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Abstract 

Recently, we proposed and developed the context-dependent 

deep neural network hidden Markov models (CD-DNN-HMMs) 

for large vocabulary speech recognition and achieved highly 

promising recognition results including over one third fewer 

word errors than the discriminatively trained, conventional 

HMM-based systems on the 300hr Switchboard benchmark task. 

In this paper, we extend DNNs to deep tensor neural networks 

(DTNNs) in which one or more layers are double-projection and 

tensor layers. The basic idea of the DTNN comes from our 

realization that many factors interact with each other to predict 

the output. To represent these interactions, we project the input 

to two nonlinear subspaces through the double-projection layer 

and model the interactions between these two subspaces and the 

output neurons through a tensor with three-way connections. 

Evaluation on 30hr Switchboard task indicates that DTNNs can 

outperform DNNs with similar number of parameters with 5% 

relative word error reduction. 

Index Terms: automatic speech recognition, tensor deep neural 

networks, CD-DNN-HMM, large vocabulary 

1. Introduction 

Recently we proposed and developed the context-dependent 

deep neural network (DNN) hidden Markov models (HMMs) 

(CD-DNN-HMMs) for large vocabulary speech recognition 

[1][2][3][4][5]. CD-DNN-HMM is a special artificial neural 

network (ANN) HMM hybrid system [7][8][9] proposed two 

decades ago for speech recognition. In CD-DNN-HMMs, DNNs 

replace Gaussian mixture models (GMMs) and directly 

approximate the emission probabilities of the tied triphone states. 

CD-DNN-HMMs have achieved 16% [1][2] and 33% [3][4][5][6] 

relative recognition error reduction over strong, discriminatively 

trained CD-GMM-HMMs, respectively, on a voice search (VS) 

task [10] and the Switchboard (SWB) phone-call transcription 

task [11]. 

In this work, we extend the DNN to a novel deep tensor neural 

network (DTNN) in which one or more layers are double-

projection and tensor layers (see details in Section 2). The basic 

idea of the DTNN comes from our realization that many factors, 

such as noisy speech, noise and speaker, interact with each other 

to predict the output. To represent these interactions, we project 

the input to two nonlinear subspaces through the double-

projection layer and model the interactions between these two 

subspaces and the output neurons through a tensor with three-

way connections. In addition to the proposal of this new type of 

deep model, our original contributions in this work also include a 

novel approach to reduce the tensor layer to a conventional 

sigmoid layer, the development of the learning algorithms 

associated with DTNN, and empirical evaluations of the new 

deep model on large vocabulary speech recognition. 

We will introduce DTNN, explain how to simplify it, and 

describe the detailed learning algorithms in Section 2. The 

experimental results on Switchboard task are presented in 

Section 3. We will conclude the paper in Section 4. 

2. Deep Tensor Neural Network 

Deep tensor neural network (DTNN) is a new type of deep 

neural network (DNN) with one or more layers replaced with 

double-projection and tensor layers, to be defined shortly. In this 

section we describe DTNN and the related learning and scoring 

algorithms. We denote the input to the DTNN as  , an     

vector, and the output as  , a     vector. 
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Figure 1: Architectural illustrations of DNN and DTNN. (a) 

DNN. (b) DTNN: hidden layer      consists of two parts:   
    

and    
   . Hidden layer    is a tensor layer to which the 

connection weights    form a three-way tensor. (c) An 

alternative representation of (b): tensor    is replaced with 

matrix    when    is defined as the cross product   
      

   . 

2.1. Tensor Layer and Double-Projection Layer 

Figure 1 illustrates and compares DNN and DTNN. More 

specifically, sub-figure (a) is a conventional DNN with a total of 

    layers and sub-figure (b) is the corresponding DTNN 

where hidden layer    is replaced with a tensor layer.  Note that 

the immediate lower layer, hidden layer     , is separated into 

two parts   
    (a   

       vector) and   
     (a   

       

vector). These two parts connect to hidden layer    through the 

three-way tensor    which is represented with a cube in the 



figure. The two hidden layer vectors   
   and   

    may be 

augmented with value 1 as the last element when connected to 

hidden layer   . However, this is unnecessary since the same 

effect may be achieved by initializing weights and biases so that 

one of the units always outputs 1.  

