
http://www.diva-portal.org

Preprint

This is the submitted version of a paper published in Applied Physics Letters.

Citation for the original published paper (version of record):

Jackman, H., Krakhmalev, P., Svensson, K. (2014)

Large variations in the onset of rippling in concentric nanotubes..

Applied Physics Letters, 104: 021910

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-30942



Large variations in the onset of rippling in concentric nanotubes
H. Jackman,1, a) P. Krakhmalev,1 and K. Svensson1

Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad,

Sweden

(Dated: 22 November 2013)

We present a detailed experimental study of the onset of rippling in highly crystalline carbon nanotubes.
Modeling has shown that there should be a material constant, called the critical length, describing the
dependence of the critical strain on the nanotube outer radius. Surprisingly, we have found very large
variations, by a factor of three, in the critical length. We attribute this to a supporting effect from the
inner walls in multiwalled concentric nanotubes. We provide an analytical expression for the maximum
deflection prior to rippling, which is an important design consideration in nanoelectromechanical systems
utilizing nanotubes.

Nanotubes can now be made in a variety of materi-
als, such as carbon, boron nitride and metal-disulfides.
These materials have a high mechanical stiffness that is
promising for future nanoscale devices, such as relays1,2

and resonators.3,4 During bending the tubes can how-
ever deform in buckling or rippling patterns, much like
macroscopic tubes do, and the bending stiffness will drop
significantly. Such deformations have been observed for
nanotubes made of C,5,6 BN,7,8 and WS2,

9 while similar
deformations are also expected to occur in MoS2.

10

The rippling deformations will reduce the bending stiff-
ness by a factor of two or more.11–15 In a relay configu-
ration this would result in a lower switching frequency
and quality factor, or even a bi-stable operation due
to stiction. Although stiction is a common problem in
nanorelays,16 the influence of rippling on the performance
is often neglected when analyzing a relay.17 The rippling
can also influence the strength of fibre composites as it
reduces the reinforcing effect.18 While the appearance
of rippling in nanotubes is well known to occur, less is
known about when the rippling will commence and how
it depends on the size and internal structure of the tubes.
Theoretical modeling of the rippling onset in carbon nan-
otubes (CNTs) suggests that the critical strain εcr is in-
versely proportional to the nanotube outer radius.13–15,19

From this dependence one can define a material constant,
lcr = εcrro, which has the dimension of a length and is
referred to as the critical length. The theoretical studies
have however found rather different values for this criti-
cal length. This diversity could come from differences in
the models or an actual variation in the critical length,
dependent on the nanotube geometry. The critical length
sets an upper limit on the linear, high bending stiffness,
range as the maximum deflection is directly proportional
to lcr.

20 Thereby, the critical length is an important fac-
tor in applications where the high bending stiffness of
nanotubes are exploited.
As the atomic rearrangement is very small at the

very onset of buckling and rippling,14 the onset is best
detected in force-displacement curves by the sudden
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drop in stiffness, and has only recently been measured
experimentally.12 While the measurements have revealed
values of the critical strain that are comparable to those
from theoretical modeling, it also demonstrated a strong
influence from structural defects in the tubes (grown by
chemical vapor deposition (CVD)). A detailed compar-
ison with theoretical modeling could therefore not be
made in that study.

In this letter we present measurements of the onset for
rippling in multiwalled carbon nanotubes (MWCNTs) of
high crystallinity (grown by arc-discharge). The high
crystallinity enables a detailed study of the critical strain
and critical length, without any influence from structural
defects in the nanotubes. We have found values of the
critical strain that are comparable to previous model-
ing. However, unexpectedly large variations in the criti-
cal length (about a factor of three) were observed. The
critical length displays a strong dependence on the in-
ternal structure of the nanotubes and it should not be
thought of as a material constant.

In order to measure the critical strain (εcr) the free
end of individual cantilevered CNTs were deflected in-
side a transmission electron microscope (TEM), us-
ing a commercial AFM-TEM instrument from Nanofac-
tory Instruments AB. Arc-discharge grown CNTs, ob-
tained from professor Hui-Ming Cheng,21 was dispersed
in dichloroethane and then sonicated for 15 minutes.
This dispersion was then drop-casted onto a glass sub-
strate, leaving well separated particles that could be at-
tached to the tip of a silver wire using conductive epoxy
glue. The silver wire was mounted on a tip holder that
sits on a sapphire ball attached to a piezoelectric tube,
see Fig. 1 (a). A piezoresistive force sensor was located
opposite to the sample, which enables direct force mea-
surements to be performed.22

The force sensor was calibrated by pushing it against a
hard surface, yielding the voltage-displacement sensitiv-
ity, and against a pre-calibrated AFM cantilever (NSC18-
F, from MikroMasch), to obtain the spring constant of
the sensor. Details about the calibration process have
been given in an earlier work, where a similar instrument
was calibrated.12 The AFM instrument is fitted in a TEM
specimen holder and was operated inside a JEOL (JEM
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FIG. 1. (a) Experimental set-up. (b) Typical force-
displacement curve from measurements on a MWCNT, where
the critical displacement is defined as the distance between
point 1 and 2. (c,d) TEM-images of a MWCNT, (c) unde-
flected and (d) deflected well past the rippling onset.

