
Large Vocabulary Speech Recognition Using Deep Tensor Neural Networks

Dong Yu
1
, Li Deng

1
, Frank Seide

2

1
Microsoft Research, Redmond, WA, USA
2
Microsoft Research Asia, Beijing, China
{dongyu,deng,fseide}@microsoft.com

Abstract

Recently, we proposed and developed the context-dependent

deep neural network hidden Markov models (CD-DNN-HMMs)

for large vocabulary speech recognition and achieved highly

promising recognition results including over one third fewer

word errors than the discriminatively trained, conventional

HMM-based systems on the 300hr Switchboard benchmark task.

In this paper, we extend DNNs to deep tensor neural networks

(DTNNs) in which one or more layers are double-projection and

tensor layers. The basic idea of the DTNN comes from our

realization that many factors interact with each other to predict

the output. To represent these interactions, we project the input

to two nonlinear subspaces through the double-projection layer

and model the interactions between these two subspaces and the

output neurons through a tensor with three-way connections.

Evaluation on 30hr Switchboard task indicates that DTNNs can

outperform DNNs with similar number of parameters with 5%

relative word error reduction.

Index Terms: automatic speech recognition, tensor deep neural

networks, CD-DNN-HMM, large vocabulary

1. Introduction

Recently we proposed and developed the context-dependent

deep neural network (DNN) hidden Markov models (HMMs)

(CD-DNN-HMMs) for large vocabulary speech recognition

[1][2][3][4][5]. CD-DNN-HMM is a special artificial neural

network (ANN) HMM hybrid system [7][8][9] proposed two

decades ago for speech recognition. In CD-DNN-HMMs, DNNs

replace Gaussian mixture models (GMMs) and directly

approximate the emission probabilities of the tied triphone states.

CD-DNN-HMMs have achieved 16% [1][2] and 33% [3][4][5][6]

relative recognition error reduction over strong, discriminatively

trained CD-GMM-HMMs, respectively, on a voice search (VS)

task [10] and the Switchboard (SWB) phone-call transcription

task [11].

In this work, we extend the DNN to a novel deep tensor neural

network (DTNN) in which one or more layers are double-

projection and tensor layers (see details in Section 2). The basic

idea of the DTNN comes from our realization that many factors,

such as noisy speech, noise and speaker, interact with each other

to predict the output. To represent these interactions, we project

the input to two nonlinear subspaces through the double-

projection layer and model the interactions between these two

subspaces and the output neurons through a tensor with three-

way connections. In addition to the proposal of this new type of

deep model, our original contributions in this work also include a

novel approach to reduce the tensor layer to a conventional

sigmoid layer, the development of the learning algorithms

associated with DTNN, and empirical evaluations of the new

deep model on large vocabulary speech recognition.

We will introduce DTNN, explain how to simplify it, and

describe the detailed learning algorithms in Section 2. The

experimental results on Switchboard task are presented in

Section 3. We will conclude the paper in Section 4.

2. Deep Tensor Neural Network

Deep tensor neural network (DTNN) is a new type of deep

neural network (DNN) with one or more layers replaced with

double-projection and tensor layers, to be defined shortly. In this

section we describe DTNN and the related learning and scoring

algorithms. We denote the input to the DTNN as , an

vector, and the output as , a vector.

Label y

vl+1=hl

vl=hl-1

⁞

vl-1=hl-2

⁞

v0=Input x

wl-1

Label y

h1
l-1

⁞

⁞

v0=Input x

w1
l-1

ul

h2
l-1

vl+1=hl

wl

vl-1=hl-2

w2
l-1

Label y

h1
l-1

⁞

⁞

v0=Input x

w1
l-1

h2
l-1

vl+1=hl

vl-1=hl-2

w2
l-1

vl=h1
l-1
Ä

 h2
l-1

Ä

wl

 (a) (b) (c)

Figure 1: Architectural illustrations of DNN and DTNN. (a)

DNN. (b) DTNN: hidden layer consists of two parts:

and
 . Hidden layer is a tensor layer to which the

connection weights form a three-way tensor. (c) An

alternative representation of (b): tensor is replaced with

matrix when is defined as the cross product

 .

2.1. Tensor Layer and Double-Projection Layer

Figure 1 illustrates and compares DNN and DTNN. More

specifically, sub-figure (a) is a conventional DNN with a total of

 layers and sub-figure (b) is the corresponding DTNN

where hidden layer is replaced with a tensor layer. Note that

the immediate lower layer, hidden layer , is separated into

two parts
 (a

 vector) and
 (a

vector). These two parts connect to hidden layer through the

three-way tensor which is represented with a cube in the

figure. The two hidden layer vectors
 and

 may be

augmented with value 1 as the last element when connected to

hidden layer . However, this is unnecessary since the same

effect may be achieved by initializing weights and biases so that

one of the units always outputs 1.