Sub-figure (c) is an alternative view of the same DTNN 

shown in sub-figure (b). By defining 

      (  
   (  

   )
 
)  (1) 

where    ( )  is the column-vectorized representation of the 

matrix, we can organize and rewrite tensor    into matrix    as 

represented by a rectangular in  (c). This rewriting allows us to 

bridge between the conventional layers and the tensor layers and 

to define the same interface in describing these two different 

types of layers. For example, in sub-figure (c) hidden layer    

can now be considered as a conventional layer and can be 

learned using the conventional backpropagation (BP) algorithm. 

Hidden layer     , however, is still a special layer that contains 

two output parts   
    and   

     that are determined by two 

separate weight matrices   
    and   

   . We call this kind of 

layer double-projection (DP) layer. 

In the DTNN shown in Figure 1, hidden layer      is a 

conventional layer. In other words,      connects with   
    and 

  
    through weight matrices   

    and   
    instead of tensors. 

However, nothing would prevent hidden layer      from being a 

DP layer, in which case it can also be separated into two parts 

  
    and   

    and these two parts may connect to   
    and   

    

through tensors   
    and   

   . Fortunately, by defining input 

     to hidden layer      as 

        (  
   (  

   )
 
)  (2) 

tensors   
    and   

    can be rewritten as matrices. 

    In summary, there are three types of layers in DTNNs: the 

conventional sigmoid layer, the DP layer, and the softmax layer 

that connects the final hidden layer to labels. In all the layers the 

input is always    for layer   . For the first layer we have 

         (3) 

For layers    , if the previous layer is a conventional sigmoid 

layer        , otherwise    is defined using Eq. (1). Note    is 

a   
    column vector. 

For the conventional sigmoid layer,  

    (  (  ))   ((  )      )  (4) 

where    is the weight matrix,    is the bias,  ( )    ((  
   (  )) ) is the sigmoid function applied element-wise, and 

  (  )  (  )       is the activation vector given input   . 

For the DP layer,  

  
   (  

 (  ))   ((  
 )

 
     

 ) (5) 

where         indicates the part number. Each DP layer 

projects the input    onto two non-linear subspaces   
  and   

 . 

The first and second order statistics of these two projections are 

then used as the input feature to the adjacent higher layer as 

quantified by Eq. (1). In other words, DP layers can capture 

higher order statics. 

The softmax layer converts the last hidden layer into a 

multinomial distribution defined by 
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 )
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where   
  is a column vector of the weight matrix   . 

2.2. Learning DTNN Parameters 

As with DNN, the DTNN model parameters are optimized to 

maximize the cross entropy 

  ∑ ̃(   )     (   )
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where  ̃(   )  is the target distribution that is typically the 

empirical distribution observed from the training set. The 

parameters can be learned using the BP algorithm. 

The gradients associated with the softmax layer and the 

conventional sigmoid layer are the same as in DNNs. More 

specifically, for the softmax layer 

  

   
   (  ( ))
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where    is the   
    weight matrix,    is the     bias 

column vector, and   ( ) is a     error column vector with 

  
 ( )  ( ̃(     )   (     )). For other layers with     

we define   ( )  
  

     . 

In the softmax layer, the error can be propagated to the 

immediately previous layer according to  

    ( )  
  

   
     ( ) (10) 

Similarly, for the conventional sigmoid layer, we have 
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and 

    ( )  
  

          (  (  (  )))   ( )  (13) 

where   ( )   ( )(   ( )) is the gradient of the sigmoid 

function applied element-wise, and     ( )  is the diagonal 

matrix determined by the operant.  

However, the gradients as well as their derivations are more 

complicated for the DP layer, which we derive now. Note for the 

DP layer we have 
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where   is cross product and   is identity matrix.     is thus a 

(  
    

 )    column vector whose elements are  
      

 
  

    
     

 , where we assume matrix and vector index is 0 based. 

