
‖un(t)‖2 + 2‖∇un(t)‖2 ≤ 2‖un(t)‖‖θn(t)‖.

Dividing by ‖un(t)‖,
d

dt
‖un(t)‖ ≤ ‖θn(t)‖.

Now we use the decay of ‖θn(t)‖ obtained in Lemma 3.2. Integrating we obtain the second

of (3.5).

�
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4. Improved bounds for weak solution in the case
∫
θ0 = 0

The estimates obtained in Lemma 3.3 can be considerably improved provided we ad-

ditionally assume
∫
θ0 = 0 and the moment condition θ0 ∈ L1

1. First of all, from an

elementary heat kernel estimate one easily checks that in this case

(4.1) ‖et∆θ0‖2 ≤ A1(t+ 1)−5/2,

where A1 > 0 depends only on the data, through its L2-norm and the
∫
|x| |θ0(x)| dx

integral.

We will now see that in this case the approximated temperature θn(t) also decays at

the faster rate (t+ 1)−5/4 in the L2-norm. Using this new decay rate for θn it is possible

to show that the velocities are uniformly bounded in L2. Once we have a solution such

that ‖un(t)‖ remains bounded as t → ∞ one can go further and prove that un actually

decays at infinity in L2 at some algebraic decay rate, depending on the decay of the linear

evolution et∆u0. In view of the passage to the limit from the mollified system (3.1) to the

Boussinesq system (1.1), all the estimates must be independent on n.

Proposition 4.1. Let (θ0, u0) ∈ (L1
1 ∩ L2) × L2

σ and assume
∫
θ0 = 0. There exists an

absolute constant ε0 > 0 such that if

(4.2) ‖θ0‖1 < ε0

then the solution of the mollified Boussinesq system (3.1), with data (u0, θ0) satisfies

‖θn(t)‖2 ≤A(1 + t)−
5
2(4.3)

and

‖un(t)‖2 ≤ A(4.4)

for all n ∈ N and t ∈ R+. Here A > 0 is some constant depending on the data u0 and θ0,

and independent on n, and t.

Proof. We denote by C a positive absolute constant, which may change from line to

line. We also denote by A1, A2, . . . positive constants that depend only on the data. More

precisely, Aj = Aj
(
‖θ0‖, ‖θ0‖L1

1
, ‖u0‖

)
.

Step 1: An auxiliary estimate.

We make use of the Fourier splitting method introduced in [35]. The first step consists

in multiplying the temperature equation by θn and to integrate by parts. Using the

Plancherel theorem in the energy inequality for θn, we get

1

2

d

dt

∫
|θ̂n(ξ, t)|2 dξ ≤ −

∫
|ξ|2|θ̂n(ξ, t)|2 dξ

Now split the integral on the right hand side into S ∪ Sc, where

(4.5) S =

{
ξ : |ξ| ≤

(
k

2(t+ 1)

)1/2
}
,
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and k is a constant to be determined below. Noting that for ξ ∈ Sc one has −|ξ|2 ≤
− k

2(t+1) , it follows that

d

dt

∫
|θ̂n(ξ, t)|2 dξ ≤ − k

t+ 1

∫
Sc
|θ̂n(ξ, t)|2

= − k

t+ 1

∫
|θ̂n(ξ, t)|2 dξ +

k

t+ 1

∫
S
|θ̂n(ξ, t)|2 dξ.

Multiplying by (1 + t)k we obtain

(4.6)
d

dt

[
(1 + t)k

∫
|θ̂n(ξ, t)|2 dξ

]
≤ k(t+ 1)k−1

∫
S
|θ̂n(ξ, t)|2dξ,

where S is as in (4.5).

Taking the Fourier transform in the equation for θn in (3.1) we get

(4.7) |θ̂n(ξ, t)|2 ≤ 2|e−t|ξ|2 θ̂0|2 + 2|ξ|2
(∫ t

0
‖un−1(s)‖ ‖θn(s)‖ds

)2

.

Hence∫
S
|θ̂n(ξ, t)|2 dξ ≤ C

[
‖e−|ξ|2tθ0‖2 + (1 + t)−5/2

(∫ t

0
‖un−1(s)‖ ‖θn(s)‖ ds

)2
]
.

Replacing this in (4.6) and applying the Plancherel theorem we get

d

dt

[
(1 + t)k‖θn(t)‖2

]
≤ C

[
‖et∆θ0‖2(1 + t)k−1 + (1 + t)k−7/2

(∫ t

0
‖un−1‖ ‖θn‖ds

)2
]
.

From where it follows, letting k = 7/2,

‖θn(t)‖2 ≤ (1 + t)−7/2

{
‖θ0‖2 + C

[(∫ t

0
‖es∆θ0‖2(1 + s)5/2ds

)
+

∫ t

0

(∫ s

0
‖un−1(r)‖ ‖θn(r)‖dr

)2

ds

]}
.

(4.8)

Recalling the estimate (4.1) for the linear evolution we get, for all n ∈ N,

(4.9) ‖θn(t)‖2 ≤ C

[
A1(1 + t)−5/2 + (1 + t)−7/2

∫ t

0

(∫ s

0
‖un−1(r)‖ ‖θn(r)‖dr

)2

ds.

]
We now use the following inequality, deduced from estimate (3.5),

(4.10) ‖θn(t)‖ ≤ C ‖θ0‖1 t−3/4.

Putting this inside (4.9) we obtain a new bound for ‖θn‖2, namely

(4.11)

‖θn(t)‖2 ≤ C

[
A1(1 + t)−5/2 + ‖θ0‖21(1 + t)−7/2

∫ t

0

(∫ s

0
‖un−1(r)‖ r−3/4 dr

)2

ds.

]

Step 2: The inductive argument.

We will now prove by induction that, for all positive integer n we have

‖un−1(t)‖ ≤ ‖u0‖+Mt1/8(4.12)
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where M > 0 is some constant independent on n (but possibly dependent on the data θ0,

u0) to be determined. Notice that estimate (4.12) is actually better than what we have so

far (compare with the second of (3.5)).

For n = 1 the inductive condition (4.12) is immediate since u0 = 0. Let us now prove

that ‖un‖ ≤ ‖u0‖+Mt1/8 assuming that (4.12) holds true.

We get from (4.11) and the induction assumption (4.12)

‖θn(t)‖2 ≤ C
[
A1(1 + t)−5/2 + ‖θ0‖21‖u0‖2(1 + t)−2 +M2‖θ0‖21(1 + t)−7/4

]
.

This implies

(4.13) ‖θn(t)‖ ≤ C
[√

A1 + ‖θ0‖1
(
‖u0‖+M

)]
(1 + t)−7/8.

This last inequality will be used to estimate ‖un‖ as follows. First recall that

(4.14)
d

dt
‖un(t)‖ ≤ ‖θn(t)‖.

After an integration in time we get, using (4.13),

‖un(t)‖ ≤ ‖u0‖+ C

[√
A1 + ‖θ0‖1

(
‖u0‖+M

)]
t1/8.

For the induction argument we need to prove ‖un‖ ≤ ‖u0‖+Mt1/8. Hence we need that

C

[√
A1 + ‖θ0‖1

(
‖u0‖+M

)]
≤M.

