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E
lectrical control is a central requirement for exploiting the binary 
degrees of freedom of a single electron in a scalable way1. This 
has been realized for spin systems using small shifts of the elec-

tron spin within the field of a micromagnet2,3. The valley degree of 
electrons has recently been detected in transport experiments on 
graphene4–8, but its control on the single-electron level has not been 
achieved. Alternative materials, such as Si (ref. 9), offer only very small 
tuning ranges of the valley splitting by less than 0.5 meV (refs 10–14).

The valley degree of freedom in graphene is a consequence of 
the honeycomb structure with its two atoms within the unit cell16,17. 
Hence, breaking the equivalence of the two atoms (sublattice sym-
metry breaking) is the natural avenue to breaking the valley degen-
eracy as a starting point for tuning. If the time reversal symmetry 
is also broken by a magnetic field B, then this is a straightforward 
process18. The sublattice symmetry breaking can be achieved 
by van der Waals stacking of two-dimensional (2D) materials,  
exploiting the variation in stacking of the two graphene atoms on 
top of the supporting atoms. This stacking also varies spatially 
due to the different lattice constants of the adjacent materials19–21, 
implying a spatially varying valley splitting, which we exploit in  
our experiment.

We have recently demonstrated smoothly confined Dirac fermi-
ons in an edge-free graphene quantum dot (QD) by combining the 
electric field of the tip with a perpendicular magnetic field (Fig. 1a)22.  
This field quantizes the continuous spectrum of graphene in terms 
of Landau levels (LLs, LL spacing ≈  100 meV at B =  7 T)18. The elec-
tric field of the tip exploits the energy gaps between LLs to achieve 
edge-free confinement, that is, it shifts energy levels from the LLs 
into the gap22. We thereby overcome the well-known problem of 
edge localization within etched graphene QDs23. By confining with-
out resorting to physical edges, these dots preserve the two-fold val-
ley and spin symmetries of pristine graphene (Fig. 1b,d).

Charging of the confined levels has been directly measured by 
tuning the voltage of the scanning tunnelling miscroscope (STM) tip 

such that the states cross the Fermi level EF. This revealed the most 
regularly spaced charging sequence of graphene QDs achieved so 
far22. The measured level separations have been reproduced with the 
help of tight binding (TB) calculations. Hence, the charging peaks 
could be assigned to LLs and to particular orbital and valley states. 
Most notably, we observe quadruplets of charging peaks belonging 
to a single orbital quantum number of the dot and a partial splitting 
of single quadruplets into two doublets, indicating the lifting of the 
valley degeneracy (Fig. 1b,d,e). This identification of the multiplet 
character goes far beyond the results achieved by chemical etching 
of monolayer graphene QDs23 or double-sided gating of bilayer gra-
phene QDs24–26.

Movable quantum dot
Here, we explore the nanoscale variation of the charging sequence 
in detail. We use a heterostructure comprising a SiO2/graphite 
support, a hexagonal boron nitride (hBN) substrate and an active 
graphene layer on top, which is assembled by the dry stacking 
method27,28 (Fig. 1a). The atomic lattices of graphene and hBN 
are collinearly aligned to create a hexagonal superlattice with lat-
tice constant a =  13.8 nm originating from the lattice mismatch 
of graphene and hBN (ref. 20). Different stacking regions of the C 
atoms with respect to the B and N atoms (Fig. 1c) naturally lead to 
a spatially varying adhesion energy as well as to a spatially varying 
sublattice symmetry breaking of graphene due to the inequivalent 
binding sites. The resulting structure has been extensively discussed 
in the literature29–34. It is known that the most attractive interac-
tion is in the AB areas (Fig. 1c) leading to stretched central regions 
of graphene with AB stacking and the closest contact to the hBN. 
These areas are surrounded by compressed graphene ridges of 
different stacking with larger separation from the hBN (refs 20,30). 
However, firm conclusions on the details of the superstructure are 
difficult to draw, because of the lack of knowledge of the specifics of 
the van der Waals interaction35.
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The tip-induced graphene QD can be moved across the graphene 
superstructure by moving the STM tip37. This allows us to tune the 
QD properties, which we probe by tracking the position of the 
charging peaks within the superlattice. We therefore employ spa-
tially resolved dI/dV spectra (where I is the tunnelling current and 
V is the tip voltage). The resulting maps of charging energies can 
be directly compared with the corresponding topographic maps, 
which were recorded simultaneously (Fig. 2a). The charging peaks 
are fitted by Gaussians (Fig. 2b) for each QD centre position →r , ren-
dering maps of the local variation of the voltage →V r( )Pn