This leads to the gradients 
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whose (        
 )-th element is  (   )    

 , and 
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whose (        
 )-th element is  (   )    

 . 

Noting that for the parts         
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By defining   
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  we get  
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More specifically,  
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The gradients needed for BP algorithm in the DP layer are thus 
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2.3. Comparisons with Other Tensor Networks 

Tensors have been used in neural networks in the past. More 

recently, Memisevic et al. [12] proposed to gate the softmax 

layer with a hidden factor layer and the tensor was used to model 

the joint probability of factors and labels. Yu, Chen, and Deng 

[14] extended the gated softmax layer to DNNs and also 

proposed a tensor-based architecture that uses separately 

predicted gating factors. Hutchinson, Deng and Yu [13] replaced 

the single sigmoid hidden layer with a tensor layer in the 

stacking networks. The DTNN proposed in this work is different 

from all the above prior arts in that it uses double-projection 

layers to automatically factorize information which is later 

combined through the tensor layers, and that the DP layers and 

tensor layers can be flexibly incorporated into the DNN 

architecture. This work also provides a unified way to train DNN 

and DTNN by mapping the input feature of each layer to a vector 

and the tensor to a matrix. 

3. Experimental Results 

We have evaluated the proposed DTNN on the Switchboard task. 

The training and development sets contain 30 hours and 6.5 

hours of data randomly sampled from the 309-hour Switchboard-

I training set. The 1831-segment SWB part of the NIST 2000 

Hub5 eval set (6.5 hours) was used as the test set. To prevent 

speaker overlap between the training and test sets, speakers 

occurring in the test set were removed from the training and 

development sets. We evaluated the models only on the 30-hr 

(instead of 309-hr) training set mainly because training DNN and 

DTNN is still time consuming for large data sets due to a lack of 

efficient cross machine parallel algorithms. 

The system uses a 39-dimensional feature that was reduced 

using HLDA from the mean-variance normalized 13-

dimensional PLP features and up to third-order derivatives. The 

common left-to-right 3-state speaker-independent crossword 

triphones share 1504 CART-tied states determined on the 

conventional GMM system. The trigram language model was 

trained on the 2000h Fisher-corpus transcripts and interpolated 

with a written text trigram. Test-set perplexity with the 58k 

dictionary is 84.  

The GMM-HMM baseline system has a mixture of 40 

Gaussians in each HMM state. It was trained with maximum 

likelihood (ML) and refined discriminatively with the boosted 

maximum-mutual-information (BMMI) criterion. Using more 

than 40 Gaussians did not improve the ML result. 

Both the CD-DNN-HMM and CD-DTNN-HMM systems 

replace the Gaussian mixtures with likelihoods derived from the 

DNN and DTNN posteriors, respectively. The input to the DNN 

and DTNN contains 11 (5-1-5) frames of the HLDA-transformed 

features. The baseline DNN has 429 input nodes, 1504 output 

nodes and 5 hidden layers with 2048 nodes (a 429-2048x5-1504 

architecture). Since input and output layers are the same we 

ignore them when describing the DNN architecture from now on. 

We use the notation of two numbers enclosed in the 

parentheses to denote the DP layers in a DTNN. As an example, 

(96:96) denotes a DP layer with 96 units in each of the two sub-

hidden parts. Thus, (64:64)x1-2kx4 denotes a DTNN that 

contains a DP layer with 64 units at each part, followed by 4 

conventional sigmoid hidden layers each of which has 2k units. 

A DTNN whose hidden layers are (96:96)x5 has a similar 

number of parameters in total to the baseline conventional DNN. 

In our experiments, the conventional DNNs are pre-trained with 

the DBN-pretraining algorithm before they are fine-tuned using 

the BP algorithm. However, we have not developed similar 

pretraining algorithms for DTNNs. DTNNs are thus trained 

using the BP algorithm presented in this section starting from 

randomly initialized weights. Pretraining typically provides 



0.3%-0.5% absolute WER reduction on a 5-hidden layer DNN. 

