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The present paper describes our current research on automatic speech rec­

ognition of continuously read sentences from a naturally-occurring corpus: 

office correspondence. The recognition system combines features from our 

current isolated-word recognition system and from our previously devel­

oped continuous speech recognition systems. It consists of an acoustic pro­

cessor, an acoustic channel model, a language model, and a linguistic de­

coder. Some new features in the recognizer relative to our isolated-word 

speech recognition system include the use of a fast match to rapidly prune 

to a manageable number the candidates considered by the detailed match, 

multiple pronunciations of all function words, and modelling of interphone 

coarticulatory behavior_ To date, we have recorded training and test data 

from a set of 10 male talkers. The test data consist of 50 sentences drawn 

from spontaneously generated memos covered by a 5000 word vocabulary. 

The perplexity of the test sentences was found to be 93; none of the sen­

tences were part of the data used to generate the language model. Prelimi­

nary (speaker-dependent) recognition results on these talkers yielded an 

average word error rate of 11-0%. 

1. Introduction 

The present paper describes our current research on automatic speech rec­

ognition of continuously read sentences from a naturally-occurring corpus: 

office correspondence. In previous work, we have concentrated on recogni­

tion of continuously read sentences from a 250 word vocabulary finite state 

grammar [1], continuously read sentences from a 1,000 word naturally-

* This is a paper originally presented at the Seoul International Conference on 
Natural Language Processing on November 22,1990. 
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occurring corpus [1], and sentences from 5,000 and 20,000 word naturally­

occurring corpora read with pauses between words [2,3]. This paper ex­

tends the previous work towards the recognition of continuously read sen­

tences from a natural corpus covered by a 5,000 word vocabulary. 

2. Task Description 

The office correspondence task was developed by taking a large quantity of 

IBM internal electronic mail, determining the most frequently occurring 5, 

000 words, and selecting from this database sentences fully covered by the 

5,000 word vocabulary for test and training purposes [2]. 

For our experiments, we record a set of 10 male talkers reading training 

scripts of 2,000 sentences and several test scripts of varying size and recog­

nition difficuities. This paper will report results on one of the test scripts 

(the "RSX" script) consisting of 50 sentences fully covered by our 5,000 

word vocabulary. The training script consisted of sentences fully covered 

by a 20,000 word vocabulary; the first 500 sentences were 'the same for 

each talker, while the other 1,500 were different from talker to talker. The 

average sentence length for the training sentences was 16.4 words, and for 

the test sentences, 11.8 words. The talkers were from the local New York 

area. None were IBM employees. All recordings were made in a quiet office 

environment using a Crown PZM 6S microphone with a 12 bit analog to 

digital (A/D) converter. The range of the talker's speakil,lg rates was 

broad; the fastest talker spoke at 170 words per minute (wpm) and the 

slowest, at 130 wpm. It took each talker approximately one week to record 

the necessary speech. 

3. Description of the Base Recognition System 

The recognition system is based on features present in our current isolated­

word recognition system and in our previously developed continuous speech 

recognition system. It consists of an acoustic processor, an acoustic channel 

model, a fast matcher, a language model, and a hypothesis search module. 

Thus the overall configuration is that described in reference [4]. 

The acoustic processor extracts a vector of 20 spectral features from the 

speech signal, and quantizes each feature vector into one of 200 possible 
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prototype classes. The acoustic channel model describes in a probabilistic 

fashion the way in which words are realized as sequences of prototypes pro­

duced by the acoustic processor. The fast matcher produces a short list of 

words whose uttering could have caused an indicated acoustic processor pro­

totype string. The language model estimates the probability of the next word 

in the sentence given the previously hypothesized words in the sentence. The 

hypothesis search module directs the recognition process, maintaining a tree 

of currently active hypothesized subsentence paths. It evaluates their likeli­

hood and, accordingly, discards some paths and extends others. 

There are several modifications that we made to the first two components of 

our basic recognition system in order to obtain improved continuous speech 

recognition performance. These will be described in the following sections. 

This section sketches the basic system. 

The spectral feature extraction of our acoustic processor is based on an 

adaptive auditory("ear") model described by Cohen [5]. The processor de­

termines the Euclidean distance of each feature vector produced by the ear 

model to all 200 prototype vectors, and puts out the identifierOabel) of the 

nearest prototype. 

In isolated word experiments Markov model for a word was determined 

from 10 utterances of the word from 10 speakers, and did not depend on 

the context [6]. However, to accommodate the requirements of continuous 

speech, the model for any particular word depends on the immediate word 

context. The principles of this dependence are outlined in the next section. 