 of the nth 
peak, Pn (Fig. 2c,d). Typical variations between the centre and the 
boundary of the hexagonal supercell are Δ ≈V 40 mvPn

. To relate this 
to an energy variation Δ En of a particular QD level, we employ a 
capacitive model yielding ηΔ = ΔE e Vn Pn

 with the lever arm η ≃ .0 5 
(Supplementary Section 4) and electron charge e. The Δ En varia-
tions are primarily caused by the spatially varying adhesion energy 
across the supercell, which varies on the 10 meV scale according to 
extensive model calculations30. Figure 2c and d also show a long-
range variation on the 50 nm scale (amplitude Δ ≃V 40 mVPn

), which 
we attribute to the uncontrolled, long-range disorder potential of 
graphene on hBN with a strength of about 20 meV and correlation 
length of about 50 nm. Similar disorder potentials have been found 
previously38,39. Note that we carefully avoid tip forces lifting the gra-
phene layer by regularly recording I(z) curves (z is the tip–sample 
distance) to verify that the current remains below the threshold 
where a slope change of ln(I(z)) indicates lifting40,41.

Tracking orbital, valley and spin splitting
The group of the first four charging peaks, P1 to P4, is associated with 
the quadruplet belonging to the first hole orbital of the QD. During 
the charging of these levels, the QD exhibits a depth of about 100 meV 
and a width of about 50 mn, as known from detailed Poisson calcu-
lations22 (Supplementary Section 3 and 4). The confined wavefunc-
tions are labeled ψα,τ,σ with orbital quantum number α =  1 for the first 

four peaks, valley quantum number τ = ±
1

2
 and spin quantum num-

ber σ = ±
1

2
. Analogously, the next four peaks, P5 to P8, belong to the 

filling of the quadruplet ψα=2,τ,σ. Subtracting the voltage of the high-
est peak of the first quadruplet VP4

 (Fig. 2c) from that of the lowest 
peak of the second, VP5

 (Fig. 2d), and multiplying by η, yields the 
locally varying addition energy map η
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Zeeman splitting μ
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 (where 
g =  2 is the gyromagnetic factor of graphene and μB is the Bohr 
magneton). The dominant contribution comes from the orbital 
splitting →

−
→

τ σ τ σ
E Er r( ) ( )2, , 1, , , as known from TB calculations22. 

As the size of the wave function does not change greatly as a 
function of →

r  (see Supplementary Video), the spatial variation 
of →E r( )C

4  cannot explain the strong spatial variation of →E r( )add
4

, which varies by a factor of two. Hence, →E r( )add
4  (Fig. 2e) mostly  

maps out the orbital-energy spacing between α =  1 and α =  2, as the 
quantum dot is moved across the graphene superstructure. Periodic 
depressions in the centre of the supercell reveal the influence of the 
superstructure on the orbital splitting, while the long-range struc-
ture in Fig. 2e (50 nm scale) is again attributed to the long-range 
potential disorder.

For clarity, we focus now on the second hole orbital shell α =  2 
(Fig. 3); other E n

add maps are provided in Supplementary Sections 
6 and 7. The local variation of the voltage peaks belonging to the 
α =  2 quadruplet allows the valley and spin splittings to be mapped 
in detail. The voltage maps, VP6

 and VP7
, differ on length scales 

well below that of the supercell size (~10 nm), and much smaller 
than the size of the QD wave function (diameter ≈  40 nm, calcu-
lated by our TB approach) (Fig. 3a). The addition energy maps  
(Fig. 3e–g) clearly display short-range supercell-periodic variations 
on the length scale of 3 nm. These variations appear as dark, ring-like  
structures around the AB stacking region of the supercell in the  
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Fig. 1 | edge-free quantum dot. a, Sketch of the experiment. Coloured blocks on the left show the stacking sequence SiO2/graphite/hBN/graphene22. 

