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Abstract

Assume that a set of imprecise points is given, where each point is specified by a region
in which the point may lie. We study the problem of computing the smallest and largest
possible convex hulls, measured by length and by area. Generally we assume the imprecision
region to be a square, but we discuss the case where it is a segment or circle as well. We give
polynomial time algorithms for several variants of this problem, ranging in running time from
O(n log n) to O(n13), and prove NP-hardness for some other variants.

1 Introduction

In computational geometry, many fundamental problems take a point set as input on which some
computation is done, for example to determine the convex hull, the Voronoi diagram, or a traveling
sales route. These problems have been studied for decades. The vast majority of research assumes
the locations of the input points to be known exactly. In practice, however, this is often not the
case. Coordinates of the points may have been obtained from the real world, using equipment that
has some error interval, or they may have been stored as floating points with a limited number of
decimals. In real applications, it is important to be able to deal with such imprecise points.

When considering imprecise points, various interesting questions arise. Sometimes it is sufficient
to know just a possible solution, which can be achieved by just applying existing algorithms to
some point set that is possibly the true point set. More information about the outcome can be
obtained by computing a probability distribution over all possibilities, for example using Monte
Carlo methods and a probability distribution over the input points. In many applications it is
also important to know concrete lower and upper bounds on some measure on the outcome, given
concrete bounds on the input: every point is known to be somewhere in a prescribed region.

1.1 Related Work

A lot of research about imprecision in computational geometry is directed at computational im-
precision rather than data imprecision. Regarding data imprecision, there is a fair amount of work
that uses stochastic or fuzzy models of imprecision. Alternatively, an exact model of imprecision
can be used.

Nagai and Tokura [20] compute the union and intersection of all possible convex hulls to obtain
bounds on any possible solution. As imprecision regions they use circles and convex polygons,
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and they give an O(n log n) time algorithm. They also study the Minkowski sum of convex
polygons and the diameter of a point set. Ostrovsky-Berman and Joskowicz [22] study the union
of all possible convex hulls when the imprecision of the points is not independent, but the points
depend linearly on a limited number of parameters.

Espilon Geometry is a framework for robust computations on imprecise points. Guibas et al. [15]
define the notion of strongly convex polygons: polygons that are certain to remain convex even
if the input points are perturbed within a disc of radius ε. They define an ε-convex δ-hull of a
point set P to be a polygon with points of P as vertices that is convex even when the points move
over a distance ε, yet has all points of P at most δ away from its boundary. They show that such
a hull always exists when δ ≥ 2ε, and give an O(n3 log n) algorithm to compute it. Related results
are given in [4, 9, 17].

Abellanas et al. [1] define the tolerance of a geometric structure as the largest perturbation of the
vertices such that the topology of the structure is guaranteed to stay the same. They focus mainly
on the planar Delaunay triangulation, and show that its tolerance can be computed in linear time.
They also study several subgraphs of the Delaunay triangulation.

On the other hand, Bandyopadhyay and Snoeyink [2] study the possible changes in topology for
a fixed maximum perturbation ε. A triangle (or simplex in higher dimensions) with vertices in
some point set is called almost Delaunay when a perturbation of the set of at most ε exists, such
that the circumcircle of the perturbed triangle does not contain any other points. They show
applications to the problem of folding proteins.

Khanban and Edalat [16] want to compute the Delaunay triangulation of a set of imprecise points,
modeled as rectangles. They do this by defining the in-circle test, a test that decides whether a
point is inside the circle through three other points, on imprecise points.

Boissonnat and Lazard [5] study the problem of finding the shortest convex hull of bounded
curvature that contains a set of points, and they show that this is equivalent to finding the shortest
convex hull of a set of imprecise points modeled as circles that have the specified curvature (see
also Section 2.2). They give a polynomial time approximation algorithm.

Goodrich and Snoeyink [13] study a problem where they are given a set of parallel line segments,
and must choose a point on each segment such that the resulting point set is in convex position.
This can be seen as a convexity test for points with one-dimensional imprecision. They present an
algorithm that finds a solution, if it exists, in O(n log n) time. They also show how to minimize
the area or perimeter of the polygon in O(n2) time.

The problem of finding the shortest tour for a set of imprecise points when the order is not fixed, has
been studied before and is generally called the Traveling Salesman Problem with Neighborhoods,
or (Planar) Group-TSP. This problem is known to be NP-hard. Mata and Mitchell [19] give a
constant factor approximation algorithm for some region models; additional results can be found
in [7, 24].

Given a sequence of k polygons with a total of n vertices, Dror et al. [10] study the problem of
finding a tour that touches all of them in a given order and that is as short as possible. They give
an O(nk log(n/k)) algorithm when the input polygons are disjoint and convex, and prove that the
problem is NP-hard for non-convex polygons. Higher dimensions are considered in [23].

Fiala et al. [12] consider the problem of finding distant representatives in a collection of subsets
of a given space. Translated to our setting, they prove that maximizing the smallest distance in a
set of n imprecise points, modeled as circles or squares, is NP-hard. Finally, we mention de Berg
et al. [8] for a problem with data imprecision motivated from computational metrology, Cai and
Keil [6] for visibility in an imprecise simple polygon, Sellen et al. [25] for precision sensitivity, and
Yap [27] for a survey on robustness, which deals with computational imprecision rather than data
imprecision.
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Table 1: Results. The ‘convex position’ restriction means that the endpoint of the input segments
are in convex position.

goal measure model restrictions running time
largest area line segments parallel O(n3)
largest area line segments non-intersecting, convex position O(n3)
largest area line segments - NP-hard
largest area squares non-intersecting O(n7)
largest area squares non-intersecting, equal size O(n3)
largest area squares equal size O(n5)
largest perimeter line segments parallel O(n5)
largest perimeter line segments - NP-hard
largest perimeter squares non-intersecting O(n10)
largest perimeter squares equal size O(n13)
smallest area line segments parallel O(n log n)
smallest area squares - O(n2)
smallest perimeter line segments parallel O(n log n)
smallest perimeter squares - O(n log n)

1.2 Problem Definition

All in all there has been little structured research into concrete bounds on the possible outcomes
of geometric problems in the presence of data imprecision. When placing a traditional problem
that computes some structure on a set of points in this context, two important questions arise:

1. What are imprecise points? That is, what are the restrictions on the input of the problem?

2. What are bounds on the outcome? That is, what kind of restrictions on the output of the
problem do we want to infere from this?

The first question is what we are given. We model imprecise points by requiring the points to be
inside some fixed region, without any assumption on where exactly in their regions the points are,
but with absolute certainty that they are not outside their regions. The question then arises what
shape these regions should be given. Some natural choices are the square and circular region.
The square model for example occurs when points have been stored as floating point numbers,
where both the x and y coordinates have an independent uncertainty interval, or with raster to
vector conversion. The circular model occurs when the point coordinates have been determined
by a scanner or by GPS, for example. Other models that may be interesting include the line
segment model, the rectangle model, the regular k-gon model, the discrete point set model, or the
Voronoi model (where the cells are the imprecision regions), mostly from a theoretical point of
view. Another question is what kind of restrictions we impose on those regions. For example, all
points can have the same kind of shape, but are they all of the same size? Do they have the same
orientation? Can we assume they are disjoint?

The second question is what we actually want to know. Geometric problems usually output some
complex structure, not just a number, so a measure on this structure is needed. For example, the
convex hull of a set of points can be measured by area or perimeter, or maybe even other measures
in some applications. Once a measure has been established, the question is whether an upper or
a lower bound is desired, or both.
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(a) (b)

Figure 1: (a) It is algebraically difficult to find the minimal MST. (b) It is combinatorially difficult
to find the minimal MST.

1.3 Results

All these questions together lead to a large class of problems that are all closely related to each
other. This paper aims to find out how exactly they are related, which variants are easy and which
are hard to compute, and to provide algorithms for the problems that can be solved in polynomial
time. Since this type of problem has hardly been studied, we consider the classical planar convex
hull problem.

We studied various variants of this problem, and our results are summarized in Table 1. These
results are treated in detail in Sections 3, 4 and 5. First, in the next section, some related issues
are discussed.

2 Preliminaries

Before the main results are treated, we discuss some difficulties that occur when dealing with
imprecise points. First we look at the Euclidean Minimum Spanning Tree problem for imprecise
points, and then we take a closer look at the circular region model for imprecision.

2.1 Minimum Spanning Tree

To get an idea of how imprecision affects the complexity of geometric problems, consider the
Minimum Spanning Tree (MST) problem in an imprecise context. In this case, we have a collection
of imprecise points, and we want to determine the MST of, for example, minimal length. This
means that we want to choose the points in such a way that the MST of the resulting point set
is as small as possible. This problem is difficult in two different senses. It is combinatorially
difficult to find the structure of the optimal solution, but even when we know the structure it is
algebraically difficult to find the exact locations of the points.

Consider the input in Figure 1(a). It consists of five fixed points and one imprecise point (in the
square model, but it could also be a circle or something else). No matter where the point is chosen
in this square, the MST of the resulting set will connect all of the fixed points to the imprecise
point. Thus the problem reduces to minimizing the sum of the distances from the imprecise
point to the fixed points, and this requires finding roots of high degree polynomials, which is an
algebraically difficult problem [3].