Choosing M large enough, for example,

M = max{‖u0‖, 2C
√
A1},

our condition then boils down to the inequality

‖θ0‖1 ≤ 1/(4C).

The validity this last inequality is insured by assumption (4.2). This concludes the induc-

tion argument and establishes the validity of the estimate (4.12) for all n.

Step 3: Uniform bound for the L2-norm of the velocities un.

The result of Step 2 implies the existence of a constant A2 > 0 such that, for all n ≥ 1,

(4.15) ‖un−1(t)‖2 ≤ A2(1 + t)1/4.

In the proof of the previous Step we also deduced that, for some A3 > 0,

‖θn(t)‖2 ≤ A3(1 + t)−7/4.

Combining such two estimates with inequality (4.9) we easily get

‖θn(t)‖2 ≤ A4(1 + t)−2.

Now using this improved estimate for ‖θn‖2 with (4.15) in (4.9) arrive at

‖θn(t)‖2 ≤ A5(1 + t)−9/4.
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Going back to the differential inequality (4.14) we finally get, for some constant A6 > 0

independent on n, and t ∈ R+,

‖un(t)‖2 ≤ A6.

Replacing in (4.9) we can further improve the decay of θn up to

‖θn(t)‖2 ≤ A7(1 + t)−5/2.

�

We now would like to improve the result of the previous Proposition by establishing

decay properties for ‖un(t)‖2. Specifically, if we assume in addition that the linear part

of the velocity satisfies ‖et∆u0‖2 ≤ C(1 + t)−1/2 (this happens e.g. when u0 ∈ L3/2 ∩L2
σ),

then the same decay holds for the approximate velocities un.

Proposition 4.2. Let (θ0, u0) ∈ (L1
1 ∩L2)×L2

σ). Assume also that
∫
θ0 = 0 and ‖θ0‖1 <

ε0, where ε0 is the constant obtained in the previous proposition.

Then the approximate solutions of (3.1) satisfy,

‖un(t)‖ → 0, as t→∞,

uniformly with respect to n. Moreover, if u0 ∈ L3/2 ∩ L2
σ, then

(4.16) ‖un(t)‖2 ≤ A(1 + t)−1/2,

for some constant A > 0 independent on n, and t.

Proof. We denote by A > 0 a constant depending only on the data that might change from

line to line. The proof follows by Fourier Splitting. Since the estimates are independent

of n, we simply denote the solutions by (θ, u). Multiply the second equation in (3.1) by

u, integrate in space. By Proposition 4.1 we get

(4.17)
d

dt
‖u(t)‖2 + 2‖∇u‖2 ≤ C(t+ 1)−

5
4

Arguing as for the proof of inequality (4.6) we obtain

(4.18)
d

dt

[
(t+ 1)k‖u(t)‖2

]
≤ Ck(t+ 1)k−1

∫
S
|û(ξ, t)|2 dξ + C(t+ 1)k−

5
4

Where S was defined in (4.5). From now on, k = 7/2.

We need to estimate |û(ξ, t)| for ξ ∈ S. Computing the Fourier transform in the equation

for u in (3.1), next applying the estimate ‖u(t)‖2 ≤ A obtained in Proposition 4.1 we get

|û(ξ, t)| ≤ e−t|ξ|2 |û0|+ |ξ|
∫ t

0
‖u(s)‖2 ds+

∫ t

0
|θ̂(ξ, s)| ds

≤ e−t|ξ|2 |û0|+At|ξ|+
∫ t

0
|θ̂(ξ, s)| ds.

But computing the Fourier transform in the equation for θ in (3.1) and applying once

more the estimates of Proposition 4.1 we have

|θ̂(ξ, s)| ≤ e−s|ξ|2 |θ̂0|+A|ξ| ≤ |θ̂0(ξ)|+A|ξ|

Hence,

(4.19) |û(ξ, t)|2 ≤ A
[
e−2t|ξ|2(|û0|2 + |θ̂0|2

)
+ t2|ξ|2

]
.
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Integrating on S and applying inequality (4.1) we deduce∫
S
|û(ξ, t)|2 dξ ≤ A

[
‖et∆u0‖2 + (1 + t)−1/2

]
.

Putting this inside (4.18) and integrating on an interval of the form [tε, t], with ε > 0

arbitrary and tε chosen in a such way ‖et∆u0‖2 < ε for t ≥ tε, we obtain

‖u(t)‖ → 0, as t→∞.

On the other hand, in the case u0 ∈ L3/2 ∩ L2
σ, we have∫

S
|û(ξ, t)|2 dξ ≤ A(1 + t)−1/2.

Now going back to (4.18) and integrating in time we finally get

‖u(t)‖2 ≤ A(1 + t)−1/2.

�

We are now in the position of deducing our result on weak solutions to the Boussinesq

system (1.1).

Proof of Theorem 2.2. Now this is immediate: passing to a subsequence, the approxi-

mate solutions θn and un converge in L2
loc(R+,R3) to a weak solution (θ, u) of the Boussi-

nesq system (1.1). Moreover, the previous Lemmata imply that θn and un satisfy estimates

of the form

‖vn(t)‖ ≤ f(t), for all t > 0,

where f(t) is a continuous function independent on n. Then the same estimate must

hold for the limit θ and u, except possibly points in a set of measure zero. But since weak

solutions are necessarily continuous from [0,∞) to L2 under the weak topology, ‖θ(t)‖ and

‖u(t)‖ are lower semi-continuous and hence they satisfy the above estimate for all t > 0.

This observation on the weak semi-continuity is borrowed from [25].

�

5. Strong solutions: preliminary lemmata

The integral formulation for the Boussinesq system, formally equivalent to (1.1) reads

(5.1)


θ(t) = et∆θ0 −

∫ t

0
e(t−s)∆∇ · (θu)(s) ds

u(t) = et∆u0 −
∫ t

0
e(t−s)∆P∇ · (u⊗ u)(s) ds+

∫ t

0
e(t−s)∆Pθ(s)e3 ds.

∇ · u0 = 0

The above system will be solved applying the following abstract lemma, which slightly

generalizes that of G. Karch et N. Prioux (see [26, Lemma 2.1]).
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Lemma 5.1. Let X and Y be two Banach spaces, let B : X ×X → X and B̃ : Y ×X → Y
be two bilinear maps and L : Y → X a linear map satisfying the estimates ‖B(u, v)‖X ≤
α1‖u‖X ‖v‖X , ‖B̃(θ, v)‖Y ≤ α2‖θ‖Y‖u‖X and ‖L(θ)‖X ≤ α3‖θ‖Y , for some positive con-

stants α1, α2 and α3.

Let 0 < η < 1 be arbitrary. For every (U,Θ) ∈ X × Y such that

η‖U‖X + α3‖Θ‖Y ≤
α1η(1− η)2

(2α1 + α2)2
,

the system

(5.2) θ = Θ + B̃(θ, u), u = U +B(u, u) + L(θ)

has a solution (u, θ) ∈ X × Y. This is the unique solution satisfying the condition

η‖u‖X + α3‖θ‖Y ≤ η(1− η)(2α1 + α2).

