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ABSTRACT

This paper considers a large margin training of semi-Markov model
(SMM) for phonetic recognition. The SMM framework is bet-
ter suited for phonetic recognition than the hidden Markov model
(HMM) framework in that the SMM framework is capable of simul-
taneously segmenting the uttered speech into phones and labeling
the segment-based features. In this paper, the SMM framework
is used to define a discriminant function that is linear in the joint
feature map which attempts to capture the long-range statistical
dependencies within a segment and between adjacent segments of
variable length. The parameters of the discriminant function are
estimated by a large margin learning criterion for structured predic-
tion. The parameter estimation problem, which is an optimization
problem with many margin constraints, is solved by using a stochas-
tic subgradient descent algorithm. The proposed large margin SMM
outperforms the large margin HMM on the TIMIT corpus.

Index Terms— Hidden Markov model, semi-Markov model,
structured support vector machine, phonetic recognition.

1. INTRODUCTION

Over the past two decades, a continuous-density hidden Markov
model, which is considered a probabilistic generative model, has
been extensively used for automatic speech recognition (ASR). A
generative hidden Markov model (HMM) for ASR represents the
joint probability of the observation (acoustic feature vector extracted
from one frame) sequence and label (word or phone) sequence under
the assumptions that the frame-based labels follow a Markov pro-
cess and adjacent frame-based features are conditionally indepen-
dent given the corresponding label. Therefore, generative HMMs
are restricted such that they cannot capture long-range statistical de-
pendencies across frames, and the HMM parameters estimated by
maximizing the joint probability does not lead to minimum predic-
tion error rate. This has led to interest in the following two HMMs:
i) the discriminatively-trained generative HMMs [1–3] which adopt
discriminative training algorithms to train generative HMMs; ii) the
discriminative HMMs [4–6] which define a non-probabilistic dis-
criminant function or directly represent the posterior probability un-
der the HMM frameworks. Although the discriminatively-trained
generative HMMs and the discriminative HMMs have been shown to
yield better prediction accuracies than generatively-trained genera-
tive HMMs, these are limited to modeling local statistical dependen-
cies between adjacent observations and predicting a label for each
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observation without explicit segmentation under the HMM frame-
works.

The semi-Markov model (SMM) framework, on the other hand,
is based on a segment-based Markovian structure, and this frame-
work is capable of simultaneously segmenting and labeling sequen-
tial data. The SMM can capture long-range statistical dependencies
within a segment and between adjacent segments of variable length.
Thus, the SMM framework is considered a more appropriate frame-
work compared to the HMM framework for ASR, since a joint seg-
mentation and labeling is required in ASR.

Previously, SMM frameworks for ASR have been limited to in-
corporating an explicit duration model into the generative HMM,
leading to a generative SMM [7–9]. This moderate extension has
not received full benefits of the SMM capability to capture segment-
based rich features. In addition, a generative training of model pa-
rameters does not attempt to minimize the prediction error rate on
unseen data. Thus, the performance improvements of the previously
proposed generative SMMs over the generative HMMs are lower
than the improvements obtained by the discriminative HMMs over
the generative HMMs.

In this paper, we propose a large margin SMM (LMSMM) for
phonetic recognition. In the task of phonetic recognition, a sequence
of phonetic labels should be predicted from a speech utterance with-
out any given segmentation information. We simultaneously per-
form phonetic segmentation and labeling with segment-based fea-
tures under the SMM framework. The proposed LMSMM is in
contrast to the semi-Markov CRFs [10, 11] in that we define not a
posterior probability but an explicit discriminant function and esti-
mate the function parameters by structured support vector machine
(SSVM) [12] which is a large margin learning criterion for structured
prediction and is considered to have better generalization ability than
other learning criteria for structured prediction [13]. The proposed
discriminant function is linear in the segment-based joint feature
map which is composed of the transition feature function, duration
feature function, and content feature function. The function param-
eters are estimated, such that the SSVM increases the score mar-
gin obtained from the discriminant function by scaling it with a loss
function. The parameter estimation problem leads to an optimization
problem with many margin constraints. The stochastic subgradient
descent [14] is used to solve the optimization problem of SSVM in
the primal domain, since it guarantees fast convergence and it can
handle a large number of margin constraints. The TIMIT phonetic
recognition task is performed to evaluate the proposed LMSMM. Ex-
perimental results show that the proposed LMSMM outperforms the
large margin HMM (LMHMM) [4]. In addition, comparative results
show that the proposed joint feature map and the large margin train-
ing lead to better performances than other joint feature maps and the
perceptron training, respectively.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed discriminative SMM for phonetic recognition.
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Fig. 1. An undirected graph of discriminative SMM.