But even when we disregard the algebraic problems, the problem is still difficult. We can prove
that it is NP-hard by reduction from the Steiner Minimal Tree problem. Given a set of n fixed
points P in the plane, we can compute its Steiner Tree using a solution to the imprecise MST
problem as follows. Take the set P as precise points, and add a set P ′ of n − 2 imprecise points
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Figure 2: The largest area convex hull for a set of circles.

whose regions are squares or circles that contain P , see Figure 1(b). The shortest MST of P ∪ P ′

is the Steiner Minimal Tree of P .

2.2 Circular Model

Perhaps the most natural way of modeling imprecision is by allowing every point to be inside a
circular region. The convex hull problem then becomes:

Problem 1 Given a set of circles, choose a point inside each circle such that the area/perimeter
of the convex hull of the resulting point set is as large/small as possible (see Figure 2).

Two difficulties are introduced by the circularity. The first difficulty is that the combinatorial
complexity of the problem increases. In the case of the square model we can use the notion of
extreme points in some directions. With circles this is not possible since there are no special
directions any more. The second difficulty is of an algebraic kind. Even when we know which
circles have to be chosen to obtain the largest/smallest area/perimeter, it is not easy to find out
where exactly in the circles the points should be.

One special case of this problem has been studied before. For the problem of finding the smallest
perimeter for a set of unit size circles, Boissonnat and Lazard [5] show that this problem can be
approximated in polynomial time. The question of whether it can be solved exactly in polynomial
time is left open, and has to our knowledge not yet been answered. The same problem for smallest
area is also stated as an open problem in [5].

One remark to make here is that given the algebraic complexity of the problem, one could argue
that an exact solution cannot be computed. For example in the case of the smallest perimeter,
even in a simple situation with only three circles, the coordinates of the optimal points within the
circles will generally be roots of some polynomials of degree six. These roots cannot be computed
exactly, only approximated. With this idea in mind, one could say that an approximation is
the best we can get in any case, and therefore a good polynomial time approximation is a good
solution.

3 Largest Convex Hull

We now present our results on the imprecise convex hull problem. This section deals with com-
puting the largest possible convex hull, the smallest convex hull is treated in the next section.
We first use the line segment model, where every point can be anywhere on a line segment. This
problem does not have much practical use, but it will be extended to the square model later.
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Figure 3: (a) The largest convex hull for a set of line segments. (b) The polygon pij .

3.1 Line Segments

The problem we discuss in this section is the following:

Problem 2 Given a set of parallel line segments, choose a point on each line segment such that
the area of the convex hull of the resulting point set is as large as possible (see Figure 3(a)).

3.1.1 Observations

First we will show that we can ignore the interiors of the segments in this problem, that is, we
only have to consider the endpoints.

Lemma 1 There is an optimal solution to Problem 2 such that all points are chosen at endpoints
of the line segments.

Proof: Suppose there exists a set of points P that has one point on every segment, has maximal
area, and a minimal number of points that are not at an endpoint of their segments, and yet
contains a point p that is not at an endpoints of its segment. If p is not a vertex of the convex
hull, just move it to one of the endpoints of its segment. The new convex hull will be of equal or
larger size, contradicting the choice of P .

If p is a vertex of the convex hull, and we move it over its segment, the area of the hull changes
as a linear function. The maximum of this function is at one of the endpoints. Move p to this
endpoint, and the area of the hull increases. It is possible that the hull is no longer convex or that
some points of P no longer lie within the hull, but correcting this can only increase the area of
the hull further. Once again we have a contradiction with the choice of P . We conclude that P
does not exist, and the lemma is proven. �

Note that the lemma does not make use of the restriction that the segments are parallel, and also
applies to general sets of line segments. From now on however, we do enforce this restriction.
Without loss of generality, we assume the segments to be oriented vertically.

3.1.2 Algorithm

Let L = {l1, l2, . . . , ln} be a set of n line segments, where li lies to the left of lj if i < j. Let l+i
denote the upper endpoint of li, and l−i denote the lower endpoint of li. Now we need to pick one of
each pair of endpoints to determine the largest area convex hull. We use a dynamic programming
algorithm that runs in O(n3) time and O(n2) space. The key element of this algorithm is a polygon
which is defined for each pair of line segments.
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Figure 4: (a) The division of the circle into independent arcs. (b) A variable. (c) A clause.

For i 6= j, we consider the polygon Pij that starts at l+i and ends at l−j , and optimally solves the
subproblem to the left of these points, that is, contains only vertices l+k with k < i or l−k with
k < j, but not both for the same k, such that the area of the polygon is maximal, see Figure 3(b).
Note that Pij will be convex.

Now, we will show how to compute all Pij using dynamic programming. The solution to the
original problem will be either of the form Pkn or Pnk for some 0 < k < n, and can thus be
computed in linear time once all Pij are known.

When 1 < i < j, then we can write

Pij = max
k<j;k 6=i

(
Pik +4l+i l−j l−k

)
Of course we maximize over the area of the polygons. In words, we choose one of the lower points
to the left of lj , and add the new point l−j to the polygon Pik that optimally solves everything to
the left of the chosen point l−k . Analogously, when 1 < j < i, we can write

Pij = max
k<i;k 6=j

(
Pkj +4l+i l−j l+k

)
When i = 1 or j = 1, we can use the same formulas to compute Pij , but we need the additional
option to just choose the line segment l+i l−j with area 0, in case there are no more points to the
left of the new one.

The algorithm runs in O(n3) time and requires O(n2) space. This is because we do not have to
actually store the entire polygon Pij for each i and j, but only the next point on the upper chain
when i > j or the lower chain when i < j, and the area of the polygon. When we scan the known
polygons while determining a new one, we only have to add the area of a triangle to the stored
area, and take the maximum of those numbers. We do not need to enforce convexity, because a
non-convex solution can never be optimal.

Theorem 1 Given a set of n arbitrarily sized, parallel line segments, the problem of choosing a
point on each segment such that the area of the convex hull of the resulting point set is as large as
possible can be solved in O(n3) time.

3.1.3 Arbitrary Orientations

The above algorithm works for parallel line segments. When the line segments are allowed to have
arbitrary orientations, the most general version of the problem, where segments are allowed to
intersect, becomes NP-hard, and the decision version NP-complete. We prove this by reduction
from SAT. Given an instance of SAT, we make the following construction:

We start with a large circle, and divide it into enough arcs, that is, at least as many as the number
of variables plus the number of clauses in the SAT instance, see Figure 4(a). The arcs do not need
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to have the same length. We separate these arcs by precise points (degenerate line segments). The
solution will contain at least the convex hull of these precise points. We will make sure never to
place any (parts of) line segments outside this circle, so maximizing the area of the convex hull is
now equal to maximizing the sum of the areas within the arcs.

For each Boolean variable b in the SAT instance, we take an empty arc and add the configuration
of Figure 4(b) inside. This configuration consists of two precise points l and r that were already
added, a segment parallel to lr with endpoints t and f , and two sets of points Pb and Qb. The
points of Pb are placed so that they are all on the convex hull of {l, f, r} ∪ Pb ∪ Qb, but none is
on the convex hull of {l, t, r} ∪ Pb ∪ Qb, and the points of Qb are placed so that they are all on
the convex hull of {l, t, r} ∪ Pb ∪ Qb, but none is on the convex hull of {l, f, r} ∪ Pb ∪ Qb. The
whole configuration is symmetric by design. The idea is that to maximize the area within this
configuration, we either need t and all points in Qb, or f and all points in Pb. The first case
represents the value true for this variable, and the second case represents the value false. The
points in Pb and Qb will have their other endpoints in the clauses, or if they are only present to
achieve symmetry they are simply precise points.

For each clause in the SAT instance, we also take an empty arc, and add just a single point s in it,
see Figure 4(c). Now we make s the other endpoint of one segment from each variable that occurs
in this clause. For example, if the clause is a ∨ b ∨ ¬c, then we make s the other endpoint of
one of the points in Pa, one of the points in Pb, and one of the points in Qc. For the area to
be maximal, of at least one of these three segments the point must be chosen in s, which is only
possible when a is true, b is true or c is false.

Now an assignment to the variables to satisfy the SAT instance can be made if and only if a
solution to the convex hull maximization problem of maximal area exists.

It is well known that rational points are dense on the unit circle, and we can construct m points
that are all at least π

m radians apart with coordinates dat depend quadratically on m. Between
two such fixed points l and r, we make a symmetric construction with points on a grid parallel
to lr. If the variable is used k times, this grid needs 2k cells in the lr direction, and k2 cells in
the perpendicular direction. If we place the grid in a rectangle of width half the length of lr,
and heigth 1

2m times the length of lr, then the variables do not interfere with each other. Thus
all constructed points are rational points of polynomial complexity. This analysis shows that the
decision problem is in NP.

Theorem 2 Given a set of n arbitrarily oriented, possibly intersecting line segments, the problem
of choosing a point on each segment such that the area of the convex hull of the resulting point set
is as large as possible is NP-hard. The decision version of the problem is NP-complete.