Proof. In the case 0 < α3 < 1, one can take η = α3. In such particular case, this lemma

is already known, see [26, Lemma 2.1]. Therefore, we only have to prove that we can get

rid of the restriction 0 < α3 < 1. This is straightforward. We introduce on the space Y
an equivalent norm, defined by ‖θ‖Y ′ = α3

η ‖θ‖Y . By Lemma 2.1 of Karch and Prioux,

applied in the space (X , ‖ · ‖X ) and (Y, ‖ · ‖Y ′), we have that if

‖U‖X + ‖Θ‖Y ′ ≤
α1(1− η)2

(2α1 + α2)2
,

then the system (5.2) has a unique solution such that

‖u‖X + ‖θ‖Y ′ ≤ (1− η)(2α1 + α2).

The conclusion of Lemma 5.1 is now immediate.

�

Remark 5.2. Using our improved version of Lemma 2.1 of [26], it is be possible to get rid

of the smallness assumption |β| < 1 in the main results of Karch and Prioux [26].

Remark 5.3. The proof of Lemma 2.1 in [26] relies on the contraction mapping theorem. In

particular, the solution can be obtained passing to the limit with respect to the X×Y-norm

in the iteration scheme (k = 1, 2, . . .)

(u0, θ0) = (U,Θ),

(uk+1, θk+1) =
(
u0 +B(uk, uk) + L(θk), θ0 + B̃(uk, θk)

)
.

(5.3)

See [26] for more details. See also [33, Lemma 4.3] for similar abstract lemmata.

Let a ≥ 1. We define Xa as the Banach space of divergence-free vector fields u = u(x, t),

defined and measurable on R3 × R+, such that, for some C > 0,

(5.4) |u(x, t)| ≤ C inf
0≤η≤a

|x|−η(1 + t)(η−1)/2.

In the same way, for b ≥ 3 we define the space Yb of functons θ ∈ L∞t (L1) satisfying the

estimates

(5.5) |θ(x, t)| ≤ C inf
0≤η≤b

|x|−η(1 + t)(η−3)/2.
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Such spaces are equipped with their natural norms.

They are obviously decreasing with respect to inclusion as a and b grow. Recalling the

definition of X and Y in Section 2.1, we see that X1 = X ∩ L∞x,t with equivalence of the

norms and that Y3 = Y ∩ L∞x,t.
The estimates (2.13)-(2.14) in Proposition 2.5 are thus equivalent to the conditions u ∈

Xa and θ ∈ Yb.

We start with some elementary embeddings.

Lemma 5.4. Let Lp,q be the Lorentz space, with 1 < p < ∞ and 1 ≤ q ≤ ∞. Then the

following four inequalities hold:

‖u(t)‖Lp,q ≤ C‖u‖X t
1
2

( 3
p
−1)

, 3 < p ≤ ∞,

‖u(t)‖Lp,q ≤ C‖u‖Xa(1 + t)
1
2

( 3
p
−1)

, 3
a < p ≤ ∞,

‖θ(t)‖Lp,q ≤ C‖θ‖Y t
1
2

( 3
p
−3)

, 1 < p ≤ ∞

‖θ(t)‖Lp,q ≤ C‖θ‖Y3(1 + t)
1
2

( 3
p
−3)

, 1 < p ≤ ∞

(5.6)

for some constants C depending only on p and q. In particular, choosing p = q one gets

the correponding estimates for the classical Lp-spaces.

Proof. The above estimates for the weak-Lebesgue spaces Lp,∞ are simple. Indeed, if

u ∈ X , then |u(x, t)| ≤ C|x|−3/pt
1
2

( 3
p
−1)

and one has only to recall that any function

bounded by |x|−3/p belongs to Lp,∞. The other Lp,∞-estimates for u and θ contained

in (5.6) In the case 1 ≤ q < ∞, we use that Lp,q is a real interpolation space between

Lp−ε,∞ and Lp+ε,∞, for all 1 < p − ε < p < p + ε < ∞. Therefore estimates (5.6) for all

1 ≤ q ≤ ∞ follow from the corresponding estimates in the particular case q = ∞ via the

interpolation inequality.

�

The first useful estimate in view of the application of Lemma 5.1 is the following.

Lemma 5.5. Let 1 ≤ a < 3 and θ ∈ Y3. We have, for some constant C > 0 depending

only on a,

(5.7) ‖L(θ)‖Xa ≤ C‖θ‖Y3 .

Moreover,

(5.8) ‖L(θ)‖X ≤ C‖θ‖Y .

Proof. We prove only (5.7) since the proof of (5.8) is essentially the same. By a renor-

malization, we can and do assume that ‖θ‖Y3 = 1. Let K(x, t) be the kernel of the

operator et∆P. Then we can write

L(θ)(x, t) =

∫ t

0

∫
K(x− y, t− s)θ(y, s)e3 dy ds.

We have the well known estimates for K (see, e.g., [7, Prop. 1])

(5.9) |K(x, t)| ≤ C|x|−at−(3−a)/2, for all 0 ≤ a ≤ 3
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where C > 0 is come constant independent on x, t and 0 ≤ a ≤ 3. We also recall the

scaling relation

(5.10) K(x, t) = t−3/2K(x/
√
t, 1)

and the fact that K(·, t) ∈ C∞(R3) for t > 0. The usual Lp estimates for K are

(5.11) ‖K(t)‖p ≤ Ct−3/2+ 3
2p , 1 < p ≤ ∞.

Using the L2-L2 convolution inequality, we get

‖L(θ)(t)‖∞ ≤ C
∫ t

0
(t− s)−3/4(1 + s)−3/4 ds ≤ C(1 + t)−1/2.

Owing to this estimate, the conclusion L(θ) ∈ Xa will follow provided we prove the point-

wise inequality,

|L(θ)|(x, t) ≤ Ca|x|−at(a−1)/2, ∀ (x, t) s.t. |x| ≥ 2
√
t.

This leads us to decompose

L(θ) = I1 + I2 + I3,

where I1 =
∫ t

0

∫
|y|≤|x|/2 . . . , I2 =

∫ t
0

∫
|x−y|≤|x|/2 . . . and I3 =

∫ t
0

∫
|y|≥|x|/2, |x−y|≥|x|/2 . . . . Using

θ ∈ L∞t (L1) we get

(5.12) |I1|(x, t) ≤ C|x|−3t,

which is even better in the region {(x, t) : |x| ≥ 2
√
t} than what we need (recall that

1 ≤ a < 3). Using now |θ(x, t)| ≤ C|x|−3 and the scaling properties of K we obtain by a

change of variables

|I2|(x, t) ≤ C|x|−3

∫ t

0

∫
|y|≤|x|/(2

√
s)
|K(y, 1)| dy

≤ C|x|−3 t log(|x|/
√
t)

≤ C
3−a |x|

−at(a−1)/2

for |x| ≥ 2
√
t, and 1 ≤ a < 3. Next, using again |θ(x, t)| ≤ C|x|−3 and |K(x, t)| ≤ C|x|−3,

|I3|(x, t) ≤ C
∫ t

0

∫
|y|≥|x|/2

|y|−6 dy ds ≤ C|x|−3 t.

Therefore,

|L(θ)|(x, t) ≤ C
3−a |x|

−at(a−1)/2, |x| ≥ 2
√
t.