Section 3 explains the large margin training based on the SSVM and
the stochastic subgradient descent algorithm. Section 4 evaluates the
proposed LMSMM with a number of experimental and comparative
results. Section 5 concludes the paper.

2. DISCRIMINATIVE SEMI-MARKOV MODEL FOR
PHONETIC RECOGNITION

The phonetic recognizer predicts a phonetic label sequence ŷ(∈
Y), given a sequence of D-dimensional acoustic feature vectors
X(∈ X ) = {xt(∈ R

D)}T
t=1 which is extracted from an utterance

having a length of T frames, such that

ŷ = arg max
y∈Y

F (X,y;w) (1)

where F : X × Y → R is the discriminant function that assigns a
score to every paired input and output sequence, and w ∈ R

M is
an M -dimensional parameter vector.1 Throughout this paper, F is
assumed to be linear in w, and it is mathematically represented as

F (X,y;w) = 〈w, Φ(X,y)〉 (2)

where Φ(X,y) : X ×Y → R
M is the joint feature map which maps

a paired input and output sequence into an M -dimensional feature
space.

As shown in Fig. 1, a discriminative SMM assumes a segment-
based Markovian structure and predicts a sequence of phonetic labels
with explicit phonetic segmentation. A variable number of frames
are assigned to one hidden state representing a phonetic segment,
and the behavior within a segment is non-Markovian. Therefore,
y can be defined as a sequence of phonetic segments, i.e. y =
{s1, s2..., sJ}, where the j-th segment sj = (nj , �j). Here, nj ,
�j(∈ L), and J denote the ending frame of the j-th segment (such
that nj+1 > nj , ∀j, and nJ = T ), the phonetic label of the j-th
segment, and the number of segments, respectively. Note that the
number of segments J itself is a variable. In a discriminative SMM,
sj is dependent only on sj−1, sj+1, and the acoustic feature vectors
in the j-th segment {xt}nj

t=nj−1+1. This segment-based Markovian
property decomposes a joint feature map Φ(X,y) into a sum over
segment features φ as

Φ(X,y) =
J∑

j=1

φ(�j−1, �j , nj−1, nj , {xt}nj

t=nj−1+1). (3)

2.1. Segment features

Segment features characterize the statistical dependencies within in-
dividual segments and between adjacent phonetic segments of vari-

1Let X , Y , and L be the space of the acoustic feature vector sequence,
phonetic label sequence, and phonetic label, respectively.

able length. We construct the segment-feature function φ by con-
catenating the transition feature function φt, duration feature func-
tion φd, and content feature function φc as follows

φ(�j−1, �j , nj−1, nj , {xt}nj

t=nj−1+1)

= [(φt(�j−1, �j))
T , (φd(�j , nj−1, nj))

T ,

(φc(�j , nj−1, nj , {xt}nj

t=nj−1+1))
T ]T . (4)

The transition feature for phonetic transition from �′ to �, φt
(�′,�)

is defined as an indicator function to capture the statistical dependen-
cies between two neighboring phonetic segments under the SMM
framework:

φt
(�′,�)(�j−1, �j) = δ(�j−1 = �′, �j = �) (5)

where δ(�j−1 = �′, �j = �) is the Kronecker delta function that is
equal to one, when �j−1 = �′ and �j = �, and zero otherwise.

The duration feature for phone �, φd
� is defined as the sufficient

statistics for the gamma distribution, since the gamma distribution is
considered good for modeling the phone duration [7, 8]:

φd
� (�j , nj−1, nj) =

⎡
⎣ log(nj − nj−1)

nj − nj−1

1

⎤
⎦ δ(�j = �). (6)

The content feature is defined by both the labeled segment and
all observations within a phone segment. The discriminative SMM
allows a non-Markovian behavior within a segment to construct a
segment-based content feature that captures long-range statistical
dependencies on inputs. We divide a segment into a number of bins
and take averages of the Gaussian sufficient statistics of the acoustic
feature vectors within each bin. Let A be a (D + 1)-by-(D + 1)
symmetric matrix and define vec(A) as the ((D + 1)(D + 2)/2)-
dimensional vector of upper triangular elements from A. The con-
tent feature for phone � and the k-th bin, φc