3.1.4 All Endpoints in Convex Position

The status of the problem for arbitrarily oriented line segments that do not intersect is still open.
There is, however, another special situation that we can solve. If the endpoints of the input line
segments are in convex position, and the segments do not intersect, we can also solve the problem
in O(n3) time. An example of such a set of line segments is shown in Figure 5. Because the points
are in convex position, there is a cyclic ordering on them that we can use.

To solve the problem in this case, we also use a dynamic programming approach. Let p and q be
endpoints of different line segments, and let p′ and q′ be their respective other ends. We define Ppq

as the chain that connects p to q in positive direction, such that the area of the region enclosed
by the chain and pq is maximal over all valid chains that connect p to q. A chain is valid if it
does not contain both ends of any input line segment. When p′ is between p and q (in positive
direction), we also define P ′

pq as the chain that connects p to q in positive direction and maximizes
the area enclosed by it, but is not allowed to use any points between p′ and q. With a slight
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Figure 5: A set of line segments whose endpoints are in convex position.

abuse of notation, we use Ppq and P ′
pq for both the chains and for the areas of their corresponding

polygons.

If we know all Ppq, then we can solve the problem in O(n2) time, since the optimal solution will
be of the form Ppq + qp for some p and q. To compute all Ppq, we find the following recursive
relations between the P and P ′ values.

Let p and q be endpoints of different line segments. If there are no points between them, then
Ppq = pq. Else, if p′ is not between p and q, then there exists a point r between p and q such that
Ppq is pr + Prq. If p′ is between p and q, then either Ppq = P ′

pq, or there is a point r between p′

and q such that Ppq = P ′
pr + Prq.

If P ′
pq is defined, we know that p′ is between p and q. If there are no points between p and p′,

then P ′
pq = pq. Else, there exists a point r between p and p′, such that P ′

pq = Ppr + rq.

In all cases, we have written Ppq and P ′
pq in terms of shorter chains and at most one variable point.

Since there are a quadratic number of such chains, we can compute them all in O(n3) time and
O(n2) space.

Theorem 3 Given a set of n arbitrarily sized, arbitrarily oriented, non-intersecting line segments
with their endpoints in convex position, the problem of choosing a point on each segment such that
the area of the convex hull of the resulting point set is as large as possible can be solved in O(n3)
time.

3.2 Squares

The problem we discuss in this section is the following:

Problem 3 Given a set of axis-aligned squares, choose a point in each square such that the area
of the convex hull of the resulting point set is as large as possible (see Figure 6(a)).

3.2.1 Observations

Once again we observe that the points will not have to be chosen in the interior of the squares. In
fact we only have to take the corners of the squares into account.

Lemma 2 There is an optimal solution where all points lie at a corner of their square.

Proof: Suppose there exists a set of points P that has one point in every square, has maximal
area, and a minimal number of points that are not at a corner of their squares, and yet contains a
point p that is not at a corner of its square. If p is not a vertex of the convex hull, just move it to

9



(a)

pl

pr

pt

pb

(b)

Figure 6: (a) The largest area convex hull for a set of squares. (b) The four extreme points.

one of the corners of its square. The new convex hull will be of equal or larger size, contradicting
the choice of P .

If p is a vertex of the convex hull, and we move it around in its square, the area of the hull changes
as a linear function in the coordinates of p. The maximum of this function is at one of the corners.
Move p to this corner, and the area of the hull increases. It is possible that the hull is no longer
convex or that some points of P no longer lie within the hull, but correcting this can only increase
the area of the hull further. Once again we have a contradiction with the choice of P . We conclude
that P does not exist, and the lemma is proven. �

First we define the four extreme points of the convex hull we are trying to compute as the leftmost,
topmost, rightmost and bottommost points. These points divide the hull into four chains that
connect them. These chains have some useful properties. For example, the chain that connects
the leftmost point pl to the topmost point pt will always stay within the triangle 4plpts, where s
is the intersection between the vertical line through pl and the horizontal line through pt. The
extreme points and the triangles that surround the four chains are shown in Figure 6(b).

Lemma 3 All vertices on the top left chain are top left corners of their squares, all vertices on
the top right chain are top right corners of their squares, all vertices on the bottom left chain are
bottom left corners of their squares, and all vertices on the bottom right chain are bottom right
corners of their squares.

Proof: All vertices on the top left chain will have the outside of the hull above them and to
their left. This means they have to be top left corners of their squares, because otherwise we could
move the point to the left or upwards and the area of the convex hull would increase. Similar
arguments apply to the other three chains. �

In general it is not easy to find the extreme points. For example, it could be that none of the
extreme points in the optimal solution is in one of the extreme squares in the input, see for
example Figure 7. Here the topmost and bottommost squares are the large ones, and the leftmost
and rightmost squares are the medium ones. However, in the optimal solution the extreme points
will all be corners of the small squares.

3.2.2 Algorithm for Non-overlapping Squares

When we restrict the problem to non-overlapping squares, we can solve the problem in O(n7) time.
The idea behind the solution is to divide the squares into groups of squares of which we know that
only two of their corners are feasible for an optimal solution, and then to use the algorithm for
parallel line segments (Problem 2) on these groups.
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(a) (b)

Figure 7: The four extreme points of the optimal solution need not be corners of the extreme
squares. (a) Ten input squares. (b) The optimal solution.

When the four extreme points are known, we can use this information to solve the problem in
O(n3) time. However, how to find those points still remains a difficult problem, so we try all
possible combinations, hence the total of O(n7).

The four extreme points pl, pt, pr and pb divide the plane as shown in Figure 8. From pl we draw
a line to the right, from pb one upwards, from pr one to the left and from pt one downwards.
These four lines intersect at four intersection points. For a square to be able to have its point on
the top left chain, its upper left corner needs to be in the rectangle between pl and pt (actually
even in the upper left triangle). An analogous property holds for the other chains. If a square has
the potential to be included on more than two chains, this means that it must have at least one of
the four intersection points in its interior. Since the squares do not overlap, there can be at most
four such squares. Of these squares we simply try every possible combination of corners, of which
there are only constantly many, so we can assume from now on that every square has at most two
potential corners.

Now that all squares have only two potential corners, we can represent them by line segments.
We see that a segment can be of six possible kinds, as there are six ways of picking two of four
points. These six kinds may however have only four orientations: horizontal, vertical or one of
the two diagonal directions. In fact, not all four can appear at the same time in our problem.
Indeed, a diagonal line segment has to have its endpoints in two opposite triangles (see Figure 9).
This means that if there are line segments in both diagonal directions, they have to intersect, and
thus their original squares have to overlap, which was not allowed. Therefore, there can only be
diagonal segments in one direction.

Furthermore, since all line segments have to reach over the quadrilateral 3plptprpb, line segments
of the same kind have to be close to each other, that is, their intersection points have to be

pl

pr

pt

pb

(a)

pl

pr

pt

pb

(b)

Figure 8: The four extreme points can divide the plane in two different ways.
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Figure 9: The squares can be divided into five groups of parallel line segments.

consecutive. There are six possible kinds of line segments, of which we have seen that only five
may appear at the same time, which implies that we can divide the segments into five groups, as
shown in Figure 9. Of course, the segments in the figure cannot be extended to non-overlapping
squares, but it is hard to draw a picture in which they can, as the squares would have to have
very different sizes if we want several squares in each of the five groups.

We will now solve the situation of Figure 9 in O(n3) time. The bases L, R, T , B, and M stand
for the left, right, top, bottom, and middle (diagonal) line segments. The superscripts denote the
endpoints of these segments.

Note that any convex hull of a choice of points in this situation must follow these sets of endpoints
in the correct order. That is, it starts at the left extreme point, then goes to a number of points
of LB , then to a number of points of BL, then to the bottom extreme point, and so on. It cannot,
for example, go to a point of LB , then to a point of BL, and then back to a point of LB .

The algorithm will repeatedly take two of the ten sets of endpoints, and for each combination of
a point in one, and a point in the other set, compute the optimal subsolution connecting those
points in linear time, based on earlier results. The subsolutions are computed in the following
order:

• For each pair of points in LT and LB , we compute the optimal solution connecting them
around the left side, using the algorithm for parallel line segments.

• For each pair of points in BL and BR, we compute the optimal solution connecting them
around the lower side, using the algorithm for parallel line segments.

• For each pair of points p ∈ MTL and q ∈ LB , compute the optimal chain connecting them
that does not use any other point of MTL. This can be done by trying a linear number of
points r ∈ LT as the point to connect p to, and using the known optimal chain between r
and q.

• For each pair of points p ∈ MTL and q ∈ BL, compute the optimal chain connecting them
around the left side that does not use any other points of MTL and BL. We do this by
trying a linear number of points r ∈ LB as the point to connect q to, and combining this
with the known optimal chain between p and r, computed in the previous step.

• For each pair of points p ∈ MBR and q ∈ BL, compute the optimal chain connecting them
that does not use any other point of MBR. This can be done by trying a linear number of
points r ∈ BR as the point to connect p to, and using the known optimal chain between r
and q.

• For each pair of points p ∈ MTL and q ∈ MBR, compute the optimal chain connecting them
around the lower left side that does not use any other points of MTL and MBR. We can do
this by trying a linear number of points r ∈ BL as the leftmost point of BL that is used,
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and then combining the chains between p and r and between q and r that we computed in
the two previous steps.