Lemma 5.5 in now established.

�

We collect in the following Lemma all the estimates on B(u, v) that we shall need. (We

will apply estimate (5.15) in the proof of Proposition 2.4, estimate (5.14) for Proposi-

tion (2.4) and estimate (5.14) in Theorem 2.6.
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Lemma 5.6. Let 1 ≤ a < 3. For some constant C > 0, depending only on a we have

(5.13)
∥∥B(u, v)

∥∥
Xa ≤ C

∥∥u∥∥X∥∥v∥∥Xa
and

(5.14)
∥∥B(u, v)

∥∥
X(2a)∗

≤ C
∥∥u∥∥Xa∥∥v∥∥Xa ,

where (2a)∗ = min{2a, 4}. Moreover,

(5.15)
∥∥B(u, v)

∥∥
X ≤ C

∥∥u∥∥X∥∥v∥∥X .

Proof. We begin with the proof of the first estimate. As before, we can assume
∥∥u∥∥X =∥∥v∥∥Xa = 1. We start writing

(5.16) B(u, v)(x, t) =

∫ t

0

∫
F (x− y, t− s)(u⊗ v)(y, s) dy ds,

where F (x, t) is the kernel of the operator et∆P∇.

The well known counterpart of relations (5.9)-(5.10) are (see, e.g., [29], [7, Prop. 1])

(5.17) |F (x, t)| ≤ C|x|−ηt−(4−η)/2, for all 0 ≤ η ≤ 4

and some constant C > 0 independent on x, t and on 0 ≤ a ≤ 4. Moreover,

(5.18) F (x, t) = t−2F (x/
√
t, 1).

These bounds imply the useful estimates

(5.19) ‖F (t)‖p ≤ Ct−2+ 3
2p (1 ≤ p ≤ ∞).

Applying the first of (5.6) with p = q = 6, we get ‖u(t)‖6 ≤ t−1/4. Similarily, ‖v(s)‖∞ ≤
(1 + t)−1/2. Hence,

‖B(u, v)‖∞ ≤ C
∫ t

0
‖F (t− s)‖6/5‖u⊗ v(s)‖6 ds

≤ C
∫ t

0
(t− s)−3/4s−1/4(1 + s)−1/2 ds

≤ C(1 + t)−1/2.

(5.20)

It remains to establish a pointwise estimate in the in the region {(x, t) : |x| ≥ 2
√
t}. Let

us decompose

B(u, v) = I ′1 + I ′2,

by splitting the integrals as
∫ t

0

∫
|y|≤|x|/2 . . . and

∫ t
0

∫
|y|≥|x|/2 . . . . For the estimate of I ′1 we

use |u| ≤ s−1/2, |v| ≤ |y|−as(a−1)/2 and |F (x, t)| ≤ C|x|−3t−1/2. For the estimate of I ′2 we

use again |u| ≤ s−1/2, |v| ≤ C|y|−as(a−1)/2, and the L1-estimate for F (see (5.19)). This

leads to

|B(u, v)|(x, t) ≤ Ct|x|−at(a−1)/2.

The conclusion follows combining this with estimate (5.20). The proof of estimate (5.14)

is similar. Notice the limitation (2a)∗ ≤ 4, which is due to the restriction on η in in-

equality (5.17). The proof of (5.15) also follows along the same lines and is left to the

reader.

�
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We finish with B̃(θ, u).

Lemma 5.7. Let a ≥ 1, b ≥ 3. For some constant C > 0 depending only on a, b, we have

(5.21)
∥∥B̃(θ, u)

∥∥
Yb
≤ C

∥∥u∥∥X∥∥θ∥∥Yb
and

(5.22)
∥∥B̃(θ, u)

∥∥
Ya+b

≤ C
∥∥u∥∥Xa∥∥θ∥∥Yb .

Moreover,

(5.23)
∥∥B̃(θ, u)

∥∥
Y ≤ C

∥∥u∥∥X∥∥θ∥∥Y .
Proof. As before, we give details only for the first estimate. Denoting F̃ (x, t) the kernel

of et∆∇, we can write

(5.24) B̃(θ, u)(x, t) =

∫ t

0

∫
F̃ (x− y, t− s)(θ u)(y, s) dy ds,

Notice that F̃ rescales exactly as F . Moreover,

(5.25) |F̃ (x, t)| ≤ Cη|x|−ηt−(4−η)/2, for all 0 ≤ η <∞

These are the same estimates as for F , but there is now no limitation to the spatial decay

rate (i.e., the restriction η ≤ 4 appearing in (5.17) can be removed).

Therefore, the space-time pointwise decay estimates for B̃(θ, u)(x, t) can be proved

essentially in the same way as in the previous Lemma.

The L1-estimate (useful for estimating the Y-norm is straightforward:∥∥B̃(θ, u)(t)
∥∥

1
≤ C

∫ t

0
(t− s)−1/2‖u(s)‖∞‖θ(s)‖1 ds ≤ C‖u‖X ‖θ‖Y .

This allows us to conclude.

�
Proof of Proposition 2.4. We need two elementary estimates on the linear heat equa-

tion. Namely,

(5.26) ‖et∆θ0‖Y ≤ C
(
‖θ0‖1 + ess sup

x
|x|3|θ0(x)|

)
and

(5.27) ‖et∆u0‖X ≤ Cess sup
x
|x| |u0(x)|.

Both estimates immediately follow from direct computations on the heat kernel gt(x) =

(4π t)−3/2e−|x|
2/(4t). (See, e.g. [4, 29]) Here one only needs to use |gt(x)| ≤ C|x|−3 and the

usual L1-L∞ estimates for gt. Letting U = et∆u0 and Θ = et∆θ0, by assumption (2.10) we

get, for some C > 0, ‖U‖X + ‖Θ‖Y ≤ Cε. The system (5.1) can be written in the abstract

form (5.2). By inequalities (5.8), (5.15) and (5.23), all the assumptions of Lemma 5.1 are

satisfied provided ε > 0 is small enough. The conclusion of Proposition 2.4 readily follows.

�
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Proof of Part (a) of Proposition 2.5. By construction, the solution (u, θ) of Proposi-

tion 2.4 is obtained as the limit in X × Y of the sequence (uk, θk) defined in (5.3).

By the first of assumptions (2.12), and applying straightforward estimates on the heat

kernel (see also [4, 29]), |et∆u0(x)| ≤ C(1 + |x|)−a and |et∆u0| ≤ C(1 + t)−a/2. (Here we

need 0 ≤ a < 3). These two conditions imply in particular that et∆u0 ∈ Xa. Similarily

one deduces from the second inequality in (2.12) that et∆θ0 ∈ Yb (when b = 3 one here

needs also θ0 ∈ L1).

By estimate (5.21) and assumption (2.10), for all k = 1, 2 . . . we get

‖θk+1‖Yb ≤ ‖e
t∆θ0‖Yb + Cε‖θk‖Yb .

If ε > 0 is small enough then Cε < 1 (the size of the admissible ε thus depend on b and,

as we will see later, also on a). Iterating this inequality shows that the sequence (θk) is

bounded in Yb.
Combining estimates (5.7) with (5.13) we get

‖uk+1‖Xa ≤ ‖et∆u0‖Xa + Cε‖uk‖Xa + C‖θk‖Y3 .