(�,k), is given by

φc
(�,k)(�j , nj−1, nj , {xt}nj

t=nj−1+1)

=
B(�)

nj − nj−1

∑
t∈bk

vec

( [
xtx

T
t xt

xT
t 1

] )
δ(�j = �) (7)

where

bk = {nj−1 +
nj − nj−1

B(�)
(k − 1) + 1, ...,

nj−1 +
nj − nj−1

B(�)
k}, k ∈ {1, ..., B(�)}, (8)

and B(�) denotes the number of bins according to the phonetic label
�. Since, the statistical characteristics of acoustic feature vectors may
vary within a phonetic segment, we use binning features by dividing
a segment into a number of bins and modeling each bin differently.
Moreover, we take averages within a bin to become insensitive to
small changes of acoustic feature vectors.2

2.2. Efficient inference

Let V (t, �) be the maximal score for all partial segmentations such
that the last segment ends at the t-th frame with label � and let U(t, �)
be a tuple of length d and previous label �′ occupied by the best path
where phone �′ transits to phone � at time t − d. The recursion of

2M = |L|2 + |L| + (D+1)(D+2)
2

∑
� B(�).
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the Viterbi-like dynamic programming for efficient SMM inference
is given by

U(t, �) = argmax
(d,�′)∈{1,...,R(�)}×L

(
V (t − d, �′)+

〈w, φ(�′, �, t − d, t, {xu}t
u=t−d+1)〉

)
, (9)

V (t, �) = max
(d,�′)∈{1,...,R(�)}×L

(
V (t − d, �′)+

〈w, φ(�′, �, t − d, t, {xu}t
u=t−d+1)〉

)
(10)

where R(�) is the restricted range of admissible durations of phone �
for tractable inference. Once the recursion reaches the end of the se-
quence, we traverse U(t, �) backwards to obtain segmentation infor-
mation of the sequence. An implementation of the recursion in Eq.
(10) requires O(T |L|∑� R(�)) computations of 〈w, φ〉, and this
computational cost is not much higher in comparison to O(|L|2T )
computations for the HMM inference.

3. LARGE MARGIN TRAINING

Given a set of training pairs {(Xi,yi)}N
i=1 where yi is the sequence

of phonetic segments for the i-th input Xi, and N is the number of
training pairs, the goal of training is to find w so that the decision
criterion in Eq. (1) leads to the minimum prediction error rate on
unseen data. In this paper, we use a large margin learning criterion
for structured prediction, SSVM [12], and adopt the stochastic sub-
gradient descent [14] to solve the optimization problem of SSVM.

3.1. Structured support vector machine

The SSVM estimates w by minimizing a quadratic objective func-
tion subject to a set of linear soft margin constraints as follows [12]:

min
w,ξ

1

2
‖w‖2 +

C

N

N∑
i=1

ξi (11)

s.t. 〈w, Φ(Xi,yi)〉 − max
y �=yi

〈w, Φ(Xi,y)〉 ≥ Δ(yi,y) − ξi

ξi ≥ 0, ∀i,

where C > 0 is a constant that controls the trade-off between mar-
gin maximization and training error minimization, and Δ(yi,y) is
a loss function which quantifies the difference between y and yi.
The separation margin is scaled with a loss function so that the mar-
gin constraint with high loss is penalized much more than that with
low loss. Even though the string-based phone error rate by edit dis-
tance is a more proper measure for phonetic recognition, we use the
Hamming distance based on frame errors as a loss function due to
its decomposability for a loss-augmented inference in a stochastic
subgradient descent algorithm.

3.2. Stochastic subgradient descent

It is not easy to solve the constrained optimization problem of (11)
due to the large number of margin constraints and the hard-max term
in margin constraints. In this paper, we use the stochastic subgradi-
ent descent [14] due to its fast convergence and robustness in han-
dling a large number margin constraints and the hard-max.

The constrained optimization problem of (11) can be converted
into an unconstrained optimization problem:

min
w

1

N

N∑
i=1

fi(w) (12)

where fi(w) is given by

fi(w) =
1

2
‖w‖2 + C

[
− 〈w, Φ(Xi,yi)〉

+ max
y �=yi

(
〈w, Φ(Xi,y)〉 + Δ(yi,y)

)]
+

, (13)

and [ ]+ denotes the hinge loss. Using the nonnegativity of the loss
function, above equation can be expressed as

fi(w) =
1

2
‖w‖2+C ·max

y

(
−〈w, ΔΦ(Xi,y)〉+Δ(yi,y)

)
(14)

where ΔΦ(xi,y) = Φ(xi,yi) − Φ(xi,y). We solve this uncon-
strained optimization problem by stochastic subgradient descent al-
gorithm which is described as follows:

Algorithm: Stochastic subgradient descent

1: Choose initial w0 and step size sequences {μτ}∞τ=1.