• For each pair of points p ∈ MTL and q ∈ MBR, compute the optimal chain connecting them
around the lower left side, which is allowed to use other points of MTL and MBR. We do
this by using an adjusted version of the algorithm for parallel line segments. The optimal
chain connecting p to q either uses another point from MTL or MBR, or it does not and
uses the chain computed in the previous step. This means we must take the maximum of
the formula given in Section 3.1.2, and the optimal chain of the previous step.

• In a symmetrical way, for each pair of points in MTL and MBR, compute the optimal chain
connecting them around the upper right side that does not use any other points of MTL and
MBR.

• Finally, check a quadratic number of pairs of a point from MTL and a point from MBR,
and for each pair combine the chains of the previous two steps. The optimal solution is the
maximum of these pairs.

The algorithm given above works when we assume that each set of endpoints is used at least once
by the optimal solution. Of course, that need not be the case. But if from a certain group no
point is used, then we also know that all points of the opposite group may be used, and we are left
with a smaller problem that can be solved in a similar way as described above. This means we can
just try solving the problem under the assumption that one or more of the groups do not appear
in the optimal solution, and then pick the best solution without increasing the time bound.

Theorem 4 Given a set of n arbitrarily sized, non-overlapping, axis-aligned squares, the problem
of choosing a point in each square such that the area of the convex hull of the resulting point set
is as large as possible can be solved in O(n7) time.

3.2.3 Unit size Squares

The extra factor O(n4) that comes from the fact that it is hard to determine the extreme points,
relies on situations where the size of the squares differs greatly, such as in Figure 7(a). When the
squares have equal size, we show that there are only constantly many squares that can give the
extreme points, thus reducing the running time of the above algorithm to O(n3).

For simplicity we assume general position, that is, no two squares have the same x- or y-coordinates.
It is not true that all of the extreme points need to be corners of the extreme squares, as is shown
in Figure 11, but we do have the following property:

Lemma 4 In the largest area convex hull problem for axis-aligned unit squares, an extreme square
in the input set gives one of the extreme points of the optimal solution.

Proof: Let l be the vertical line at the leftmost x-coordinate in the input set, and assume the
lemma is false. This means that in the optimal solution H, there are no points on l. Let Sleft be
the square that has its left side at l. This square must have a vertex on H, because otherwise
the addition of one of its left corners would improve the optimal solution. Assume without loss of
generality that the top right corner p of Sleft is part of H. Now p must be part of the top right
chain of H, by Lemma 3. When p would be the topmost or the rightmost point on its chain, it
would be one of the extreme points of H, contradicting the assumption that the lemma is false.

Now assume that p is not the topmost or rightmost point on its chain, see Figure 10. Then the
topmost point q has to be above and to the left of p. Suppose there is another point on the top
right chain between q and p. Then this point must also be a top right corner of its square, and it
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Figure 10: Including the leftmost point increases the area.

must lie to the left of p. But since all squares are equally large, the left side of this square has to
be to the left of l, a contradiction. So there are no points between p and q.

There is also a point r that is the first on the chain to the right of and below p in the optimal
solution H. Now q has to be at the top left corner of its square, because otherwise the square
would once again lie to the left of l. Let the top left point of Sleft be p′, and the top right point
of the same square as q be q′. If there are points on the top left chain above the horizontal line
through p, let s be the one closest to q. If there are none, let s be the intersection of the upper
left chain and the segment pp′.

Now take H, and take p′ instead of p, and q′ instead of q. The resulting solution H ′ has a larger
area than H, contradicting its choice. This is because the triangle 4pqs is not larger than the
triangle 4pq′s. For the rest of the plane, all points inside H will also be inside H ′. Furthermore,
p′ was not part of H so H ′ really is larger than H. H ′ is not necessarily convex, but making it
convex will only increase the area. �

Note that this lemma also applies to overlapping squares.

As a consequence of this lemma, the largest convex hull problem for non-overlapping axis-aligned
unit squares can be solved in O(n3) time. In the simple situation where the leftmost square gives
the left extreme point, the topmost square the top extreme point, etc, this is easy to see, because
then we have only 24 possible configurations for the extreme points, and we can just solve each
problem using the O(n3) time algorithm described in Section 3.2.2. However, it is also possible
that the topmost square gives for example the left extreme point, as shown in Figure 11, where
the top extreme point of the optimal solution is not in one of the extreme squares. However, this
can only happen when the leftmost square is the same as the topmost square. In that case we have
three possible points of that square to try, and when we try for example the lower left point we
can just take the reduced problem and search for the extreme squares again (which can be done
in constant time if we sorted them first). This procedure has to be followed at most four times,
since we find an extreme point every time, thus the total number of configurations to try is still
constant.

Theorem 5 Given a set of n equal size, non-overlapping, axis-aligned squares, the problem of
choosing a point in each square such that the area of the convex hull of the resulting point set is

Figure 11: Yet another nasty special case.
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Figure 12: (a) The largest convex hull for a set of intersecting unit squares. (b) The structure
P2601.

as large as possible can be solved in O(n3) time.

3.2.4 Overlapping Unit Squares

For overlapping squares, the problem remains open. However, for overlapping squares of equal
size, we can solve the problem in O(n5) time. Figure 12(a) shows this situation. We can solve this
problem with a variation on the dynamic programming solution to Problem 2.

Assume the four extreme points pl, pt, pr and pb to be known. By Lemma 4 there are only a
constant number of possibilities for them, and trying them all does not increase the time bound
asymptotically. We call the remaining squares S1, . . . , Sn−4, sorted from left to right. For square
Si, we denote the top left corner by Stl

i , the top right corner by Str
i , the bottom left corner by Sbl

i ,
and the bottom right corner by Sbr

i . Abusing notation slightly, we also denote Stl
0 = pl, Str

0 = pt,
Sbl

0 = pl and Sbr
0 = pb.

For different h, i, j, k ∈ {0, . . . , n − 4}, we define the structure Phijk to be the set of four chains
that consists of a chain going from pl to Stl

h via a number of top left corners of squares Sm with
m < h, a chain going from pt to Str

i via a number of top right corners of squares Sm with m < i,
a chain going from pl to Sbl

j via a number of bottom left corners of squares Sm with m < j, and a
chain going from pb to Sbr

k via a number of top left corners of squares Sm with m < k, such that
no square participates on two different chains, and such that the area of the region bounded by
these chains and the segments Stl

h pt, Str
i pr, Sbl

j pb and Sbr
k pr is maximal, see Figure 12(b).

If h > i, j, k we can compute Phijk in linear time using the structures Pmijk for m < h.

Phijk = max
m<h;m6=i,j,k

(
Pmijk +4Stl

mStl
h pt

)
If one of the other indices is the largest, a similar expression holds. There are O(n4) structures to
compute in linear time, so the algorithm runs in O(n5) time and O(n4) space. Once all of the P ’s
are computed, we pick the one with the largest area, and the problem is solved.

Theorem 6 Given a set of n equal size, possibly overlapping, axis-aligned squares, the problem
of choosing a point in each square such that the area of the convex hull of the resulting point set
is as large as possible can be solved in O(n5) time.
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Figure 13: The smallest convex hull for a set of line segments.

4 Smallest Convex Hull

In this section we will investigate the problem of finding the smallest area convex hull of a set of
imprecise points. As in the previous section we will first look into the line segment model, and
then move on to squares.

4.1 Line Segments

The problem we discuss in this section is the following:

Problem 4 Given a set of parallel line segments, choose a point on each line segment such that
the area of the convex hull of the resulting point set is as small as possible (see Figure 13).

Without loss of generality we assume that the segments are vertical.

4.1.1 Observations

First we make another definition that we will need later in this section. The greatest common
region, or GCR, of the set of line segments is the largest region that is part of the convex hull of
every possible choice of points on the segments, or equivalently, the intersection of all those convex
hulls.

In the optimal solution, we can discern two different kinds of line segments. A segment of the first
kind defines a vertex of the convex hull, and will intersect the hull only at this vertex. A segment
of the second kind lies partly in the interior of the hull, and does not contribute to the shape of
the optimal convex hull. We are interested in finding the segments of the first kind. We will see
that of those segments, all but two must have their point chosen at an endpoint. Of the segments
of the second kind, there can be arbitrarily many that must have their point on their interior,
because their endpoints lie outside the optimal hull. The locations of the points on such segments
are irrelevant.

Lemma 5 In the optimal solution, if a line segment defines a vertex of the convex hull, and there
are other vertices on the hull strictly on both sides of the supporting line of this segment, then the
point on this segment must be chosen at one of the endpoints.

Proof: Assume there is a segment s that has its point ps on its interior, assume this point is
a vertex of the optimal convex hull, and assume there are vertices both to the left and to the
right of s. Since the optimal convex hull is convex, this means that the predecessor pr of ps and
the successor pt of ps on the hull lie on different sides of s. As a consequence, moving ps in the
direction of the interior of the hull will decrease the area, contradicting optimality. �

Since we assumed the segments to be parallel, for each segment that is not the leftmost or the
rightmost there must always be points strictly on both sides, thus the lemma implies that all but
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Figure 14: (a) The top chain ct and bottom chain cb. (b) The optimal solution.

the leftmost and rightmost segments have their point at an endpoint if they contribute to the
convex hull. From now on we denote the leftmost segment by sl and the rightmost segment by sr.