The STM tip (grey cone) is moved over graphene deposited on hBN with its honeycomb lattice collinearly aligned with that of the hBN (brown–yellow 

STM image with hBN-induced superstructure, V =  300 mV, I =  1 nA). A perpendicular B field (7 T, grey arrow) leads to Landau levels (LL, purple lines) 

and corresponding Landau gaps (grey area). The electric field of the tip induces band bending (curvature of Landau gap), leading to confined states 

(blue lines), and hence to a QD. The QD is moved by moving the STM tip above the superstructure (light grey areas around the cone). This modifies the 

confined state energies as the valley levels τ =  1/2 and τ =  − 1/2 associated with the K and K′  points of the unperturbed band structure (cyan and magenta 

lines). The rectangle marked c indicates the magnified area shown in c. b, Schematic energy level diagram of the QD. The two orbital levels α =  1 and α =  2 

exhibit valley splitting −α τ σ α τ σ=+ ∕ =− ∕E E, 1 2, , 1 2, . The Zeeman splitting −α τ σ α τ σ=+ ∕ =− ∕E E, , 1 2 , , 1 2 is small (approximately 800 μ eV) and only shown for the lowest 

valley state. The resulting energy distances Δn between adjacent levels are labelled with consecutive n. Δn for odd n correspond to Zeeman splittings,  

which is only displayed for n =  1. c, Atomically resolved STM image of the rectangular area marked in a (V =  137 mV, I =  0.3 nA). Different stacking areas  

(AA, AB, BA) are indicated by arrows with stick and ball models below the labels (C, grey; B, blue; N, red). Coloured rings mark the positions of the spectra 

in e. d, Sketch of the expected dI/dV peak sequence for hole charging according to the level diagram in b using the same coloured arrows and the same Δn; 

En
C is the charging energy for filling of the nth level. Blue dots highlight valley gaps. e, dI/dV spectra recorded at the positions encircled by the same colour 

in c with corresponding stackings marked (AA↔ AB: between AA and AB). Quadruplets of charging peaks that belong to the same orbital are shaded the 

same. Blue dots mark valley transitions. Predominant quadruplet sequences (yellow spectrum), predominant doublet sequences (purple spectrum), or a 

mixture of both (red and orange spectra) appear, Vstab =  1 V, Istab =  700 pA, root-mean-square value Vmod =  4.2 mV, B =  7 T, temperature T =  8 K.
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valley addition energy map Eadd
6 . Similar but slightly narrower rings 

appear in the spin addition energy maps Eadd
5  and Eadd

7 .

Analysing the valley splitting maps
We analyse these remarkably strong nanometer-scale variations by 
performing TB calculations31,42. The calculations feature three major 
ingredients: (1) the sublattice-independent local on-site potential 

→V r( )0 , which represents the spatially varying adhesion energy; (2) the 
sublattice symmetry-breaking on-site potential →V r( )z  caused by the 
spatially varying stacking; and (3) a locally varying hopping ampli-
tude →Y r( ) accounting for strain that also breaks sublattice symme-
try18,34,41. We use an average distance between graphene and hBN of 
3.3 Å, originating from density functional theory (DFT) calculations 
that employ the random phase approximation29. This distance is 
consistent with cross-sectional electron microscopy data43. To obtain 
locally varying TB parameters, we first employ a continuum model 
of graphene with known elastic constants32 subject to the potential 
landscape from the hBN (ref. 30). This reproduces the corrugation of 
70 pm and the strain variation of 2% that are visible in the STM data 
(Fig. 2a)20. Based on the resulting membrane shape of the graphene 
layer, a molecular dynamics simulation using isotropic Lenard–
Jones potentials is employed to obtain the atomically resolved strain, 
the variations in the local distance between hBN and graphene, 
and the local stacking configuration (Supplementary Section 9).  