Sub-figure (c) is an alternative view of the same DTNN

shown in sub-figure (b). By defining

 (
 (

)

) (1)

where () is the column-vectorized representation of the

matrix, we can organize and rewrite tensor into matrix as

represented by a rectangular in (c). This rewriting allows us to

bridge between the conventional layers and the tensor layers and

to define the same interface in describing these two different

types of layers. For example, in sub-figure (c) hidden layer

can now be considered as a conventional layer and can be

learned using the conventional backpropagation (BP) algorithm.

Hidden layer , however, is still a special layer that contains

two output parts
 and

 that are determined by two

separate weight matrices
 and

 . We call this kind of

layer double-projection (DP) layer.

In the DTNN shown in Figure 1, hidden layer is a

conventional layer. In other words, connects with
 and

 through weight matrices

 and
 instead of tensors.

However, nothing would prevent hidden layer from being a

DP layer, in which case it can also be separated into two parts

 and

 and these two parts may connect to
 and

through tensors
 and

 . Fortunately, by defining input

 to hidden layer as

 (
 (

)

) (2)

tensors
 and

 can be rewritten as matrices.

 In summary, there are three types of layers in DTNNs: the

conventional sigmoid layer, the DP layer, and the softmax layer

that connects the final hidden layer to labels. In all the layers the

input is always for layer . For the first layer we have

 (3)

For layers , if the previous layer is a conventional sigmoid

layer , otherwise is defined using Eq. (1). Note is

a
 column vector.

For the conventional sigmoid layer,

 (()) (()) (4)

where is the weight matrix, is the bias, () ((
 ())) is the sigmoid function applied element-wise, and

 () () is the activation vector given input .

For the DP layer,

 (

 ()) ((
)

) (5)

where indicates the part number. Each DP layer

projects the input onto two non-linear subspaces
 and

 .

The first and second order statistics of these two projections are

then used as the input feature to the adjacent higher layer as

quantified by Eq. (1). In other words, DP layers can capture

higher order statics.

The softmax layer converts the last hidden layer into a

multinomial distribution defined by

 ()
 ((

)

)

∑ ((
)

)

 (6)

where
 is a column vector of the weight matrix .

2.2. Learning DTNN Parameters

As with DNN, the DTNN model parameters are optimized to

maximize the cross entropy

 ∑ ̃() ()

 (7)

where ̃() is the target distribution that is typically the

empirical distribution observed from the training set. The

parameters can be learned using the BP algorithm.

The gradients associated with the softmax layer and the

conventional sigmoid layer are the same as in DNNs. More

specifically, for the softmax layer

 (())

 (8)

 () (9)

where is the
 weight matrix, is the bias

column vector, and () is a error column vector with

 () (̃() ()). For other layers with

we define ()

 .

In the softmax layer, the error can be propagated to the

immediately previous layer according to

 ()

 () (10)

Similarly, for the conventional sigmoid layer, we have

 (((())) ())

 (11)

 ((())) () (12)

and

 ()

 ((())) () (13)

where () ()(()) is the gradient of the sigmoid

function applied element-wise, and () is the diagonal

matrix determined by the operant.

However, the gradients as well as their derivations are more

complicated for the DP layer, which we derive now. Note for the

DP layer we have

 (
 (

)

)

 (

) (
) (

)

 (

) ((
)

) (

)

(14)

where is cross product and is identity matrix. is thus a

(

) column vector whose elements are

 , where we assume matrix and vector index is 0 based.

This leads to the gradients

 ()

 ((

)

)

 (
)

(15)

whose (
)-th element is ()

 , and

 ()

 ((

)

)

 (

)

(16)

whose (
)-th element is ()

 .

Noting that for the parts

 (
)

 (
)

 ((
 ())) (17)

 (
)

 ((
 ())) (18)

and

 (
)

 ((

 ())) (19)

By defining
 ()

 we get

 ()

 (20)

More specifically,

 () ((

)

) () [()]

 (21)

 () (

 (
)

) () ([()]

)

 (22)

The gradients needed for BP algorithm in the DP layer are thus

 [

 (
)

]

 [

 (
)

]

 [(((
 ())))

 ()]

 (((
 ()))

 ())

(23)

 ((

 ()))
 () (24)

and

 ()

 ∑

 ∑

 ()

 ∑
 ((

 ()))
 ()

(25)

2.3. Comparisons with Other Tensor Networks

Tensors have been used in neural networks in the past. More

recently, Memisevic et al. [12] proposed to gate the softmax

layer with a hidden factor layer and the tensor was used to model

the joint probability of factors and labels. Yu, Chen, and Deng

[14] extended the gated softmax layer to DNNs and also

proposed a tensor-based architecture that uses separately

predicted gating factors. Hutchinson, Deng and Yu [13] replaced

the single sigmoid hidden layer with a tensor layer in the

stacking networks. The DTNN proposed in this work is different

from all the above prior arts in that it uses double-projection

layers to automatically factorize information which is later

combined through the tensor layers, and that the DP layers and

tensor layers can be flexibly incorporated into the DNN

architecture. This work also provides a unified way to train DNN

and DTNN by mapping the input feature of each layer to a vector

and the tensor to a matrix.