To solve Problem 4, we first define two chains, the top chain and the bottom chain, of the set of
segments. The top chain is a polyline connecting the lower endpoint of sl to the lower endpoint
of sr, and is defined as the upper half of the convex hull of the set of all lower endpoints of the
input segments, that is, the part of the boundary of that convex hull that has the interior below
it. Symmetrically, the bottom chain is the lower half of the convex hull of the set of all upper
endpoints of the input segments. An example of these chains is shown in Figure 14 (a).

The top and bottom chain have some interesting properties.

Lemma 6 The region enclosed by the top and bottom chains is the greatest common region (GCR)
of the line segments.

Proof: The enclosed region is the intersection of two possible convex hulls, being the convex
hull of all upper endpoints and the convex hull of all lower endpoints. Thus by definition this
region contains the GCR. Furthermore, for every possible choice of points on the segments, the
upper half of the convex hull cannot be strictly below the top chain, because the points can only
be chosen higher. Similarly, the lower half of the hull cannot be strictly above the bottom chain.
This means that the region enclosed by the two chains is contained in every possible convex hull,
and thus contained in the GCR. �

Lemma 7 The GCR has zero area if and only if there is a solution of zero area to Problem 4.

Proof: If the GCR is empty, then the top and bottom chain do not cross each other, although
it is possible that they touch at a point or even a common segment. This means the top chain
will be completely below the bottom chain. Every line segment will have its upper endpoint on or
above the bottom chain, and its lower endpoint on or below the top chain. Because the chains are
convex, there exists a line that separates them. This line must then stab all of the line segments
in the input set. Choosing all points on this line yields a solution of zero area. On the other hand,
if the optimal solution has zero area, the GCR must be a part of this solution and thus can never
have a larger area. �

As a consequence of this lemma, we can decide whether the GCR is empty or not in linear time
using a stabber algoritm [11]. If it is empty we also have an optimal solution in linear time. From
now on we will therefore assume that the GCR is not empty.

For a point p on sl, there is a tangent point al(p) on the top chain such that the line through p
and al(p) does not go through the region below the top chain. When there are more than one
such points we choose the one that lies most to the right. Similarly, we define bl(p) as the tangent
point on the bottom chain, and for q on sr we define two tangent points ar(q) and br(q) on the
top and bottom chains. All those tangent points are vertices of the chains.
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Figure 15: The region A(p) that is added by p.

Lemma 8 If the points p on sl and q on sr are known, the optimal solution is the polygon that
consists of p, al(p), the piece of the top chain between al(p) and ar(q), ar(q), q, br(q), the piece
of the bottom chain between br(q) and bl(p), bl(p), and back to p, provided that this polygon is
convex. If it is not, then p and q will be connected by a straight line above the top chain or below
the bottom chain.

Proof: The described shape intersects all line segments, since the upper part is never below the
top chain and the lower part is never above the bottom chain. Since all vertices on the upper part
of the boundary are lower endpoints of line segments and all vertices on the lower half are upper
endpoints, none of the vertices can be moved to make the shape smaller. The only exceptions
would be the leftmost and the rightmost vertices p and q, but we assumed them fixed. �

An example of the optimal solution can be seen in Figure 14(b). In the degenerate case where
the segments sl and sr are just points, the lemma implies that the top and bottom chain together
form the optimal solution.

4.1.2 Algorithm

To find the location of the points p on sl and q on sr, we use the fact that they can be found
independent of each other. For every position of p, there will be two tangent points al(p) and
bl(p) on the top and bottom chains. We are looking for the position of p such that the area that
is ‘added’ by this point is as small as possible. Define the region A(p) as the polygon enclosed by
pal(p), a piece of the top chain, the leftmost intersection point of the top and bottom chain (note
that this always exists when the GCR is not empty), a piece of the bottom chain, and bl(p)p. Two
examples can be seen in Figure 15 (p is not at its optimal location in the figure). Intuitively, this
area is the area that is added to the GCR when p is added. However, it is not always the same as
the convex hull of the GCR and p, when a tangent point of the leftmost point lies to the right of
the rightmost intersection point of the two chains, or to the left of the leftmost intersection point,
as is the case in Figure 15(b). Similarly, we define the region A(q) as the polygon enclosed by
qar(q), a piece of the top chain, the rightmost intersection point of the top and bottom chain, a
piece of the bottom chain, and br(q)q.

Lemma 9 The individual optimal locations for p and q, minimizing the area of A(p) and A(q)
respectively, are the same as the location of p and q in the optimal solution, provided that the GCR
is non-empty.

Proof: To prove the lemma, we will show two things. Firstly, in the optimal solution, the line
through p and q will always intersect both chains in at least two points. Secondly, when we find
the individual optimal locations for p and q, the line through them will intersect both chains in
at least two points as well. This means we can see the optimal solution as GCR + A(p) + A(q), so
the contributions of p and q are independent.

Firstly, since the area of GCR is not zero, the area of the optimal solution is not zero. If in the
optimal solution the line through p and q does not intersect one of the chains, say the bottom

18



chain, then we can easily decrease the area of the hull by just moving p or q upwards. This is
always possible, since if they cannot move upwards, they would be at the top of their line segments,
which are both points on the bottom chain. This contradicts the assumption of optimality.

Secondly, if the line through the individually optimal p and q does not intersect both chains, let us
assume the line passes below the bottom chain. In its individual optimal solution, p is connected
to a point al(p) on the top chain and a point bl(p) on the bottom chain. In the same way q is
connected to a point ar(q) on the top chain and a point br(q) on the bottom chain. Since the line
through p and q does not intersect the bottom chain, bl(p) must be to the right of br(q), or be the
same point. If al(p) lies to the left of bl(p), there must be a point a′l(p) on the top chain to the
right of bl(p) such that p lies on the line through al(p) and a′l(p). Otherwise moving p upwards
would decrease the size of the convex hull. Similarly, if ar(q) lies to the right of br(q) there must
be a point a′r(q) on the top chain to the left of br(q) such that q lies on the line through ar(q) and
a′r(q). However, now we have that p is connected with a single line segment to a point on the top
chain (either al(p) or a′l(p)) that lies to the right of another point on the top chain (either ar(q)
or a′r(q)) that is connected with a straight line segment to q. These line segments must intersect,
and thus the line through p and q must pass above the top chain as well. However, we assumed it
passed below the bottom chain, so this is only possible if the two chains do not intersect and the
GCR is empty, a contradiction. �

To compute the individual optimal locations of p and q, we use the observation that the area to
minimize is piecewise linear in the position of the point, only changing when the point is on a line
through two consecutive vertices of one of the chains. This means the minimum must be obtained
at one of these points (or one of the endpoints of the segments). There are only a linear number of
such points on sl (and sr), and we can find all of their tangent points in linear time by traversing
sl (and sr) from top to bottom, since by going to the next point both tangent points can move at
most one step along their chains.

Theorem 7 Given a set of n arbitrarily sized, parallel line segments, the problem of choosing a
point on each segment such that the area of the convex hull of the resulting point set is as small
as possible can be solved in O(n log n) time.

4.2 Squares

The problem we discuss in this section is the following:

Problem 5 Given a set of axis-aligned squares, choose a point in each square such that the area
of the convex hull of the resulting point set is as small as possible (see Figure 16).

4.2.1 Observations

The squares can be divided into those that define a vertex of the optimal convex hull, and those
that do not. Of the squares that define a vertex, there are only four for which this point does not
lie at a corner, and for those we can show it must at least be on some line segment.

Lemma 10 In the optimal solution, only the leftmost, rightmost, topmost, and bottommost ver-
tices of the convex hull need not be corners of their squares.

Proof: Suppose some other vertex of the convex hull is not at the corner of its square. Suppose
for example that this vertex lies between the leftmost and the topmost vertices. This means that
moving the vertex either down or to the right will decrease the area of the convex hull. Since the
vertex is not at a corner, it can move in at least one of those directions. Thus the convex hull
cannot be optimal. �
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Figure 16: The smallest convex hull for a set of squares.

These four squares will be called the extreme squares in four directions, and for these four squares,
the points must lie on the inner edge. We call these squares Sl, Sr, St and Sb, meaning the
leftmost, rightmost, topmost and bottommost squares. Here leftmost means the square with the
leftmost right side, etc. We call their points the four extreme points, and denote them with pl, pr,
pt, and pb, respectively. An example where there are indeed four points not at a corner is shown
in Figure 17(a).

Similar to the case of parallel line segments, we now define four chains connecting corners of the
squares. The top left chain, for example, will be the chain connecting the bottom right corner of
Sl to the bottom right corner of St, via other bottom right corners of squares, such that the region
to the lower right of the chain is convex and contains a point of every square. In the same way
we can define the top right chain, the bottom right chain, and the bottom left chain. An example
is shown in Figure 17(b). In the case where two of the extreme squares are the same, one of the
chains reduces to a single point.