Using these input parameters, we determine →V r( )0 , →V r( )z  and →Y r( ) 
from our own DFT calculations (Supplementary Section 10). The 
potentials and hopping parameters provide, in turn, the input to our 
third-nearest neighbour TB calculation of the QD states22,31,42. We 
emphasize that no freely adjustable parameter enters our simulation. 
More details are described in Supplementary Sections 9–11.

In agreement with the experiment, the calculated energies of the 
two valley states of the second orbital feature a pronounced varia-
tion with QD position (Fig. 4a–d). To disentangle the influences of 
the strain and the interaction with the hBN substrate, we analyse the 
contributions due to →V r( )0 , →V r( )z , and →Y r( ) separately. Although V0 
(Fig. 4a) introduces local variations in the energy of the hole orbital 
α =  2 along the path AA↔ AB↔ BA, it does not lift the fourfold val-
ley and spin degeneracy. →V r( )z , by contrast, lifts the degeneracy 
between the two valley states Ψ

σ+2, ,1
2

 and Ψ
σ−2, ,1

2
 and even leads to 

an inversion of the energetic order in the AA region of the superlat-
tice, that is, a change of sign for −

σ σ+ −
E E2, , 2, ,1

2
1
2

 (Fig. 4b). However, 
only when the contribution of strain is accounted for through →Y r( ),  
which inverts the sign of the valley splitting in the BA region (Fig. 4c),  
does the correct overall level ordering with level inversion in the AB 
region, as seen in our experiment, emerge (Fig. 4d).

The addition energies in both the TB model (Fig. 4e) and the 
experiment (Fig. 4f), show the same variation of about 6 meV and 
the same order of maxima and minima along the displacement 
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graphene collinearly aligned to the hBN substrate (V =  400 mV, I =  300 pA, 

B =  7 T, T =  8 K). The overlay of grey lines marks the supercell boundary 

deduced from the topography. b, Sketched charging peak sequence with 

highlighted peaks P4 and P5 separated by addition energy Eadd
4  (top) and 

a typical dI/dV curve (yellow line) with Gaussian fits (dashed lines) used 

to determine peak voltages VPn
 (bottom). c,d, Maps of VP4 (c) and 

VP5 (d) of the area shown in a with identical grey lines overlaid, and 

the same parameters for measurement of the map of dI/dV curves as 

in Fig. 1e. The slight shift of the observed patterns with respect to the 

grey lines is attributed to a small lateral shift (∼ 2 nm) of the tunnelling 

atom with respect to the centre of the QD36. e, Eadd
4  map deduced by 
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displayed at identical contrast for n =  5, 6, 7. The corresponding charging 

sequence is sketched on top. The diagonal stripes are caused by the atomic 

lattice of graphene via a moiré effect as outlined in Supplementary Section 

8. The asterisk in P5 marks the identical position in b. Also shown are the 

moduli of the wavefunctions for the second hole orbital, Ψα τ= =+ ∕∣ ∣2, 1 2  and 

Ψα τ= =− ∕∣ ∣2, 1 2 , decomposed into the two sublattice contributions, marked by 

A and B, calculated by our TB model. The centre of the quantum dot is in the 

AB stacking region. Grey honeycombs on top of the wavefunctions mark the 

unit cells of the graphene superstructure. Note the different length scales of 

Ψ∣ ∣ maps and VPn
 maps. b, STM image of graphene on hBN including the 

area shown in a. Grey lines mark supercell boundaries. Different stacking 

areas (AA, AB, BA) are indicated (V =  400 mV, I =  300 pA). c–g, 
→

E rr( )n
add  

maps exhibiting identical contrast and belonging to valley and spin gaps as 

indicated. The same grey lines as in b are overlaid. Scale bars in a–g, 10 nm. 

The same parameters are used as for the dI/dV spectra in Fig. 1e.
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coordinate x. Hence, we attribute the periodically appearing rings 
that encircle the AB region (Fig. 3e), which correspond to the bump 
at X0 with adjacent minima in Fig. 4e, as the positions of an inver-
sion of valley ordering. Remaining quantitative differences between 
the TB model and experiment (Fig. 4e,f) are attributed to disorder, 
most likely to be due to residual irregular strains caused by the non-
perfect collinear alignment between graphene and hBN. The result-
ing disorder is directly visible as irregularities in the unit cell of the 
superstructure (Figs. 2a and 3b) and also explains the irregular dis-
tortions of the rings around the AB regions.