3. Experimental Results

We have evaluated the proposed DTNN on the Switchboard task.

The training and development sets contain 30 hours and 6.5

hours of data randomly sampled from the 309-hour Switchboard-

I training set. The 1831-segment SWB part of the NIST 2000

Hub5 eval set (6.5 hours) was used as the test set. To prevent

speaker overlap between the training and test sets, speakers

occurring in the test set were removed from the training and

development sets. We evaluated the models only on the 30-hr

(instead of 309-hr) training set mainly because training DNN and

DTNN is still time consuming for large data sets due to a lack of

efficient cross machine parallel algorithms.

The system uses a 39-dimensional feature that was reduced

using HLDA from the mean-variance normalized 13-

dimensional PLP features and up to third-order derivatives. The

common left-to-right 3-state speaker-independent crossword

triphones share 1504 CART-tied states determined on the

conventional GMM system. The trigram language model was

trained on the 2000h Fisher-corpus transcripts and interpolated

with a written text trigram. Test-set perplexity with the 58k

dictionary is 84.

The GMM-HMM baseline system has a mixture of 40

Gaussians in each HMM state. It was trained with maximum

likelihood (ML) and refined discriminatively with the boosted

maximum-mutual-information (BMMI) criterion. Using more

than 40 Gaussians did not improve the ML result.

Both the CD-DNN-HMM and CD-DTNN-HMM systems

replace the Gaussian mixtures with likelihoods derived from the

DNN and DTNN posteriors, respectively. The input to the DNN

and DTNN contains 11 (5-1-5) frames of the HLDA-transformed

features. The baseline DNN has 429 input nodes, 1504 output

nodes and 5 hidden layers with 2048 nodes (a 429-2048x5-1504

architecture). Since input and output layers are the same we

ignore them when describing the DNN architecture from now on.

We use the notation of two numbers enclosed in the

parentheses to denote the DP layers in a DTNN. As an example,

(96:96) denotes a DP layer with 96 units in each of the two sub-

hidden parts. Thus, (64:64)x1-2kx4 denotes a DTNN that

contains a DP layer with 64 units at each part, followed by 4

conventional sigmoid hidden layers each of which has 2k units.

A DTNN whose hidden layers are (96:96)x5 has a similar

number of parameters in total to the baseline conventional DNN.

In our experiments, the conventional DNNs are pre-trained with

the DBN-pretraining algorithm before they are fine-tuned using

the BP algorithm. However, we have not developed similar

pretraining algorithms for DTNNs. DTNNs are thus trained

using the BP algorithm presented in this section starting from

randomly initialized weights. Pretraining typically provides

0.3%-0.5% absolute WER reduction on a 5-hidden layer DNN.

Table 1 compares the effect of different DTNN

configurations. To reduce the overall training time we trained

DTNNs for only 10 epochs, in which the first 5 epochs were

carried out using a learning rate of 0.0003 per sample and the

remaining 5 epochs with a learning rate of 0.000008 per sample.

Note that even with this highly sub-optimal learning strategy,

a DNN with 5 hidden layers (shaded row in the table) already

significantly outperforms the CD-GMM-HMM trained using the

BMMI criterion. The results in Table 1 are organized so that all

configurations above the shaded line underperform the

conventional DNN and all the configurations below the shaded

line outperform DNN.

Table 1. Comparing the effect of different DTNN

configurations on the word error rate. In these

experiments, DTNNs were trained for only 10 epochs, in

which the first 5 epochs were carried out using a

learning rate of 0.0003 per sample and the remaining 5

epochs with a learning rate of 0.000008 per sample.

Configuration Test WER
CD-GMM-HMM (BMMI) 34.8%

(64:64)x1-2kx4 31.0%
(96:96)x5 28.5%
2kx5 (DNN) 28.3%
2kx2-(64:64)x3 27.9%
2kx2-(64:64)x1-2kx2 27.6%
2kx2-(96:96)x3 27.6%
2kx4-(64:64)x1 27.3%
2kx4-(96:96)x1 27.0%

Examining Table 1, we can make three observations. First,

configuration (96:96)x5 in which all layers are DP layers (and

hence all layers are tensor layers) performs similarly to the DNN

baseline that contains a similar number of parameters even

though the DNN was pre-trained while the DTNN was not.