For every location of the point pl, there is a tangent point alt(pl) on the top left chain such that
the line through pl and alt(pl) does not go through the region to the lower right of the top left
chain. When there are more than one such points we choose the one that lies most to the upper
right. Similarly, we define alb(pl) as the tangent point on the bottom left chain. For every point
pt we define tangent points atl(pt) and atr(pt) on the top left and top right chains, for every pr

we define two tangent points art(pr) and arb(pr) on the top right and bottom right chains, and
finally we define for every point pb two tangent points abl(pb) and abr(pb) on the bottom left and
bottom right chains. All those tangent points are vertices of the chains. Note that they may also
be corners of the extreme squares.

(a) (b)

Figure 17: (a) Up to four vertices of the smallest convex hull may not be a corner of one of the
squares. (b) The top left, bottom left, top right, and bottom right chains.
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Figure 18: The lower left and the lower right chain divide the upper edge of Sb into a linear
number of intervals.

Lemma 11 If the points pl, pt, pr and pb are known, in the optimal solution the point pl is
connected to pt by a straight line segment if this segment does not intersect the top left chain, and
otherwise via the piece of the top left chain between alt(pl) and atl(pt). Similarly pt is connected
to pr by a straight line segment or via the piece of the top right chain between atr(pt) and art(pr),
pr is connected to pb by a straight line segment or via the piece of the bottom right chain between
arb(pr) and abr(pb), and pb is connected to pl by a straight line segment or via the piece of the
bottom left chain between abl(pb) and alb(pl).

In the degenerate case where the squares Sl, St, Sr and Sb are just points, this implies that the
four chains together form the optimal solution.

Note that just as in the case of line segments, we can still find out if a zero area solution exists in
linear time, since a solution of zero area still corresponds to a stabber, and a stabber of a set of
squares can be computed in O(n) time if it exists [11]. However, this is no longer directly related
to the greatest common region.

4.2.2 Algorithm

So far everything is still the same as in the case of line segments. However, Lemma 9 cannot be
generalized. To solve the problem now, we can no longer use the approach we used in the case of
the line segments, because now the locations of the four extreme points are no longer independent.
It can really happen that in the optimal solution, two of those points are directly connected by a
straight line, as can be seen in the example in Figure 16. Instead, we use an alternative approach.

Each of the four extreme points can move over an edge of its square. We divide this edge into a
linear number of intervals. Within each interval, if the point would be chosen there, the vertices
on the chains the point would be connected to are the same. This means the endpoints of the
intervals are exactly the points that lie on a line through two consecutive vertices of one of the
chains. The resulting intervals are shown in Figure 18.

If we would only consider one extreme point at a time, as we did with the line segments, then
the point would have to be at one of the endpoints of these intervals, since the area function is
piecewise linear, and only changes exactly at those endpoints. However, when we consider all four
extreme points simultaneously, then the optimal location of one or more of the points may also be
somewhere in the middle of an interval, as is already apparent in Figure 17(a).

Assume we know for each of the four extreme points the interval on which they must be in the
optimal solution. We then know the tangent points on the chains they must be connected to if
we do not look at the other extreme points. Since we know this for each extreme point, we can
see whether they will be connected to each other or to a chain. For example, the left point pl has
a point alt(pl) on the top left chain it could be connected to, and the upper point pt has a point
atl(pt) on the top left chain it could be connected to. If alt(pl) lies to the lower left of atl(pt),
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Figure 19: The area of a solution can be decomposed into triangles that depend on at most two
variables.

then pl and pt will be connected to their tangent points, and not to each other. If alt(pl) lies to
the upper right of atl(pt), then pl and pt will be connected by a straight line segment. If alt(pl) is
equal to atl(pt), then we do not know yet.

We can now write the area of the convex hull as a polynomial in four variables that specify the
exact locations of the extreme points within their interval. This polynomial will have degree at
most 2, because we can decompose the area into triangles that depend on at most two of the
variables, as shown in Figure 19 . We can find the minimum of this polynomial within the bounds
given by the intervals on which the points can move, in constant time. In the case where we do
not know whether two points will be connected by a straight line segment or via a point on a
chain, we simply try both and add an extra restriction to the variables in the one case.

We can now easily solve the problem in O(n4) time. In the optimal solution, each of the four
extreme points needs to be on one of the intervals of its segment. This means a total of O(n4)
possible combinations of intervals, and for each combination the solution requires solving a poly-
nomial that does not depend on n. However, many of the combinations of intervals seem to be
redundant, because a solution using them can clearly be seen not to be optimal. Indeed we can
show that we do not need to spend O(n4) time to solve this problem, and improve it to O(n2).

We observe that each connection between two of the extreme points must be one of three types.
We call the connection of type 0 if the points are connected by a single line segment that does not
touch the respective chain in the optimal solution. We call the connection of type 1 if the points
are connected by a single line segment that touches the respective chain. We call the connection
of type 2 if they are not connected by a single line segment. In Figure 20 examples are shown of
only type 0 connections, only type 1 connections, only type 2 connections, and an example with
two connections of type 0, one of type 1, and one of type 2.

There are only a constant number of possible combinations of connections between the four extreme
points, namely 34. If we can compute the optimal solution of each type and test their validity in
less than O(n4) time, then we can just pick the best one and we have a faster algorithm. We make
the following observations.

(a) (b) (c) (d)

Figure 20: The points can be connected either (a) directly, (b) just touching a point on the chain,
(c) via multiple points of the chain. (d) Multiple cases can appear together.
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• Each connection of type 1 reduces the number of possible combinations of intervals by a
linear factor.

• Every pair of connections of type 2 divides the problem into two independent subproblems.

• Every pair of adjacent connections of type 0 removes the need to divide one of the extreme
squares into intervals, reducing the number of possible combinations of intervals by a linear
factor.

The first statement is true because there is only a linear number of pairs of intervals for the two
extreme points in question for which the point to which they can be connected on the chain is the
same, and this is required for a type 1 connection.

The second statement is similar to the independence of the extreme points in the case of line
segments (Lemma 9). Since we know by assumption that the two connections are of type 2, the
optimal subproblems together have to be the optimal solution for the complete problem. The two
connections could be adjacent, giving one subproblem of linear complexity and one of potentially
cubic complexity, or they could be opposite to each other, giving two problems of potentially
quadratic complexity.

The third statement means that if one of the extreme points has only connections of type 0, there
is no need to divide its edge into intervals, since the structure of the convex hull, and therefore
the polynomial describing the area, will be the same.

When one or more of these patterns occur, we can solve the problem in less time. For example, take
type 0-1-2-2. This type contains two type 2 connections, and also a type 1 connection. The type
2 connections divide the problem into two independent subproblems. The smallest subproblem
can be solved in linear time, by just choosing the best out of a linear number of intervals. For
each interval we know their tangent points on the chains, so it can be solved in constant time.
The larger subproblem contains a type 1 connection. This means there is only a linear number of
combinations of intervals such that the connection is really of type 1. We can find them and store
them easily in quadratic time. Now we look at a quadratic number of groups of three intervals;
one combination of two that we just stored, and one from the remaining extreme point (the one
between the type 0 and type 2 connections). For each three intervals, we can solve the problem
in constant time since all tangent points are known. We can also check in constant time whether
all connections are of the correct types (in particular the type 0 connection), by looking at the
tangent points. We have now solved both subproblems in O(n2) time. We finally need to check
whether the subsolutions together yield a convex shape. If they don’t, then the type was not
0-1-2-2. If they do, then it is a potential optimal solution.

Now we note that in each of the 34 possible types, of which only 21 remain after removing
symmetries, at least one of these three patterns has to occur, and thus every type can be solved in
O(n3) time. Furthermore, in all but one case (and its symmetric variants), actually two of these
patterns occur together, and they can be solved in O(n2) time. All these types can be solved in
a similar way to the one described above. The one exception is the one shown in Figure 20(d).
This type has only one of the three patterns. However, we show we can solve it in linear time.

Lemma 12 The pattern with a type 0 connection, a type 1 connection, a type 0 connection and
a type 2 connection, in that order, can be solved in O(n) time.

Proof: We assume the types of connections to be as in Figure 20(d), other cases are symmetric.
Since the top right and bottom left connections do not touch the chains, we do not need to look
at these two chains any more. There will be one point p on the top left chain that is the tangent
point of the top left connection. Now the top left connection is a single line segment from the
leftmost extreme point to the topmost extreme point, and is still allowed to rotate around p within
some interval such that it does not intersect the top left chain, see Figure 21(a).
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Figure 21: (a) The special case 0-1-0-2. (b) The bottom left part zoomed in.

For a fixed position of the top left connection, and therefore the points pl and pt, the optimal
solution is easy to see. Find the two consecutive points on the bottom right chain such that the
leftmost extreme point has its y-coordinate between the y-coordinates of those two points. The
bottommost extreme point will be on the line through these two points, because moving it in
either direction from that position would increase the area. In the same way, the rightmost point
must be on the line through the two points that have their x-coordinates closest to that of the
topmost extreme point.

Now if we start with p as the bottom leftmost point on the top left chain, and rotate the line con-
necting the leftmost extreme point to the topmost extreme point around it in clockwise direction,
the bottommost two points of the bottom right chain that determine the position of the bottom-
most extreme point will only move upwards, while the two points that determine the position of
the rightmost extreme point will also only move upwards, see Figure 21(b). When the line rotates
far enough, p will change to the next point of the top left chain, but still the points on the bottom
right chain only move towards the upper right. This means that after a linear number of steps we
have tried all possibilities and found the optimal solution.