Assuming Cε < 1, we deduce from the boundness of (θk) in Y3 that (uk) is bounded in Xa.
Thus, the solution (u, θ) belongs to Xa × Yb and the first part of Proposition 2.5 follows.

Proof of Part (b) of Proposition 2.5. The proof of the second part of Proposition (2.5)

is quite similar but relies on the use of slightly different function spaces. So, let a ≥ 2. We

define X̃a as the Banach space of divergence vector fields u = u(x, t) such that, for some

C > 0,

(5.28) |u(x, t)| ≤ C inf
0≤η≤a

|x|−η(1 + t)(η−2)/2.

For b ≥ 4 we define the space Ỹb of functons θ ∈ L∞t (L1
1) satisfying the estimates

(5.29) |θ(x, t)| ≤ C inf
0≤η≤b

|x|−η(1 + t)(η−4)/2.

Such spaces are equipped with their natural norms.

Notice that the spaces X̃a and Ỹb differ from the their counterparts Xa and Yb only by

the fact that the time decay conditions are slightly more stringent in the former case.

The counterpart of estimates (5.6) are

‖u(t)‖Lp,q ≤ C‖u‖X̃a(1 + t)
1
2

( 3
p
−2)

, max{1, 3
a} < p ≤ ∞,

‖θ(t)‖Lp,q ≤ C‖θ‖Ỹ4(1 + t)
1
2

( 3
p
−4)

, 1 ≤ p ≤ ∞.
(5.30)

The first of (5.30) can be completed by

(5.31) ‖u(t)‖1 ≤ C‖u‖X̃a(1 + t)−1+ 3
a , if 3 < a < 4.

This last estimate follows immediately by splitting the integral
∫
|u| into the regions

|x| ≥ t1/a and |x| ≤ t1/a.
We also notice the continuous embedding

(5.32) Ỹb ⊂ L∞t (L1
1), if b > 4
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that follows easily by splitting the integral
∫

(1 + |x|)|θ(x, t)| dx into
∫
|x|≤(1+t)1/2 . . . and∫

|x|≥(1+t)1/2 . . . , and using the bound |θ(x, t)| ≤ C(1+t)−2 for the first term and |θ(x, t)| ≤
C|x|−b for the second one.

Lemma 5.8. Let 2 ≤ a < 4. If
∫
θ(t) dx = 0 for all t, then for some C > 0,

(5.33) ‖L(θ)‖X̃a ≤ C‖θ‖Ỹ4 .

Assume, without restriction, ‖θ‖Ỹ4 = 1. The time decay estimate

‖L(θ)‖∞ =
∥∥∥∫ t

0
K(t− s) ∗ θ(s) ds

∥∥∥
∞
≤ C(1 + t)−1

immediately follows by the L2-L2 Young inequality. It only remains to prove that L(θ)

can be bounded by C|x|−a(1 + t)(a−2)/2 for all (x, t) belonging to the parabolic region

|x| ≥ 2
√
t. Thus, we decompose

(5.34) L(θ) = I1 + I2 + I3 = (I1,1 + I1,2 + I1,3) + I2 + I3.

where I1, I2 and I3 are as in Lemma 5.5 and and the terms contributing to I1 are defined

below. First, (
I1,1

)
j
(x, t) ≡

∫ t

0
Kj,3(x, t− s)

∫
θ(y, s) dy ds = 0

by the zero-mean assumption on θ. Next(
I1,2

)
j
(x, t) ≡ −

∫ t

0
Kj,3(x, t− s)

∫
|y|≥|x|/2

θ(y, s) dy ds

and (
I1,3)j(x, t) ≡ −

∫ t

0

∫ 1

0

(∫
|y|≤|x|/2

∇Kj,3(x− λy, t− s) dy
)
· y θ(y, s) dλ ds,

where we have used the Taylor formula to write the difference Kj,3(x−y, t−s)−Kj,3(x, t−s).
From the bounds |K(x, t)| ≤ C|x|−3 and |∇K(x, t)| ≤ C|x|−4 we get

|I1,2|+ |I1,3| ≤ C|x|−4t,

where we used the continuous embedding of L1
1 into Ỹ4 that follows from the definition of

such space. The above pointwise estimate is even better, in our parabolic region |x| ≥ 2
√
t,

than what we actually need.

Next,

(I2)j =

∫ t

0

∫
|x−y|≤|x|/2

Kj,3(x− y, t− s)θ(y, s) dy ds

can be bounded as follows

|I2| ≤ C|x|−4

∫ t

0

∫
|x−y|≤|x|/2

|Kj,3(x− y, t− s)| dy ds

≤ C|x|−4t log(|x|/
√
t)

≤ C|x|−at(a−2)/2

for all (x, t) such that |x| ≥ 2
√
t (recall that 2 ≤ a < 4).
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Moreover, using again |K(x− y, t− s)| ≤ C|x− y|−3, shows that

(I3)j =

∫ t

0

∫
|y|≥|x|/2, |x−y|≥|x|/2

Kj,3(x− y, t− s)θ(y, s)

can be bounded by

C|x|−4t.

So far, we proved that

|L(θ)|(x, t) ≤ C|x|−at(a−2)/2 ≤ C|x|−a(1 + t)(a−2)/2

for all (x, t) such that |x| ≥ 2
√
t. Our previous L∞-bound on L(θ) implies the validity of

such estimate in the region |x| ≤ 2
√
t. We thus conclude that L(θ) ∈ X̃a and Lemma 5.8

follows.

�
Next Lemma is a simple variant of Lemma 5.6.

Lemma 5.9. Let 2 ≤ a < 4 and b ≥ 4. Then, for some constant C > 0,

(5.35)
∥∥B(u, v)

∥∥
X̃a ≤ C

∥∥u∥∥X∥∥v∥∥X̃a
and

(5.36)
∥∥B̃(u, θ)

∥∥
Ỹb
≤ C

∥∥u∥∥X∥∥θ∥∥Ỹb
Proof. This Lemma can be easily proved following the steps of estimates (5.13) and (5.21).

We thus skip the details.

�
The last estimates that we need, concern the heat equation. The computations are

straightforward (see [4, 29]). Recall that 2 ≤ a < 4 and a 6= 3. Moreover, we assumed

|u0(x)| ≤ C(1 + |x|)−a. When 2 ≤ a < 3 then, as we already observed, |et∆u0(x)| ≤
C(1 + |x|)−a and |et∆u0| ≤ C(1 + t)−a/2. In fact this estimate remains valid also for

3 < a < 4 (here one uses that u0 is integrable and divergence free, and so
∫
u0 = 0). Thus,

in particular, et∆u0 ∈ X̃a.
In the same way, one proves that by our assumptions et∆θ0 ∈ Ỹb for b ≥ 4.

Therefore, going back to the approximation scheme (5.3) and arguing as in the proof

of Part (a) of Proposition (2.5) we see that the sequence (θk) is bounded in Ỹb and (uk)

is bounded in X̃a. Part (b) of Proposition (2.5) follows.