2100) TEM, equipped with a LaB6 cathode and a digital
camera from Gatan (SC1000 Orius).
The TEM was initially used to localize and to posi-

tion individual CNTs in front of the force sensor. During
force measurements the beam was kept away from both
the sample and the sensor in order to avoid beam induced
depositions and noise in the force sensor signal. After the
force measurements were made, images of the CNT were
acquired so that the dimensions of the CNT could be ac-
curately determined.20 In order to avoid beam damage
of the nanotubes, an acceleration voltage of 80 kV was
used during all measurements, since higher acceleration
voltages are known to induce knock-on displacements of
the atoms in graphene.23 Individual CNTs were pushed
against the force sensor in a cantilever to cantilever fash-
ion, relating their spring constants to the total spring
constant through:

kCNT =
ksensktot

ksens − ktot
(1)

Where kCNT , ksens, and ktot are the spring constants
of the CNT, the sensor and the total spring constant,

respectively. In Fig. 1 (b) a typical force-displacement
curve is shown wherein at point 1 the CNT is in contact
with the cantilever with zero deflection, having been de-
flected back after the snap-in. From this point the force
increases linearly with the displacement applied to the
piezo, δpiezo, with spring constant ktoti . At a critical dis-
placement, point 2, there is a kink in the force curve,
where the spring constants abruptly decreases to ktotr .
Upon retraction of the sample, the force-displacement
curve follows a similar route as when going forward, ev-
idence of the elastic nature of the rippling deformation.
The critical displacement for the onset of rippling, δpiezocr ,
is taken as the displacement between point 1 and 2, re-
lated to a critical displacement of the CNT through:

δCNT
cr = δpiezocr

(

1−
ktoti

ksens

)

(2)

Approximating the CNTs to be cantilevered beams with
a circular cross-section, the critical strain of the CNT can
be calculated using:

εcr = δCNT
cr

3

2

do

l2
(3)

where do and l is the outer diameter and the length of the
CNT respectively and are obtained from TEM images.20

Using the obtained spring constant, the axial Young’s
modulus of the CNT can be calculated from:

Ez =
64

3π

kCNT
i l3

(d4o − d4i )
(4)

where di is the inner diameter of the CNT. Since the
spring constant used in Eq. 4 is prior to the rippling
onset, the axial Young’s modulus will not display any
diameter dependence related to rippling effects. Such a
dependence can however arise if Ez is determined from
the CNT eigenfrequency, where a combination of kCNT

i

and kCNT
r can contribute to the bending stiffness.6,24

TEM-images of a typical CNT are shown in Fig. 1,
undeflected (c) and while deflected well past its critical
displacement (d). The exact nature of the deformations
appearing in the rippled phase are beyond the scope of
this letter, and here we focus on the behaviour up to the
critical point.
The obtained values of the critical strain for a number

of tubes are plotted versus the outer diameter in Fig. 2
(a), along with values from a previous study, where εcr
was measured for CVD-grown MWCNTs.12 The values
from the present study show significantly lower values of
εcr at similar nanotube diameters, and are also closer to
the theoretical predictions.14,15,25

A plot of the axial Young’s modulus versus the outer
diameter in Fig. 2 (b) shows that the CNTs in this study
have higher values, Ez = 780 ± 320 GPa, compared to
the CVD-grown CNTs in the previous study.12 We at-
tribute this difference to a higher crystallinity in the arc-
discharge grown CNTs, compared to CVD-grown ones.
Modeling have shown that εcr increases with increasing



3

FIG. 2. (a) Measured values for the critical strain plotted ver-
sus the nanotube outer diameter, along with previous model-
ing. (b) Young’s modulus plotted versus the outer diameter.
(c) Young’s modulus plotted versus the critical strain.

defect density.26 Thereby, CNTs with a high defect den-
sity will have low Ez accompanied by high εcr values,
which was indeed found for the CVD-grown nanotubes.12

For the arc-discharge grown tubes of this study we find
no such correlation, instead all tubes display high Ez and
low εcr values independent of do, as seen in Fig. 2(c), con-
sistent with a high crystallinity in these tubes. An early
study suggested that the critical strain of single walled
carbon nanotubes (SWCNTs) should depend on do as:13

εcr =
0.077

do
=

0.0385

ro
=

lcr

ro
(5)

A similar dependence of εcr on do have also been found
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FIG. 3. Obtained values for the critical length, lcr = εcrro,
versus the normalized thickness tN , together with a best fit
to Eq. 7 and previous modeling results.