Because we assumed the type is 0-1-0-2, we still have to make sure that the solutions we check
are indeed of this type. This means that we have to check that the lower left and upper right
connections do not intersect their respective chains. We can check this on average in constant
time every step, if we keep track of the slope of the connections and the first vertex of the chain it
would intersect. Also, the points on the lower right chain have to be in the correct order, otherwise
the found hull is not convex and may even intersect itself. We can check this in constant time as
well. �

We conclude that every situation can be solved in O(n2) time, and therefore the whole problem
can be solved in O(n2) time.

Theorem 8 Given a set of n arbitrarily sized, possibly overlapping, axis-aligned squares, the
problem of choosing a point in each square such that the area of the convex hull of the resulting
point set is as small as possible can be solved in O(n2) time.

5 Perimeter versus Area

Until now we have only considered area of the convex hull as the measure to maximize or minimize,
but there are other measures that can be used. The other natural measure for determining the
size of convex polygons is the perimeter. In this section we will analyse the relevant differences
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between those two measures, and how the results of the previous sections can be extended to the
perimeter measure.

One important observation is the way the size of a polygon changes when only one point is moving
over a line, while the rest remains fixed. The area of the polygon is a linear function of the
moving point, while the perimeter is a hyperbolic function with a minimum. In the case of convex
hulls, this only applies as long as the combinatorial structure of the hull does not change. Another
important difference is that the area of a polygon is invariant under many kinds of transformations,
including shearing, while the perimeter is only invariant under rigid transformations.

More specific to the problem at hand, when we want to maximize the area of a polygon, convexity
is automatically achieved. When we want to maximize the perimeter, however, convexity has to
be taken care of explicitly. When looking for minimal size, this works the other way around. A
minimal perimeter polygon will automatically be convex, while a minimal area polygon is generally
not.

We can adjust all of the above algorithms to the perimeter measure in a more or less straightforward
fashion. The time bounds for the largest convex hull indeed become worse, O(n3) for line segments
becomes O(n5), and O(n7) for squares becomes O(n10). On the other hand, the time bounds for
the smallest convex hull become better; all problems considered can be solved in only O(n log n)
time. The details of the changed algorithms can be found in the remainder of this section.

Finally, the perimeter measure introduces some computational difficulty. All of the above men-
tioned adjusted algorithms require the comparison of sums of square roots of integers, and it is
not clear whether this can be done efficiently. Therefore, we assume a computation model that
allows real arithmetic in the remainder. Another implication is that the problems described are
not known to be in NP, so we cannot prove anything NP-complete.

5.1 Longest Perimeter

When looking for the largest perimeter rather than area, we still only have to look at the endpoints
of the line segments or the corners of the squares. The function that describes the size is no longer
linear, but because it has no maximum, there will still always be at least one direction in which
a point can be moved such that the size does not decrease. However, we cannot simply duplicate
the proofs of Lemma 1 and Lemma 2, because by moving points to increase the perimeter we may
lose convexity.

Lemma 13 Given a set of line segments or squares, there is a choice of points such that every
point is at an endpoint or corner, and the perimeter of the convex hull of the resulting point set is
as large as possible.

Proof: Assume there is an optimal solution with a point q not at an endpoint or corner. If
the point is not a vertex of the convex hull, we can just move it anywhere without decreasing
the length of the perimeter. So assume the point is a vertex of the convex hull. Let l be a line
segment such that q is not at an endpoint of this segment, but is allowed to move anywhere on
the segment.

Let p and r be the neighboring vertices of q on the convex hull. The length of the chain pqr is a
hyperbolic function of the position of q on l. This function has a single minimum, so there is at
least one direction in which q can move such that the length of pqr increases. Since we assumed
the position of q to be optimal, moving q in this direction must change the topology of the convex
hull. This means that there must be another vertex of the convex hull on either the line through
p and q, or through q and r.

Now assume without loss of generality that l is vertical, and that moving q down over l increases
the length of pqr. In this case there must be a point s on the line through q and r that is the
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Figure 22: (a) Moving q down increases the perimeter. (b) The optimal solution does not contain
a smaller optimal subsolution.

next vertex of the convex hull from r, see Figure 22(a). If p is on the same side of l as r and s
are, mirror p in l and note that this does not influence the length of pqr or pqs as q moves over l.
Now note that the length of pqr is minimized exactly when q is at the intersection point of l and
pr. Since moving q down increases this length, q must be at or below this intersection point. This
means, however, that the intersection point of l and ps has to be at or above q. Thus moving q
down will also increase the length of pqs, and the length of the convex hull will grow even though
the topology changes. Thus q is not at its optimal position, contradicting the first assumption of
this proof. �

Even though we still only have to look at a few possible locations for every point, we cannot easily
extend the algorithms in Sections 3.1 and 3.2. The reason for this is that we now explicitly have to
ensure convexity of the solutions in the dynamic programming algorithm for line segments. The
algorithm for squares heavily relies on the algorithm for line segments.

The fundamental property that the dynamic programming algorithm is based on, is that the
optimal solution up to some line segments li and lj always consists of some smaller optimal
solution and one extra line segment. This property no longer holds in the case of perimeter. An
example is shown in Figure 22(b). Here the solid line represents the optimal solution from the
top of li to the bottom of lj . However, this chain does not include the optimal solution from the
top of li to the bottom of lk, which is represented by the dashed line. The reason for this is that
adding the segment from l−k to l−j to the dashed line yields a non-convex chain, and making it
convex decreases the length. In the case of area there was no problem, because then making it
convex increased the area.

We can solve the problem in O(n5) time instead of O(n3), by keeping the optimal solution for
every pair of points, and every direction in which the points are connected. This way, we can
ensure convexity. Since there are only a linear number of directions that lead to another point,
this leads to an O(n5) time algorithm.

Define Pij∼km to be the chain that starts at the top of li, then goes to the left to the top of lj , then
via a number of other tops to the leftmost point, then back to the right via a number of bottoms
to the bottom of lk, and finally to the bottom of lm, such that it is convex and of maximal length.
Abusing notation slightly, we also use Pij∼km to denote its length. Now we can define a recursive
relation similar to the one in Section 3.1.

If i < m, then
Pij∼km = max

h<k

(
Pij∼hk + l−k l−m

∣∣∣ �l−h l−k l−m is convex
)

We maximize over the length of the chains. If i > m a symmetric expression holds, where we
maximize over the tops of the line segments to the left of lj , rather than the bottoms of the line
segments to the left of lk.
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Figure 23: Five groups of line segments give ten sets of endpoints.

Theorem 9 Given a set of n arbitrarily sized, parallel line segments, the problem of choosing a
point on each segment such that the perimeter of the convex hull of the resulting point set is as
large as possible can be solved in O(n5) time.

For arbitrary line segments, the NP-hardness proof for the largest area problem still holds un-
changed for the largest perimeter. The proof does not depend on the measure, only on the fact
that the value of a variable is equal in its true and false states. However, it is not known whether
this problem is in NP, since checking a solution involves comparing sums of square roots [21].

Theorem 10 Given a set of n arbitrarily oriented, possibly intersecting line segments, the problem
of choosing a point on each segment such that the perimeter of the convex hull of the resulting point
set is as large as possible is NP-hard.

For squares, all of the observations in Section 3.2.1 still apply. Most of them are independent of
the measure of the size, except for the last observation, which states that the extreme points do
not need to be in the extreme squares, but this is also true for perimeter with the same example
(in Figure 7(a)). Also the reduction from the set of squares to five groups of line segments does
not use the measure of the convex hull, so we can still do this for the perimeter.

We can solve this situation in O(n6) time and O(n4) space now, in a similar way as for area,
but by looking at pairs of two points at a time instead of just one, because we need to ensure
convexity. This gives O(n4) subsolutions to compute, and it takes O(n2) time to compute them.
In each step below, we will select four points from certain groups. We always require that the
two first mentioned points are directly connected, and the two last mentioned points are directly
connected, while we vary the chain between the second and third point. We assume for now that
at least two points from every group are used.

Figure 9 is repeated in Figure 23 for convenience.

• For each group of two points in LT and two points in LB , we compute the optimal solution
connecting them around the left side, using the algorithm for parallel line segments.

• For each group of two points in BL and two points in BR, we compute the optimal solution
connecting them around the lower side, using the algorithm for parallel line segments.

• For each group of two points p, p′ ∈ LT , a point q′ ∈ LB and a point q ∈ BL, compute the
optimal chain connecting them. Note that this chain will not use any other points from BL.
This can be done by trying a linear number of points r ∈ LB as the point to connect q′ to,
and using the known optimal chain between p, p′ and r, q′. We need to ensure that ∠rq′q is
convex.

• For each group of two points in BR, a point in BL and a point in LB , compute the optimal
chain connecting them symmetric to the previous step.
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Figure 24: The topmost square does not give one of the extreme points.