�

6. Asymptotic profiles and decay of strong solutions

We denote by E(x) = c
|x| the fundamental solution of the Laplacian in R3 and by(

Exj ,xk
)
(x) its second order derivatives for x 6= 0. Notice that Exx,x3 is a homogeneous

function of degree −3. Next lemma describes the asymptotic profile for L(θ)(x, t) as

|x| → ∞, by establishing that

L(θ)(x, t) '
(∫

θ0

)
t
(
Exj ,x3

)
(x), as |x| >>

√
t.
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Lemma 6.1. Let θ = θ(x, t) be any function satisfying the pointwise estimates (2.14), for

some 3 < b < 4 and such that
∫
θ(t) =

∫
θ0 for all t ≥ 0. Then the j-component L(θ)j(t)

of L(θ) can be decomposed as

(6.1) L(θ)j(x, t) =

(∫
θ0

)
t
(
Exj ,x3

)
(x) + R′j(x, t) (j = 1, 2, 3),

where the remainder function R′ satisfies,

(6.2) |R′(x, t)| ≤ C|x|−b t(b−1)/2 log(|x|/
√
t), ∀ (x, t) s.t. |x| ≥ 2

√
t.

In particular, in the region |x| >>
√
t, one has

|R′(x, t)| << Ct |Exj ,xk(x)|

along almost all directions.

Remark 6.2. This idea of obtaining informations on the large time behavior of solutions

by first studying their behavior in the parabolic region |x| >>
√
t comes from [6].

Proof. We go back to the decomposition (5.34) of L(θ), as done in Lemma 5.8. We now

treat I2 using the estimate |θ(x, t)| ≤ C|x|−b (1 + t)(b−3)/2. This yields to the inequality,

valid for |x| ≥ 2
√
t,

|I2|(x, t) ≤ C|x|−b(1 + t)(b−1)/2 log(|x|/
√
t).

With the bound on θ we obtain also

|I3|(x, t) ≤ C|x|−b(1 + t)(b−1)/2.

Now recall that I1 = I1,1 + I1,2 + I1,3, where

(6.3)
(
I1,3)j(x, t) = −

∫ t

0

∫ 1

0

(∫
|y|≤|x|/2

∇Kj,3(x− λy, t− s) dλ
)
· yθ(y, s) dy ds.

and that ∇K satisfies the estimate |∇K(x, t)| ≤ C|x|−4. Then, since 3 < b < 4,

|I1,3|(x, t) ≤ C|x|−4

∫ t

0

∫
|y|≤|x|/2

|y| |θ(y, s)| dy ds

≤ C|x|−b (1 + t)(b−1)/2.

The estimate for (I1,2)j = −
∫ t

0 Kj,3(x, t− s)
∫
|y|≥|x|/2 θ(y, s) dy ds, is straightforward:

|I1,2|(x, t) ≤ C|x|−b (1 + t)(b−1)/2.

Finally, since the mean of θ remains constant in time,(
I1,1

)
j
(x, t) =

∫ t

0
Kj,3(x, t− s)

∫
θ(y, s) dy ds =

(∫
θ0

)∫
Kj,3(x, t− s) ds.

But the following decomposition of the kernel K, established in [7], holds :

Kj,k(x, t) = Exj ,xk(x) + |x|−3Ψj,k(x/
√
t), j, k = 1, 2, 3

where Ψj,k is fast decaying: |Ψ(y)| ≤ Ce−c|y|
2

for all y ∈ R3 and some constats c, C > 0.

Hence, we can estimate |Ψ(y)| ≤ C|y|−b+3.
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We now define R′(x, t) through the relation

L(θ)(x, t) =

(∫
θ0

)
t
(
Exj ,x3

)
(x) +R′(x, t)

and all the previous estimates imply |R′(x, t)| ≤ C|x|−b(1 + t)(b−1)/2 log(|x|/
√
t) for all

|x| ≥ 2
√
t.

�
In the case

∫
θ0 = 0, we can use the following variant of Lemma 6.1.

Lemma 6.3. Let θ = θ(x, t) be any function satisfying the second of (2.16), for some 4 <

b < 5 and such that
∫
θ(t) =

∫
θ0 = 0 for all t ≥ 0. Then the j-component L(θ)j(t) of

L(θ) can be decomposed as

(6.4) L(θ)j(x, t) = −∇Exjx3(x) ·
(∫ t

0

∫
y θ(y, s) dy ds

)
+R′′j(x, t)

with

(6.5) |R′′|(x, t) ≤ C|x|−b(1 + t)(b−2)/2 log(|x|/
√
t)

for all (x, t) such that |x| ≥ 2
√
t.

Proof. We only have to reproduce the proof of the previous Lemma with slight modifica-

tion. Using the estimate |θ(x, t)| ≤ C|x|−b (1 + t)(b−4)/2 we now obtain, for |x| ≥ 2
√
t,

|I2|(x, t) ≤ C|x|−b(1 + t)(b−2)/2 log(|x|/
√
t),

next

|I3|(x, t) ≤ C|x|−b(1 + t)(b−2)/2.

and

|I1,2|(x, t) ≤ C|x|−b(1 + t)(b−2)/2.

Next, by the vanishing mean condition I1,1 = 0. It remains to treat I1,3. We can

decompose I1,3, whose j-component we recall is∫ t

0

∫
|y|≤|x|/2

[Kj,3(x− y, t− s)−Kj,3(x, t− s)]θ(y, s) dy ds,

into the sum of three more terms

I1,3 = I1,3,1 + I1,3,2 + I1,3,3.

Such decomposition is performed exactly in the way we did in the proof of Lemma 6.1.

The j-component of the first term is thus

(6.6) (I1,3,1)j(x, t) = −
∫ t

0
∇Kj,3(x, t− s) ·

∫
y θ(y, s) dy ds.

The second term,

(I1,3,2)j(x, t) =

∫ t

0
∇Kj,3(x, t− s) ·

∫
|y|≥|x|/2

yθ(y, s) dy ds,
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can be bounded by the right-hand side of (6.5) using |∇K(x, t)| ≤ C|x|−4 and |θ(x, t)| ≤
C|x|−b(1 + t)(b−4)/2. Next, the j-component of I1,3,3,

−
∫ t

0

∫
|y|≤|x|/2

[Kj,3(x− y, t− s)−Kj,3(x, t− s) +∇K(x, t− s) · y]θ(y, s) dy ds,

can be treated with the Taylor formula. The simple estimate |∇2
xK(x, t)| ≤ C|x|−5 allows

us to see that also I1,3,3 is bounded by the right-hand side of (6.5). Therefore, both I1,3,2

and I1,3,3 can be included into the remainder term R′′(x, t).
Let us go back to (6.6). As shown in [7], the following decomposition holds true:

(6.7) ∇Kj,k(x, t) = ∇Exjxk(x) + |x|−4Ψ̃(x/
√
t),

with |Ψ̃(y)| ≤ Ce−c|y|
2

for some constants C, c > 0 and all y ∈ R3. In particular we can

estimate |Ψ̃(y)| ≤ C|y|−(b−4). On the other hand,
∫
|y| |θ(y, s)| dy is uniformly bounded

because of the embedding (5.32). This shows that (I1,3,1)j(x, t) can be written in the

region |x| ≥ 2
√
t as in the right-hand side of (6.5) (even without logarithmig factors).