Second, the configuration in which only the bottom (first) layer

was replaced with the DP layer performs the worst. This may

suggest that the DP layer is not able to capture full information

when converting from the real valued input features to the binary

hidden representations, especially since the upper layers cannot

recover from information loss. Third, the configurations that

replace the top hidden layer with the DP layer perform the best

and achieve more than 1% absolute (or 5% relative) WER

reduction over the DNN. This suggests that the DP (and tensor)

layers are better suited to operate upon binary features,

consistent with the findings from [13].

Table 2. Comparing the effect of different DTNN

configurations on the word error rate. Learning strategy

was tuned for DNN and applied to DTNN.

Configuration Test WER
CD-GMM-HMM (BMMI) 34.8%

2kx5 27.4%
2kx2-(64:64)x1-2kx2 26.8%
2kx4-(64:64)x1 26.4%
2kx4-(96:96)x1 26.2%

To eliminate the possibility that the training strategy adopted

in Table 1 favors DTNNs over DNNs, we tuned the learning

strategy, including learning rates and schedule, for DNN and

used the tuned learning strategy to train DTNNs. More

specifically, DNNs and DTNNs were trained for 15 epochs, in

which the first 9 epochs were carried out using a learning rate of

0.0003 per sample and the remaining 6 epochs with a learning

rate 0.000008 per sample. The new results are summarized in

Table 2. These results further confirmed the effectiveness of

DTNN.

4. Conclusions

In this paper we have proposed and implemented a novel deep

model called DTNN, in which one or more layers are DP and

tensor layers. We have described an approach to map the tensor

layers to the conventional sigmoid layers so that the former can

be treated and trained in a similar way to the latter. With this

mapping we can consider a DTNN as the DNN augmented with

DP layers and so the BP learning algorithm of DTNNs can be

cleanly derived.

We have evaluated different configurations of the DTNN

architecture on the SWB task using 30 hours of training data.

The experimental results demonstrate that when the DP layer is

placed at the top layer of the DTNN, it performs the best and

outperforms the corresponding DNN by more than 5% relative

WER reduction.

5. References

[1] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-tuning
in context-dependent DBN-HMMs for real-world speech

recognition,” Proc. NIPS Workshop on Deep Learning and

Unsupervised Feature Learning, 2010.
[2] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent

pretrained deep neural networks for large vocabulary speech

recognition”, IEEE Trans. Audio, Speech, and Lang. Proc. Jan.
2012, vol. 20, no. 1, pp. 33-42.

[3] F. Seide, G. Li and D. Yu, “Conversational speech transcription

using context-dependent deep neural networks,” Proc. Interspeech

2011, pp. 437-440.

[4] F. Seide, G. Li, X. Chen, D. Yu, “Feature engineering in context-

dependent deep neural networks for conversational speech
transcription,” Proc. ASRU 2011, pp. 24-29.

[5] D. Yu, F. Seide, G. Li, L. Deng, "Exploiting sparseness in deep
neural networks for large vocabulary speech recognition,” Proc.

ICASSP 2012, pp. 4409-4412.

[6] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined Back-
Propagation for Context-Dependent Deep Neural Networks”,

Interspeech 2012.

[7] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H.
Franco,“Connectionist Probability Estimators in HMM Speech

Recogni-tion,” IEEE Trans. Speech and Audio Proc., January 1994.

[8] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Trans. on Audio, Speech, and

Lang. Proc. Jan. 2012, vol. 20, no. 1, pp. 14-22.

[9] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence
training of deep belief networks for speech recognition”, Proc.

Interspeech 2010, pp. 1692-1695.

[10] D. Yu, Y. C. Ju, Y. Y. Wang, G. Zweig, and A. Acero, “Automated
directory assistance system --- from theory to practice,” Proc.

Interspeech, 2007, pp. 2709–2711.

[11] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,” Linguistic
Data Consortium, Philadelphia, 1997.

[12] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys. “Gated

softmax classication,” Proc. NIPS 2011.
[13] B. Hutchinson, L. Deng, and D. Yu, “A deep architecture with

bilinear modeling of hidden representations: Applications to

phonetic recognition,” Proc. ICASSP 2012. pp. 4805-4808.
[14] D. Yu, X. Chen, and L. Deng, “Factorized deep neural networks for

adaptive speech recognition,” Proc. Int. Workshop on Statistical

Machine Learning for Speech Processing, 2012.