2: τ = 1

3: Repeat

4: Select a training sample (Xi,yi) randomly.

5: Decode the most competing label sequence:

y∗
i = argmax

y∈Y

(
− 〈wτ−1, ΔΦ(Xi,y)〉 + Δ(yi,y)

)
6: Calculate the subgradient of fi:

g̃i(wτ−1) = wτ−1 − CΔΦ(Xi,y
∗
i )

7: Update wτ−1 by subgradient descent:

wτ = wτ−1 − μτ g̃i(wτ−1)

8: τ = τ + 1

9: Until convergence

4. EXPERIMENTS

We performed phonetic recognition experiments on the TIMIT
speech corpus, which was divided into the training set (462 speak-
ers and 3,696 utterances), development set (50 speakers and 400
utterances), and core test set (24 speakers and 192 utterances), with-
out overlaps. We extracted 39-dimensional acoustic feature vectors
which consist of 12 mel-frequency cepstral coefficients, log energy
and the corresponding delta and acceleration coefficients, where the
frame size is 25ms and the rate is 10ms. Following the standard
grouping of phonetic labels, 61 phonetic labels were reduced to
48 labels, and each label was represented by one state in the dis-
criminative SMM. Initially, we estimated the function parameters
by the maximum likelihood (ML) criterion, and then we updated
those by the large margin training. The preset values, C(> 0),
R(�)(∈ {1, ..., 50}), and B(�)(∈ {1, ..., 5}) were determined using
the development set for the best performance. When evaluating the
performance on the core test set, we used parameters w that achieved
the best result on the development set, reduced 48 phonetic labels
to 39 labels, and calculated the phone error rates based on the edit
distances. The performance comparisons between LMSMMs and
LMHMMs [4] were carried out using different number of Gaussian
mixtures under the same experimental setup. 3

3Note that multiple Gaussian mixtures are approximated by the single
most dominant Gaussian to formulate the linear discriminant function.
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Table 1. Phone error rates (%) on the core test set.
ML (HMM) LMHMM ML (SMM) LMSMM

1-mix 42.8 34.2 37.4 30.0
2-mix 36.8 32.6 32.7 28.7
4-mix 34.3 30.7 30.8 28.5
8-mix 32.1 29.9 29.5 28.5
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Fig. 2. The evolution of the phone error rates of LMSMM on the
development set.

Tab. 1 shows the phone error rates on the core test set.
LMSMMs consistently outperformed LMHMMs across all model
sizes. Note that Fig. 2 shows the evolution of the phone error rates
obtained by LMSMM on the development set. We observed the
fast convergence of the stochastic subgradient descent algorithm:
most improvements occur within 5 passes through the training set.
In Tab. 2, we give the phone error rates obtained by 1-mixture
LMSMM according to different compositions of segment features.
The combination of the transition and content feature shows a bet-
ter performance than the combination of the duration and content
feature. But, both achieved results higher than 30.0% obtained
by LMSMM with the combination of whole features. Addition-
ally, the advantage of the segment binning in the content feature
is verified: the performance of LMSMM without segment binning
(B(�) = 1, ∀�) was worse than that obtained by segment binning.

Furthermore, we estimated the SMM parameters by the percep-
tron training, which is equal to setting a loss Δ(yi,y) to zero for
all ys in the large margin training. As shown in Tab. 3, the perfor-
mances of the perceptron training was worse than those of the large
margin training. This demonstrates that the enhancement of margins
scaled by Hamming loss leads great improvements in performances.

5. CONCLUSION

In this paper, we proposed the LMSMM for phonetic recognition.
Under the SMM framework, we defined a linear discriminant func-
tion and segment-based joint feature map which consists of the tran-
sition feature, duration feature, and content feature. The function
parameters were estimated by the large margin training based on the
SSVM and the stochastic subgradient descent algorithm. Experi-
mental results showed that the proposed LMSMM outperformed the
LMHMM on the TIMIT phonetic recognition.
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