As recognition proceeds, the hypothesis search module endeavors to ex­

tend particular hypothesized paths specified by a sequence of words (or 

rather lexemes - see the next section) starting with the beginning of the 

current sentence (our search units are words/lexemes). Since in a natural 

text task, every word can be followed by any other one with a varying but 

non-zero probability, the fit of all the words of the vocabulary to the unac­

counted-for portion of the acoustic processor output string should be exam­

ined. Since the vocabulary is large, the examination is carried out in two 

steps. The first step, called the Fast Match, reduces the possibilities to a 

few candidates (30 on average) whose fit, relative to an acoustic Markov 

model, is then evaluated by the Detailed Match. One version of the Fast 

Match is described in reference [7]. The current recognizer organizes its 

Fast Match around a tree constructed from the phonetic baseforms [4,6] 
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corresponding to the words of the vocabulary. The branches of the tree are 

Hidden Markov Models(HMMs) determind by the phone in question. These 

component HMMs are of a simplified variety (the distributions of all the 

transitions are identical) allowing fast computation. Thresholding is used to 

prune this tree by eliminating those paths that do not fit the acoustic label 

sequence submitted to the Fast Match. The resulting shorter list of acousti­

cally compatible candidate words is further pruned by the language model 

that eliminates some of the a priori less likely continuations of the 

hypothesized path being extended. 

The recognizer uses our standard trigram language model [IJ which is 

based on an interpolation of rela~ive frequencies of trigrams, bigrams, and 

unigrams collected from a 200 million word text data base. The interpola­

tion weights are determined by the method of deleted interpolation [I,Sec­

tion VIII]. The n-igrams used(n= 1,2,3) are sequences of n consecutive 

words in the training corpl1s that belong to the basic vocabulary. 

The hypothesis search is, in principle, that described in Section VI of ref­

erence [IJ, and is based on the stack algorithm of sequential decoding [8J. 

The acoustic component of the likelihood score is provided by the acoustic 

model (see next section), and its linguistic component by the trigram lan­

guage model. However, path extensions are carried out only for the words 

specified by the Fast Match component. 

4. A Contextual Allophonic Acoustic Model 

The basic principle of our acoustic model is as follows. To each word of the 

vocabulary there correspond one of more basic pronunciations, called 

lexemes. There is also a silence lexeme. The pronunciation of a lexeme is 

specified by a base/orm, which is a sequence of symbols from a phonetic 

alphabet of size 64. For instance, the word <either) corresponds to two 

lexemes with baseforms eel dh erO and ail ixg dh erO, respectively. Our 

recognizer actually decodes sequences of lexemes rather than words. 

Each of the 64 phones (phonetic symbols) F can realized by a variety of 

allophones F(I), F(2), ... , F(K), and so a baseform Blt B2, ••• , Bn is real­

ized by an allophonic sequence Bli/), Bz(i2), ••• , B.On) (Bb) denotes the i, 

allophone of the Jk phone of the lexeme) whose identity is determined by 

the phones of the lexeme and of the hypothesized lexeme string being ex-
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tended (between the lexeme and the preceding path there is always insert­

ed a word separation phone). The variant i, of phone B, depends on the 

class identity of a string of phones centered by B,. The equivalence classifi­

cation is determined by use of decision trees [9] and depends on pre-train­

ing data, as does the variety of allophones of each phone. 

To each allophone F( i) there corresponds a Markov model, and thus the 

baseform is the concatenation of the Markov models corresponding to the 

allophones whose string realizes the lexeme. This baseform them determines 

the acoustic model of the lexeme in the particular context of the neighbor­

ing lexeme string. 

Each transition in any of the Markov models is identified with one of the 

arcs in an inventory of 200 arcs. Transitions identified with the same are 

restricted to have the same output probability distribution over the 200 

acoustic processor labels. 

5. Supervised Vector Quantization 

The 200 prototype vectors used by the acoustic processor are selected in an 

iterative mode intended to optimize the efficiency of the allophonic acoustic 

model. The procedure is based on the intuitive notion that the individual 

prototypes should represent the individual arcs in the arc inventory (there 

is an equal number, 200, of arcs and prototypes), because the latter are the 

phonetic means used to describe pronunciation. 