Table 1 compares the effect of different DTNN 

configurations. To reduce the overall training time we trained 

DTNNs for only 10 epochs, in which the first 5 epochs were 

carried out using a learning rate of 0.0003 per sample and the 

remaining 5 epochs with a learning rate of 0.000008 per sample.  

Note that even with this highly sub-optimal learning strategy, 

a DNN with 5 hidden layers (shaded row in the table) already 

significantly outperforms the CD-GMM-HMM trained using the 

BMMI criterion. The results in Table 1 are organized so that all 

configurations above the shaded line underperform the 

conventional DNN and all the configurations below the shaded 

line outperform DNN. 

Table 1. Comparing the effect of different DTNN 

configurations on the word error rate. In these 

experiments, DTNNs were trained for only 10 epochs, in 

which the first 5 epochs were carried out using a 

learning rate of 0.0003 per sample and the remaining 5 

epochs with a learning rate of 0.000008 per sample. 

Configuration Test WER 
CD-GMM-HMM (BMMI) 34.8% 

(64:64)x1-2kx4 31.0% 
(96:96)x5 28.5% 
2kx5 (DNN) 28.3% 
2kx2-(64:64)x3 27.9% 
2kx2-(64:64)x1-2kx2 27.6% 
2kx2-(96:96)x3 27.6% 
2kx4-(64:64)x1 27.3% 
2kx4-(96:96)x1 27.0% 

 

Examining Table 1, we can make three observations. First, 

configuration (96:96)x5 in which all layers are DP layers (and 

hence all layers are tensor layers) performs similarly to the DNN 

baseline that contains a similar number of parameters even 

though the DNN was pre-trained while the DTNN was not. 

Second, the configuration in which only the bottom (first) layer 

was replaced with the DP layer performs the worst. This may 

suggest that the DP layer is not able to capture full information 

when converting from the real valued input features to the binary 

hidden representations, especially since the upper layers cannot 

recover from information loss. Third, the configurations that 

replace the top hidden layer with the DP layer perform the best 

and achieve more than 1% absolute (or 5% relative) WER 

reduction over the DNN. This suggests that the DP (and tensor) 

layers are better suited to operate upon binary features, 

consistent with the findings from [13]. 

Table 2. Comparing the effect of different DTNN 

configurations on the word error rate. Learning strategy 

was tuned for DNN and applied to DTNN.  

Configuration Test WER 
CD-GMM-HMM (BMMI) 34.8% 

2kx5 27.4% 
2kx2-(64:64)x1-2kx2 26.8% 
2kx4-(64:64)x1 26.4% 
2kx4-(96:96)x1 26.2% 

 

To eliminate the possibility that the training strategy adopted 

in Table 1 favors DTNNs over DNNs, we tuned the learning 

strategy, including learning rates and schedule, for DNN and 

used the tuned learning strategy to train DTNNs. More 

specifically, DNNs and DTNNs were trained for 15 epochs, in 

which the first 9 epochs were carried out using a learning rate of 

0.0003 per sample and the remaining 6 epochs with a learning 

rate 0.000008 per sample. The new results are summarized in 

Table 2. These results further confirmed the effectiveness of 

DTNN. 

4. Conclusions 

In this paper we have proposed and implemented a novel deep 

model called DTNN, in which one or more layers are DP and 

tensor layers. We have described an approach to map the tensor 

layers to the conventional sigmoid layers so that the former can 

be treated and trained in a similar way to the latter. With this 

mapping we can consider a DTNN as the DNN augmented with 

DP layers and so the BP learning algorithm of DTNNs can be 

cleanly derived. 

We have evaluated different configurations of the DTNN 

architecture on the SWB task using 30 hours of training data. 

The experimental results demonstrate that when the DP layer is 

placed at the top layer of the DTNN, it performs the best and 

outperforms the corresponding DNN by more than 5% relative 

WER reduction. 
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