The assignment of the rings around the AB region to valley 
inversions is corroborated by the appearance of the small bump in 
the ring minimum, marked X0 in Fig. 4e–h. It is found in theory and 
experiment with a height of less than 1 meV. The theoretical level 
diagram (Fig. 4g) provides a simple explanation: the bump is the 
result of the additional spin splitting during the passage through 
the crossing of valley levels. At X0, Eadd

6  consists of EC
6 and the spin 

splitting − ≈
τ τ −

E E 8002, , 2, ,1
2

1
2

 μ eV reduced by anticrossing contri-
butions. In contrast, the two spatially offset crossings of valley states 
with different spins (blue circles in Fig. 4g) feature only EC

6, resulting 
in the minima around the bump. Figure 4g also explains the rings 
in the spin splitting maps (Fig. 3f,g), which are simply the reduced 
Δ5 and Δ7 at X0. The spatial alignment of the bump in Δ6 and the 
minima in Δ5,7 are nicely corroborated by the experiment (Fig. 4h).

Although we have focused here on the valley splitting of the sec-
ond hole state, similar ring-like structures encircling the AB area 
are also found for the third hole orbital α =  3 with tunability of the 
valley crossing up to 15 meV (Supplementary Fig. 2). In contrast, 
the first hole orbital α =  1 (Fig. 3c,d) exhibits a valley tunability of 
about 7 meV without inversion of the valley ordering. On the elec-
tron side, the additional charging of defects within the hBN (ref. 44)  
complicates the analysis45, but some ring-like structures indicat-
ing valley inversion can also be spotted (Supplementary Section 6). 

Data recorded with another microtip at two different B fields exhibit 
very similar features (Supplementary Fig. 3). Moreover, the energy 
range of valley tunability remains independent of B, providing sup-
port for the valley tuning being caused by the interaction with the 
substrate and not by the B field. For example, the strength of the 
exchange enhancement would vary with B. In addition, it turns out 
to be one order of magnitude too weak to explain the experimen-
tally observed valley tuning (Supplementary Section 14).

A simple estimate clarifies the resulting strength of the val-
ley splitting of about 10 meV. The sublattice breaking interac-
tions themselves ( →V r( )z , →Y r( )) spatially vary by about 100 meV as 
deduced from our DFT calculations (Supplementary Section 10). 
Hence, shifting about 10% of the hole density of a state Ψ∝∣ ∣( )2  
from the unfavourable AB to the favourable AA region is sufficient 
to account for variations of the valley splitting of about 10 meV. 
Indeed, our detailed TB calculations find that the α =  2 wave func-
tion covers about ten unit cells (Fig. 3a) and primarily adjusts its 
distribution within the central unit cell due to the changing poten-
tial landscape (see Supplementary Video).

Conclusions and outlook
The revealed tunability of a valley splitting by up to 15 meV sur-
passes the highest reported values of valley tuning for other poten-
tially nuclear-spin-free host materials (Si/SiO2, 500 μ eV) by more than 
one order of magnitude. Hence, it might be exploited at temperatures 
up to 4 K. Most intriguingly, the crossings of valley and spin levels 
depicted in Fig. 4g can be used to initialize superposition states of spin 
and valley degrees of freedom2,46. This could be the starting point to 
determine the coherence47 of both types of states in graphene for the 
first time. The required interaction of the levels rendering the depicted 
crossings into anticrossings is naturally provided by the spatially vary-
ing sublattice potential that couples opposite valley states (Fig. 4d). 
We note in passing that the breaking of the valley degeneracy is also 
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6  map as Fig. 3d). The x axis is 

aligned to the stackings marked in e. X0 indicates a feature attributed to the influence of spin splitting at the valley crossing. The origin in a–f is the centre 

of the AB region. g, Schematic evolution of the state energies for a crossing of two valley states (τ =  + 1/2: cyan, τ =  − 1/2: magenta). A spatially constant 

spin splitting (levels marked by black spin arrows) is added. The resulting energy differences Δn are marked by double arrows. An anticrossing emerges at 