We proceed as follows. We obtain original prototypes by "ordinary" vec­

tor quantization. Since the training script determines a lexeme string which 

in turn models, then determines an allophone string, and each allophone 

corresponds to a Markov model, then the training feature vector string pro­

duced inside the automatic processor [Section 3] corresponds to a particu­

lar sequence. Using allophonic Markov models (whose statistics are deter­

mined by forward/backward training), we can Viterbi align the feature 

vectors and arcs of the allophone models. For each arc in the arc inventory 

we then assemble a collection of feature vectors aligned with it. The 200 

collections then lead to a new set of prototypes. This set is the basis of the 

next iteration of the process: re-Iabeling of acoustic processor output; de­

termination of the allophonic varieties of all phones, and of phone string 

equivalence classification determining the allophone string realization of 
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lexemes; estimation of acoustic model statistical parameters; alignment of 

feature vectors and model arcs; and creation of the next generation of pro­

totypes. Iteration continues as long as a perceptible change in the proto­

types is observed. 

6. Some Additional Recognizer Adjustments 

Many of the very frequent words (we call them arbitrarily, function words) 

are short and are, in continuous speech, carelessly pronounced, so they can 

benefit by careful treatment [10J. There being only 130 such words, we 

can afford to model them as inqividual special phones. This can easily be 

accommodated in the framework of the contextual allophonic acoustic 

model of Section 4. 

Speakers sometimes pause at appropriate points m a sentence. The 

hypothesis search module provides for this possibility by allowing the exten­

sion of a path by a silence lexeme. The trigram language model skips this 

lexeme in the path history when predicting the next word. 

The hypothesis search determines the match score for a word by dividing 

the actual probability for the word as computed by the model by the expect­

ed value of the match score for the word, given the correct word model. A 

bias that increases linearly over time is added to force the match score to 

tend to increase over time on the correct path. The match is terminated 

when the correct score falls below a preset threshold. In isolated-word 

speech, the bias term can be set quite high, as the silence that occurs after 

each word will always allow us to determine when to terminate the match. 

In continuous speech, a high bias term causes the match to continue over 

short words, e.g., "do you want us" is recognized as "he was", while a low 

bias term tends to break long words into short ones. We found that a much 

smaller bias than used in isolated word speech produced much better per­

formance in continuous speech. 

7. Training 

It was mentioned in Section 2 that ten(10) talkers read 2,000 sentences. 

The totality of this data is used to determine (in pre-training) the 

allophonic variety for the phone set, as well as the equivalence classification 
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determining the desirable allophone from the context preceding and follow­

ing phones (see Section 4). This specifies the lexeme to allophonic corre­

spondence. The statistical parameters of the HMMs are then determined for 

the speech of the individual speaker to be recognized. 

The training will result in proper estimation only if based on the correct 

lexeme (rather than word) script. The speakers are given an ordinary text 

to read without being instructed where to pause or how to pronounce each 

word. Their speech must thus first be subjected to a decision process which 

determines the location of pauses as well as the identity of the speakers' 

choices in multi-lexemic words. 

8. System Perfonnance 

For comparison, we will give the result of four(4) experiments dealing with 

recognition of the natural text covered by a 5,000 word vocabulary: isolat­

ed word recognition with context-independent phonetic and fenonic [6] 

models, and continuous speech recognition with context-independent and 

allophonic models. The system was trained on all 2,000 sentences from 

each talker; for isolated word speech, only 100 sentences were available for 

training, the test script was the "RSX" script (above). Only error rates 

computed for word deletions and substitutions are reported [10]. 

Table 1 - Test Results on RSX script under various conditions. 

Isolated Speech Continuous Speech 
Phonetic Fenonic Phonetic Allophonic 

(%) 

T1 5.6 2.4 25.0 8.8 
T2 4.7 3.2 33.1 13.0 
T3 5.4 3.7 39.7 18.2 
T4 6.3 4.6 28.7 13.0 
T5 2.0 1.5 11.7 6.1 
T6 7.1 3.0 42.1 13.2 
T7 3.5 1.5 24.3 11.5 
T8 4.1 1.9 13.4 6.3 
T9 5.6 2.5 22.0 8.5 
T10 16.2 8.5 28.1 12.2 

AVG 6.1 3.3 26.8 11.0 
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Approximately 1/3 of the errors for the allophonic models are caused by 

the fast match not returning the correct lexeme to be processed by the de­

tailed match. Approximately 2.5 CPU hours on a large IBM mainframe is 

required per talker for continuous speech recognition. This is more than 25 

times the CPU time needed for the isolated word task; this figure does not 

include signal processing, training, and supervision time. Note that the 

allophonic models produce a larger performance gain relative to context-in­

dependent phone models in continuous speech than the fenonic models in 

isolated word speech. Some of the additional performance gain may be at­

tributable to the use of supervised vector quantization; this was not pur­

sued in the isolated word experiment because of a lack of training data. Fu­

ture work will include exploring new fast match strategies, better labelling 

methods, and comparisons to other techniques for performing context-de­

pendent modeling [10]. 
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