• For each group of two points p, p′ ∈ LT and two points q′, q ∈ BR, compute the optimal
chain connecting them around the lower left. This can be done by choosing a point from
r ∈ LB and a points from s ∈ BL, and combining the solutions from p, p′ to r, s and from
r, s to q′, q of the previous two steps together. This step is critical, it is the only step that
really takes O(n6) time.

• For each group of two points p, p′ ∈ LT , a point q′ ∈ BR and a point q ∈ MBR, compute the
optimal chain connecting them, by choosing another point r ∈ BR and using the optimal
solution from p, p′ to r, q′ and ensuring convexity of ∠rq′q.

• For each group of a point in MTL, a point in LT , a point in BR and a point in MBR,
compute the optimal chain connecting them by choosing another point from LT , symmetric
to the previous step.

• For each group of two points in MTL and two points in MBR, compute the optimal chain
connecting them around the lower left using an adjusted version of the algorithm for line
segments.

• Symmetrically, for each group of two points in MTL and two points in MBR, compute the
optimal chain connecting them around the upper right.

• Choose from O(n4) possible combinations of points in MTL and MBR the one with the
largest perimeter.

Every step can be executed in O(n6) time. This only works when in the optimal solution there
are at least two points in every group, but as in the case of area the problem becomes easier when
one of the groups has only one or even zero points in the optimal solution, and there still are only
a constant number of easier situations to deal with.

Using this algorithm, we can solve the problem of finding the longest perimeter solution for a set
of non intersecting squares in a total of O(n10) time, since we still need a factor O(n4) to find the
four extreme points.

Theorem 11 Given a set of n arbitrarily sized, non-overlapping, axis-aligned squares, the problem
of choosing a point in each square such that the perimeter of the convex hull of the resulting point
set is as large as possible can be solved in O(n10) time.

Unlike the area case, we cannot improve the algorithm when the squares have equal size. Figure 24
shows an example where the optimal solution, denoted by the dashed line, uses the topmost square
at the bottom left corner while this is not an extreme point. So Lemma 4 cannot be extended to
the perimeter measure. Again, the problem is that making a non-convex polygon (such as the one
on the right in Figure 10) convex does not increase the perimeter, while it does increase the area.

The algorithm for squares of equal size that does not require the squares to be non-overlapping can
be adjusted to the perimeter measure. The same idea as in the previous two algorithms applies:
we need to ensure convexity and therefore need to define a structure on pairs of points from each

28



of the four groups instead of just one point. Furthermore, we now need to try all combinations of
the four extreme points since we cannot use Lemma 4.

We try all possible combinations for pl, pt, pr and pb, which are O(n4) possibilities. For each one,
we now define the structure Pii′jj′kk′ll′ to be the set of four chains that consists of a chain going
from pl to Stl

i′ via a number of top left corners of squares Pm with m < i and then to Stl
i with a

straight connection, a chain going from pt to Str
j′ via a number of top right corners of squares Pm

with m < j and then to Str
j with a straight connection, a chain going from pl to Sbl

k′ via a number
of bottom left corners of squares Pm with m < k and then to Sbl

k with a straight connection, and
a chain going from pb to Sbr

l′ via a number of top left corners of squares Pm with m < l and then
to Sbr

l with a straight connection, such that no square participates on two different chains, such
that all chains are convex, and such that the total length of these chains is maximal. This gives
O(n8) different structures, that can all be computed in linear time by varying the rightmost point
of {i, i′, j, j′, k, k′, l, l′}. the total algorithm runs in O(n13) time and O(n8) space.

Theorem 12 Given a set of n equal size, possibly overlapping, axis-aligned squares, the problem
of choosing a point in each square such that the perimeter of the convex hull of the resulting point
set is as large as possible can be solved in O(n13) time.

5.2 Shortest Perimeter

When looking for the shortest perimeter, we can expect less difficulties with convexity than in the
case of the longest perimeter. However, the fact that the size is no longer a linear function, but a
hyperbolic one with a minimum may cause some problems.

We can still prove that almost all vertices of the optimal solution must be at endpoints or corners
of their line segments or squares. When a vertex of the convex hull is allowed to move in two
opposite directions (for example up and down), and its neighboring vertices are on both sides of this
direction (so one on the left and one on the right), the minimum of the hyperbolic function occurs
exactly when the vertex is between its two neighbors, and then it is not a vertex that determines
the shape of the convex hull. In every other situation, it can move to make the perimeter smaller.
Thus this situation cannot occur in the optimal solution, and we have, as with the area, that only
the leftmost and rightmost line segments, or the four extreme squares, can have a vertex of the
convex hull that is not at an endpoint or corner.

The O(n log n) time algorithm for line segments still works for the smallest perimeter. We can
again compute the upper and lower chains. In this case, we denote the highest point of the top
chain pt, and the lowest point on the bottom chain pb. If pt is lower than pb, then there exists a
horizontal stabber for the line segments, which has the shortest perimeter we can possibly achieve:
twice the distance between the leftmost and rightmost line segments. Otherwise, when pt is above
pb, we can compute the leftmost and rightmost points pl and pr independently again.

For some location of pl, define C(pl) as the chain that starts at the lower end of the rightmost line
segment, follows the upper chain to al, goes to pl, then to bl, and finally follows the lower chain
to the upper endpoint of the rightmost line segment. Here al and bl are the tangent points on the
chains, as in Section 4.1.1. C(pr) is defined symmetrically.

Lemma 14 The individual optimal locations for pl and pr, minimizing the length of C(pl) and
C(pr) respectively, are the same as the locations of pl and pr in the optimal solution, provided that
the highest point of the upper chain is higher than the lowest point of the lower chain.

Proof: Analogous to Lemma 9, we first show that the line through the optimal pl and pr will
intersect both of the chains in at least two points, and then show that also the line through the
individually optimal pl and pr intersects both of the chains at at least two points.
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Figure 25: The four chains can be mirrored in the extreme line segments to simplify the shortest
perimeter problem.

The first argument is similar to the one in the case of area: if the line passes below the bottom
chain we can still move at least one point upwards and decrease the perimeter.

The other direction is now easier to prove. In the optimal individual position, pl will be connected
to some point on the top chain, and some point on the bottom chain. The minimum of the
hyperbolic function occurs somewhere at a height that is between its two neighbors. This means
it will certainly be between pt and pb. The same applies to the rightmost point. This means the
line through pl and pr must intersect both chains. �

Theorem 13 Given a set of n arbitrarily sized, parallel line segments, the problem of choosing a
point on each segment such that the perimeter of the convex hull of the resulting point set is as
small as possible can be solved in O(n log n) time.

The algorithm for squares can also be extended to the perimeter measure without problems. The
main difference is that the functions to minimize on each interval are now no longer linear. They
will now contain some square roots, but since there are at most eight terms with square roots with
variables under them, they can be rewritten to polynomials in constant time. This yields constant
degree polynomials, so if we assume their roots can be found at all, then they can be found in
constant time.

However, we can use some properties of the perimeter to actually achieve a better algorithm.
Instead of looking at the original problem, we mirror the four chains in the extreme line segments
which does not change the length of the solution when the points can only move over those
segments. The result is shown, rotated 45◦, in Figure 25. The thick line denotes the optimal
solution. We now want to find a shortest path between the chains, where it should be noted that
the segment on the far left is the same as the segment on the far right.

The tangent line of two chains in this situation can be computed in linear time [26]. The optimal
solution can be found, for example, by again trying all possible combinations of which chains are
touched by the optimal solution and checking if the solutions are feasible. This yields a linear time
algorithm once the chains are known, while the computation of the chains takes O(n log n) time.

Theorem 14 Given a set of n arbitrarily sized, possibly overlapping, axis-aligned squares, the
problem of choosing a point in each square such that the perimeter of the convex hull of the
resulting point set is as small as possible can be solved in O(n log n) time.

6 Conclusions

We studied the problem of computing the largest or smallest convex hull of a set of imprecise points.
We have seen many variants of the problem, varying in goal, measure, model and restrictions, and
many different algorithms to solve them. Our results are given in Table 1.
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These results suggest that the problem of finding the smallest area or perimeter convex hull is
easier than finding the largest convex hull. The running times are better, and there are fewer
restrictions with the smallest hull. For the largest convex hull it seems important that the regions
do not intersect. It also looks like the area is easier to maximize than the perimeter, while the
perimeter is easier to minimize than the area.

Many problems are open, and there are various directions of research to be pursued. Most notably,
what is the status of the problem of finding the largest convex hull when the regions are allowed to
intersect? Also, what results can be obtained for the circle model? Other open problems include
the convex hull for a set of arbitrarily oriented line segments, even when they are non-intersecting.

The second direction in which research is needed concerns approximation. For the problems that
have no efficient exact algorithms, how well can they be approximated efficiently? This applies to
the open problems noted above, as well as some of the problems for which polynomial algorithms
have been given but with high exponents, such as the O(n10) time bound, and of course the
NP-hard problems.

Thirdly, for many other problems in computational geometry, imprecision in the data and the
bounds on the effect on the outcome of an algorithm should be studied. Such problems include
the longest and shortest minimum spanning trees for a set of imprecise points, the Delaunay
triangulation, and any other geometric structure that is uniquely defined on a set of points, and
can somehow be measured.

Higher-dimensional versions are also open.
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