This finally gives (6.4).

�

We can now establish our main results as simple corollaries:

Proof of Theorem 2.6, part (a). Let (u, θ) be a mild solution of the system (5.1),

satisfying the pointwise decay estimates (2.13)-(2.14), with a > 3
2 and b > 3. Recall that

the spaces Xa and Yb decrease as a and b grow. Without restriction we can then assume
3
2 < a < 3 and 3 < b < 4 in our calculations. According to our notations, we can write

(6.8) u(x, t) = et∆u0(x) +B(u, u)(x, t) + L(θ)(x, t).

By estimate (5.14), owing to the condition a > 3
2 , we have

lim
|x|√
t
→∞

B(u, u)(x, t)

t|x|−3
= 0.

Therefore B(u, u) can be included inside the remainder term in the asymptotic profile of u

for |x|√
t
→∞. Moreover Lemma (6.1) and the condition b > 3 guarantee that

L(θ)(x, t) =
(∫

θ0

)
t∇Ex3(x) + o

(
t|x|−3

)
, as |x|√

t
→∞.

This yields the asymptotic profile (2.17) for u.

Let us prove here also the claim in Part (a) of Remark 2.7. As usual, we denote gt(x) =

(4πt)−3/2e−|x|
2/(4t) the standard gaussian. Under the additional assumption |u0| ≤ C|x|−3,

we have
∫
|y|≥|x|/2 gt(x − y)|u0(y)| dy ≤ C|x|−3. Moreover, by the third of (2.10), we have

also, e.g., |u0(x)| ≤ C|x|−2. So
∫
|y|≤|x|/2 gt(x − y)|u0(y)| dy ≤ C|x| sup|z−x|≤|x|/2 gt(z) ≤√

t |x|−3. Combining these estimates we get

|et∆u0(x)| << t|x|−3, as t >> 1.

Thus, when
∫
θ0 6= 0, under the additional condition, |u0(x)| ≤ C|x|−3, for |x| >>

√
t >> 1,

the solution u behaves like
(∫
u0

)
t∇Ex3(x) along almost all directions. More precisely,
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using spherical coordinates and letting x = ρω, with ρ > 0, for almost all ω in the unit

sphere, we have

lim
ρ,t→∞

uj(x, t)/
(

(
∫
u0)tExj ,xk(x)

)
= 1.

Proof of Theorem 2.6, part (b). We can assume without restictrions for the calcula-

tions below that that 2 < a < 3, and b > 4. Moreover, by our assumption
∫
θ0 = 0. The

velocity field u belongs to X̃2. Then

|B(u, u)|(x, t) ≤ C|x|−4t1/2

as it can be proved easily by splitting B(u, u) into
∫ t

0

∫
|y|≤|x|/2 and

∫ t
0

∫
|y|≥|x|/2 and using

|u| ≤ C|x|−2 and ‖u(t)‖ ≤ Ct−1/4 (see (5.30)). We get easily a bound for both terms in

the region |x| ≥ 2
√
t, implying

lim
t,
|x|√
t
→∞

|B(u, u)|(x, t)
t|x|−4

= 0

Thus, B(u, u) can be included inside the remainder term. Applying now Lemma 6.3 yields

the asymptotic expansion (2.19).

Under the additional assumption |u0(x)| ≤ C|x|−4, we get, by (2.10), |u0(x)| ≤ C|x|−5/2.

If we use the bound |gt(x)| ≤ Ct3/4|x|−9/2 and the usual L1-estimate for gt we get

|et∆a(x)| ≤ C(1 + t3/4)|x|−4. Thus,

|et∆u0(x)| << t|x|−4, as t >> 1

and the last claim (made rigorous exactly as above) of the theorem follows.

�

We now deduce from Theorem 2.6 sharp upper and lower bound estimates in Lp-spaces.

Proof of Corollary 2.8, part (a). The upper bounds are simple: indeed, appying the

arguments that we used in the proof of Lemma 5.4 to (1 + |·|)r|u(·, t)| instead of u (and

putting p = q, in a such way that Lorentz spaces boil down to the usual Lebesgue spaces)

gives the result.

We now discuss lower bounds. By the proof of Lemma 6.1 and of Theorem 2.6, we can

find an exponent η > 0 (any 0 < η < min{2a−3, b−3, 1} will do) such that, for j = 1, 2, 3,

|uj(x, t)− et∆(u0,j)(x)|

≥ t
∣∣∣∫ θ0

∣∣∣ |Exj ,x3(x)| − Ct|x|−3
( |x|√

t

)−η
provided |x| ≥ A

√
t, and A > 0 is large enough.

Consider the parabolic region DA,t = {(x, t) : |x| ≥ A
√
t}. For 1 < p < ∞, we denote

by ‖ · ‖Lpr(DA,t) the norm

‖f‖Lpr(DA,t) =

(∫
DA,t
|f(x)|p(1 + |x|)rp dx

)1/p

.
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Then for all t ≥ 1 and 1 < p <∞, r ≥ 0 such that r + 3
p < 3,∥∥∥uj(t)− et∆u0,j

∥∥∥
Lpr(DA,t)

≥ C t
∣∣∣∫ θ0

∣∣∣ ∥∥∥Exj ,x3∥∥∥
Lpr(DA,t)

− C t
∥∥∥|·|−3

( |·|√
t

)−η∥∥∥
Lpr(DA,t)

≥ Ct
1
2

(r+ 3
p
−1)

A
r+ 3

p
−3
(
C ′
∣∣∣∫ θ0

∣∣∣−A−η).
This shows that it is possible to define a continuous function φ : [0, ε2]→ R+, (where ε > 0

is the constant of Proposition 2.4) such that φ(0) = 0, φ is strictly positive outside the

origin, and satisfying ∥∥∥u(t)− et∆u0

∥∥∥
Lpr
≥
∥∥∥u(t)− et∆u0

∥∥∥
Lpr(DA,t)

≥ φ
(
|
∫
θ0|
)
t
1
2

(r+ 3
p
−1)

(6.9)

for all t > 0 large enough. By comparing the two terms inside the parentheses in the

inequality above, i.e., by taking A such that A−η ≤ C′

2 |
∫
θ0|, we get an explicit behavior

for φ(σ) near zero, namely, φ(σ) ∼ cσ1+ 1
η

(3−r− 3
p

)
, as σ → 0+. with c > 0 small enough.

We now restrict us to the smaller range 0 ≤ r + 3
p < min(3, a), always with r ≥ 0 and

1 < p < ∞. Let us compute the Lpr-norm of et∆u0. From |u0(x)| ≤ C min{|x|−1, |x|−a}
we obtain, for t ≥ 1, et∆/2|u0|(x)(1 + |x|)r ≤ C(1 + |x|)−(a−r). Applying the semigroup

property of the heat kernel, we get, for t ≥ 2, et∆|u0|(x)(1 + |x|)r ≤ et∆/2(1 + |x|)−(a−r).