X0 as deduced from d. Blue circles mark spin level crossings. h, Experimental 
→

E rr( )n
add  along the red line in the inset of f, belonging to one preferential valley 

gap (red) and two spin gaps (grey). A typical error bar, resulting from the Gaussian fits of the dI/dV peaks, is shown.
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the central requirement for exchange-based spin qubits, which could 
provide an all-electrical spin qubit operation in graphene48. A possible 
device set-up for these purposes could employ side gates for moving 
gate-based QDs and, hence, for providing the valley tuning. Edge 
states, belonging to each LL, can provide tunable source and drain 
contacts (Supplementary Section 15).

Finally, we emphasize that the approach of designed van der 
Waals heterostructures19–21 for a versatile tuning of electronic 
degrees of freedom might be extended to physical spin schemes by 
using an atomically varying spin–orbit interaction as present for 
graphene on WSe2

49, for example.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0080-8.
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Methods
The sample was prepared by exfoliating graphite flakes on a SiO2 substrate, 
followed by two consecutive dry transfers27,28 of 30-nm-thick hexagonal hBN and 
monolayer graphene, respectively. During the graphene transfer, we took care to 
minimize the angular misalignment between the graphene lattice and the hBN 
lattice. Remaining small misalignments in the 0.1° regime cannot be excluded20. 
Moreover, a few small bubbles between the graphene and the hBN appear after 
transfer (see chapter S7 of ref. 41). Both of these effects lead to mechanical stresses 
that perturb the graphene/hBN superlattice in period or shape50 (Figs. 2a and 3b).  
The graphene flake overlaps the hBN completely. This avoids insulating areas, 
which would be hazardous to the STM tip, but does not allow for back-gate 
operation. Finally, electrical Cr/Au contacts (2 nm/100 nm) are evaporated onto 
the large bottom graphite flake via a shadow mask. Optical images of the device 
structure are available in the supplement of a previous publication22.

STM and scanning tunnelling spectroscopy measurements are performed in 
a home-built ultrahigh vacuum STM chamber operating at temperature T =  8 K 
and in magnetic fields up to B =  7 T perpendicular to the surface51. Tungsten 
tips are prepared by etching W wires, which are subsequently controlled with 
an optical microscope. The microtips are transferred into the STM within the 
ultrahigh vacuum chamber, where they are reshaped by controlled indentation 
into the Au(111) surface of a Au bead52. They thus form a Au apex of a few tens of 
nanometres in length as cross-checked by electron microscopy. We characterize the 
tips in situ by mapping the topographic and spectroscopic features of the Au(111) 
surface before exchanging the Au crystal for the graphene sample. STM images 
are recorded in constant current mode at tunnelling current I and tip voltage V. 
Differential conductance curves dI/dV(V) are recorded by lock-in detection using 
a modulation voltage with root-mean-square value Vmod =  2–5 mV and frequency 
fmod =  1,223 Hz. After stabilizing the tip–sample distance at stabilization voltage 
Vstab and stabilization current Istab, the feedback loop is opened for the dI/dV(V) 

recording. During the recording, the tip–sample distance is changed at a rate of 
50 pm V−1, approaching the sample by 0.5 Å while sweeping V from 1 V to 0 V and 
retracting it by the same distance while continuing to − 1 V. This compensates 
for the changing height of the tunnelling barrier as a function of V (ref. 53). The 
resulting change in the tip–sample capacitance is below 2.5%22. It is therefore 
neglected, as it is much smaller than other capacitance uncertainties22. Additionally, 
we normalize the dI/dV data according to dI/dV(V))/I(Vstab) with I(Vstab) being the 
first detected current after opening the feedback loop. This compensates for the 
influence of vibrations during the stabilization process.

We focus on the first two orbital states for confined holes, originating from 
LL−1, as they capture the essential features (see Supplementary Section 6). On the 
electron side, charging of randomly distributed defects in the hBN (ref. 44) impedes 
an unambiguous analysis of the QD charging patterns (see Supplementary Fig. 2)45.

Data availability. The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon reasonable request.
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