when modeling MWCNTs, but the suggested values of lcr
varies. The critical length is found to be higher for thick
MWCNTs and values of lcr = 0.10 nm and lcr = 0.052
nm have been reported.14,15

Molecular mechanics simulations of the behaviour of
MWCNTs under bending showed that inserting more
walls in a MWCNT will increase εcr. The modeling
showed small variations in lcr that leveled off to a con-
stant value after the insertion of only a few walls.19 In
order to investigate such a variation, and to compare dif-
ferent tubes, we define a dimensionless constant that de-
scribes a normalized thickness; tN = do−di

do
. In Fig. 3

the obtained critical length values, lcr = εcrro, are plot-
ted versus the normalized thickness along with different
theoretical models.13–15,19 The results from the theoret-
ical modeling have been illustrated in the approximate
tN -region in which they were modeled. Our results show
that lcr varies throughout the whole range of tN and
continues to increase even for very thick MWCNTs, in
contrast to the previous modeling results.19 We attribute
the increase to a supporting effect from the inner tubes,
preventing the MWCNT from rippling at strains where
a SWCNT, or a thin MWCNT, would already ripple or
buckle.
The supporting ability of the inner tubes should de-

pend on their radial stiffness. Treating the nanotube as
a cylinder composed of a transversely isotropic material,
having two in-plane Young’s moduli, Eϕ = Ez , a radial
Young’s modulus, Er, and a Poisson’s ratio, νrϕ, the nor-
malized radial stiffness can be written as:20

SN (tN ) =
1− (1− tN )2n

1−
(

1+νrϕn

1−νrϕn

)

(1− tN )2n
(6)

where n =
√

Eϕ

Er
. We have used Eq. 6 to fit the data in

Fig. 3, by assuming that SN increases the critical length
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from a minimum to a maximum value as tN varies:

lcr(tN ) = ltN=0
cr +

(

ltN=1
cr − ltN=0

cr

)

SN (tN ) (7)

Eq. 7 was fitted to the experimental data in Fig. 3 us-
ing the method of least squares. The best fit was found
for ltN=0

cr = 0.038 nm, ltN=1
cr = 0.119 nm, νrϕ = 0.79,

and n = 1.23 (corresponding to Er = 520 GPa by us-
ing Eϕ = 780 GPa). The value of ltN=0

cr can be seen as
the critical length for a CNT where di ≈ do and the fit-
ted value agrees very well with the modeling results for
SWCNTs.13 The value of ltN=1

cr then corresponds to a
critical length for MWCNTs having di ≪ do, and the
fitted value is close to the modeling results for thick
MWCNTs.14 Radial Young’s moduli of similar magni-
tude, as that obtained from the fitting, have been re-
ported for MWCNTs,27 although reported values of Er

vary by almost three orders of magnitude.28 The Pois-

son’s ratio νrϕ = −
∂εϕ
∂εr

correspond to a contraction in
the ϕ-direction when an extension is applied in the r-
direction. The value obtained from the fitting satis-
fies the constraints on Poisson’s ratio for a transversely
isotropic material (ν2rϕ < Er

Eϕ
) and similar values have

been suggested from modeling.29

For nanotubes made of other materials than carbon, we
expect Eq. 7 to be valid after appropriate adjustments of
material parameters and the values of ltN=0

cr and ltN=1
cr .

The variations in the critical length will be important
for applications that exploit the bending stiffness of nan-
otubes, such as nanoresonators1,2 and nanorelays.3,4 The
critical displacement of a nanotube is proportional to lcr
and dependent on the clamping geometry.20 In resonators
using CNTs, the nanotube should be single-walled (or
few-walled) and care must be taken to keep the strain
within the linear region, i.e. where ε < εcr = lcr

ro
= 0.04

ro
.

In relays the nanotube could well be a multiwalled one
and the strain could then be increased by up to a factor
three, ε < εcr = lcr

ro
= 0.12

ro
, in order to enable a larger

amplitude and higher pullback force. In bi-stable relay
applications one could instead exploit the lower bending
stiffness of the rippled phase and use strains that are well
within the rippling region.

It is worth noting that the non-stiction relays in the
work of Loh et al.17 all operate well past the critical strain
for rippling, according to our findings. This lowers the
restoring force of the cantilevered CNT, thus requiring an
even larger relay-gap in order to avoid stiction. Although
operational, both the resonance frequency and quality
factor would be lower than optimum for these relays.

In conclusion, we have obtained values of the critical
length in highly crystalline MWCNTs. Large variations
(a factor of three) in the critical length have been ob-
served and we attribute this to a supporting effect from
inner walls in the nano-tubular structure. Based on clas-
sical material constants we provide an analytical expres-

sion for the variations of the critical length. This will
provide important guidelines for the maximum deflec-
tion that can be utilized in applications such as nanores-
onators and nanorelays. With appropriate adjustment
of material parameters, the expression should be valid in
general for concentric nano-tubular structures of different
materials.
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