Computing the Lp-norm of this quantity, we deduce

‖et∆u0‖Lpr ≤ ‖gt/2 ∗ (1 + | · |)−(a−r)‖p
≤ C‖gt/2‖Lα,p

= Ct
− 1

2
(a−r− 3

p
)
.

with 1 + 1
p = 1

α + a−r
3(6.10)

In this computation, Lpr denotes as usual the weighted Lp space, whereas Lα,p is a Lorentz

space. Here we made use of Young convolution inequality, generalised to Lorentz spaces

(see [27, Prop. 2.4]).

By comparing the large time behavior of the RHS in expressions (6.9)-(6.10), we deduce

the lower bound

‖u(t)‖Lpr ≥
1
2φ
(
|
∫
θ0|
)
t
1
2

(r+ 3
p
−1)

, for all t ≥ t0

where t0 > 0 is some constant depending on all the parameters and the initial data, but

independent on t.

�

Proof of Corollary 2.8, Part (b). The estimate from above follows applying inequali-

ties (5.30) and (5.31) to (1 + | · |)ru.

Let us now estimate ‖u(t)‖Lpr from below. The proof is based on the asymptotic expan-

sion (2.19). Computing the third order derivatives outside the origin of the fundamental
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solution E of −∆ in R3, i.e., E(x) = C
|x| , shows that (see also [7, Eq. (9b)])

(6.11) Exj ,xh,xk(x) =
Γ
(

5
2

)
π3/2

·
σj,h,k(x)|x|2 − 5xjxhxk

|x|7
,

with σj,h,k(x) = δj,hxk + δh,kxj + δk,jxh. It is now easy to see that the expression∑d
h,k=1Exj ,xh,xk(x)Mh,k identically vanishes if and only if Mh,k is a scalar multiple of

the identity matrix. Let m(t) =
∫ t

0

∫
yθ(y, s) dy ds. We deduce that the homogeneous

function of degree −4

∇Exj ,x3(x) ·m(t)

is identically zero, for any fixed t, if and only if |m(t)| = 0.

If m̃ = lim inft→∞

∣∣∣1t ∫ t0∫ yθ(y, s) dy ds∣∣∣ 6= 0, then there exists c > 0 such that, for all t

sufficiently large,

‖∇Exj ,x3 ·m(t)‖Lpr(DA,t) ≥ c m̃ t
1
2

(r+ 3
p
−2)

.

The condition on the remainder R̃ obtained in Theorem 2.6 then implies, some constant

c > 0 and for all t large enough,

‖u(t)− et∆u0‖Lpr ≥ ct
1
2

(r+ 3
p
−2)

with r ≥ 0, 1 < p <∞ tels que r+ 3
p < 4. It remains to prove that, when r+ 3

p < min{a, 4}
then we have

(6.12) ‖et∆u0‖Lpr = o(t
1
2

(r+ 3
p
−2)

), for t→∞.

Recall that we assumed a > 2. When 2 < a < 3, we can simply use inequality (6.10).

When a = 3 there is nothing to prove because we reduce to the previous case by picking a′,

with r+ 3
p < a′ < 3. So, consider now 3 < a < 4. In this case u0 is integrable and

∫
u0 = 0

by the divergence-free condition. Then, for t ≥ 1, et∆/2|u0|(x)(1+ |x|)r ≤ C(1+ |x|)−(a−r).

Thus,

‖et∆u0‖Lpr ≤ ‖gt/2 ∗ (1 + | · |)−(a−r)‖p(6.13)

When a− r < 3 we can apply Young inequality in the same way as before and still obtain

estimate (6.10). When a − r > 3, the above quantity is bounded by Ct
− 1

2
( 3
p
−3)

(and by

Cηt
− 1

2
( 3
p
−3+η)

for all η > 0 when a−3 = 3). In any case, (6.12) holds true. This establishes

estimates (2.24)

�

Theorem 2.6 has another interesting consequence, that clarifies the importance of the

restriction r + 3/p < 3 in our previous statements.

Corollary 6.4. Let (θ, u) be a solution as in Part (a) of Theorem 2.6. We assume, in

addition, that
∫
θ0 6= 0 and that the initial velocity satisfies |u0(x)| ≤ C(1 + |x|)−a, for

some a > 3. Then for all

r ≥ 0, 1 ≤ p <∞, r +
3

p
≥ 3
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and for all t > 0 we have

(6.14) ‖u(t)‖Lpr =∞.

Proof. Indeed, Exj ,x3(x) is a homogeneous function of degree 3, smooth outside the origin.

Then we can find an open conic set Γ ⊂ R3 such that |Exj ,x3(x)| ≥ C|x|−3 > 0 for all

x ∈ Γ, x 6= 0, for some C > 0. Indeed, by Eq. (2.17), for |x| ≥ A
√
t with A > 0 large

enough and x ∈ Γ, and t > 0, we have

|uj(x, t)| ≥
C

2
t

∣∣∣∣∫ θ0

∣∣∣∣|x|−3.

This implies that uj has an infinite ‖ · ‖Lpr(DA∩Γ) -norm.

�

7. Additional remarks and comments

In this section we collect a few technical remarks on the main results. These are essen-

tially small variants of our statements that can be easily proved with minor modifications

to the proofs.

Remark 7.1 (on Theorem 2.2). Part (b) of Theorem 2.2 can be streghened as follows.

Under the same assumptions on θ0 and replacing the assumption u0 ∈ L2
σ ∩L3/2 with the

weaker condition ‖et∆u0‖2 ≤ C(1 + t)−s, for some s ≥ 0, (when u0 ∈ L2
σ ∩L3/2, this holds

with s = 1/2), we have

(7.1) ‖u(t)‖ ≤ C(1 + t)−s
∗
, with s∗ = min(s, 1/2).

The above decay condition on et∆u0 could also be restated in terms of Besov spaces.

Remark 7.2 (on Theorem 2.6). The second term in the RHS of (2.19) is bounded by

C|x|−4t. If one is interested in studying the asymptotic behavior of u only as |x|√
t
→ ∞

(with t > 0 not necessarily large), then an additional term in the RHS of (2.19) should be

added:

(7.2) −∇Exh,xk :

∫ t

0

∫
(uhuk)(y, s) dy ds

(the : notation means that the
∑

h,k symbol has been omitted). Such term is bounded

by C|x|−4t1/2, thus justifying its inclusion inside the remainder when |x| >>
√
t >>

1. With this additional term, the condition of the remainder can be simplified into

lim |x|√
t
→∞

R̃(x,t)
t|x|−4 = 0.

Remark 7.3 (on Corollary 2.8). The restriction r + 3
p < a in Part (a) of Corollary 2.8 is

natural beacause the decay assumption on u0 guarantees that et∆u0 ∈ Lpr exactly for those

r, p satisfying such restriction. However, estimates (2.23) remain valid in the whole range

0 ≤ r + 3
p < 3 (and under the conditions of Part (b) even for 0 ≤ r < 3

p < 4 if we want to

estimate ‖u(t)− et∆u0‖Lpr instead of ‖u(t)‖Lpr in that expression.
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27. P.-G. Lemarié-Rieusset, Recent developements in the Navier–stokes problem, Chapman&Hall/CRC

2002.

28. K. Masuda, Weak solutions of the Navier–Stokes equations, Tôhoku Math. J., 36, 623–646 (1984)
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