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OPEN

ORIGINAL ARTICLE

Largest GWAS of PTSD (N= 20070) yields genetic overlap
with schizophrenia and sex differences in heritability
LE Duncan1,2,3, A Ratanatharathorn4, AE Aiello5, LM Almli6, AB Amstadter7, AE Ashley-Koch8, DG Baker9,10, JC Beckham11,12, LJ Bierut13,
J Bisson14, B Bradley15,16, C-Y Chen3,17,18, S Dalvie19, LA Farrer20, S Galea21, ME Garrett8, JE Gelernter22, G Guffanti18,23, MA Hauser8,
EO Johnson24, RC Kessler25, NA Kimbrel11,12, A King26, N Koen27,28, HR Kranzler29, MW Logue30,31, AX Maihofer32, AR Martin2,3,
MW Miller30,33, RA Morey12,34, NR Nugent35,36, JP Rice37, S Ripke2,3,38, AL Roberts39, NL Saccone40, JW Smoller2,17, DJ Stein27,28,
MB Stein32,41,42, JA Sumner43, M Uddin44, RJ Ursano45, DE Wildman46, R Yehuda47,48, H Zhao49, MJ Daly2,3, I Liberzon26,50, KJ Ressler18,23,
CM Nievergelt9,10 and KC Koenen2,17,51

The Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) combined genome-wide case–control
molecular genetic data across 11 multiethnic studies to quantify PTSD heritability, to examine potential shared genetic risk with
schizophrenia, bipolar disorder, and major depressive disorder and to identify risk loci for PTSD. Examining 20 730 individuals, we
report a molecular genetics-based heritability estimate (h2SNP) for European-American females of 29% that is similar to h2SNP for
schizophrenia and is substantially higher than h2SNP in European-American males (estimate not distinguishable from zero). We found
strong evidence of overlapping genetic risk between PTSD and schizophrenia along with more modest evidence of overlap with
bipolar and major depressive disorder. No single-nucleotide polymorphisms (SNPs) exceeded genome-wide significance in the
transethnic (overall) meta-analysis and we do not replicate previously reported associations. Still, SNP-level summary statistics made
available here afford the best-available molecular genetic index of PTSD—for both European- and African-American individuals—
and can be used in polygenic risk prediction and genetic correlation studies of diverse phenotypes. Publication of summary
statistics for ∼ 10 000 African Americans contributes to the broader goal of increased ancestral diversity in genomic data resources.
In sum, the results demonstrate genetic influences on the development of PTSD, identify shared genetic risk between PTSD and
other psychiatric disorders and highlight the importance of multiethnic/racial samples. As has been the case with schizophrenia
and other complex genetic disorders, larger sample sizes are needed to identify specific risk loci.
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INTRODUCTION
Posttraumatic stress disorder (PTSD) is a common and debilitating
mental disorder that occurs in some individuals following a
traumatic event. It includes symptoms such as reexperiencing the
event, avoidance of event-related stimuli and chronic hyperar-
ousal. In the United States, 1 in 9 women and 1 in 20 men will
meet criteria for the diagnosis at some point in their lives.1 The
societal impact of PTSD is large, with increased rates of suicide,
hospitalization and substance use.2 Regarding etiology, the role of
nature versus nurture in response to traumatic events has been
debated for over a century.3 Psychiatrists who treated ‘shell shock’
in soldiers returning from World War I argued over whether
soldiers who succumbed to the stressors of war were ‘moral
invalids’ or whether such breakdowns could occur in any man
who was ‘buried in a trench or saw his friend’s brains scattered
before him’.4 This historical controversy has been reignited as the
age of genomic medicine has reached PTSD. Genomic research is
given the highest priority in the US National Research Action Plan
on PTSD that was established in response to an executive order by
President Obama aimed at improving mental health care and
services for veterans, military service members and their families.5

However, fundamental questions remain as to the role of genetic
factors in PTSD etiology.
Twin study estimates of PTSD heritability range from 24 to 72%

following trauma,6–9 with female heritability two to three times
higher than that in males.8 Twin studies have also documented
that genetic influences on PTSD are shared with other mental
disorders, particularly major depression.10–12 Such studies have
made important contributions beyond heritability estimation; for
example the discordant twin study by Gilbertson et al.13 showed
that smaller hippocampal volume is likely a risk factor for PTSD
rather than a consequence of the disorder. Despite this excellent
work, the importance of genetic influences for PTSD etiology is
not universally accepted among mental health clinicians or
researchers. This may be in part because the latent modeling of
genetic variation in twin studies is not easily interpretable to those
not immersed in the methodology of behavioral genetics.
To more definitively establish the contribution of genetic

variants to PTSD risk, to examine the genetic overlap between
PTSD and other mental disorders and to identify risk loci, the
Psychiatric Genomics Consortium-Posttraumatic Stress Disorder
group (PGC-PTSD) group employed the consortium science
approach of aggregating genomic (genome-wide association
study (GWAS)) data from multiple contributing groups. In recent
years, the consortium approach has delivered groundbreaking
results for many complex genetic phenotypes—including
height,14 diabetes15 and schizophrenia16—and here we report
initial findings on the genetic architecture of PTSD.

MATERIALS AND METHODS
Overview
Eleven groups contributed data for analysis; nine contributed individual-
level data and two groups could only share single-nucleotide polymorph-
ism (SNP)-level summary statistics. These two groups implemented the
quality control (QC) and GWAS analyses outlined below before sharing
summary statistics. Individual-level genotypes are necessary for genome-
wide complex trait analysis (GCTA) and polygenic risk scoring (PRS), and
hence these two data sets are not included in the polygenic analyses. For
all data sets, the first analytical step was ancestry assignment. As described
below, this yielded 19 ancestry-assigned data sets for analysis across the 11
contributing studies. Next, QC procedures and imputation were performed
and then single SNP (GWA and meta-analyses) and polygenic analyses
(GCTA, PRS, and linkage disequilibrium (LD) score regression (LDSC)) were
completed.

Participants
All participants were adults. Contributing studies provided individual-level
genotype data or summary statistics consistent with their institutional
review board-approved protocols. Descriptions of each of the 11 contribu-
ting studies are provided in the Supplementary Information. In many
cohorts included in the consortium, all the controls were trauma exposed
(for example, Nurses Health Study II PTSD substudy). Thus, in the combined
analysis, the vast majority of controls were trauma exposed
(N controls = 15 548, N trauma-exposed controls = 13 638, 87.7% of
controls were trauma exposed). Case and control numbers along with
other data set information is provided in Supplementary Table S1, and
Figure 1 illustrates the study and analytical design.

Ancestry assignment
SNPweights software17 was used to assign ancestry, applied to uncleaned
data because the use of Hardy–Weinberg equilibrium filters can remove
ancestry informative SNPs in samples with mixed ancestry background,
and is therefore not compatible with this protocol. Ancestry assignment is
separate from controlling for ancestry analytically, described below. Briefly,
SNPweights uses external genomic reference panels to derive ancestry
informative weights for individual SNPs. We used the four-group,
continental ancestry panel to quantify individual participants’ proportions
of: African (YRI), European (CEU), Asian (ASI) and Native American (NAT)17

ancestry. The specific cutoffs implemented in this report for assigning
ancestry—which were selected after inspection of principal components
(PC) plots — and adjusting cutoffs—were as follows: European American
(EA) was defined as having ⩾ 90% European ancestry. African American
(AA) was defined as ⩾ 90% for the combination of African and European
ancestry, and also o3% Asian and Native American ancestry. Individuals
who self-identify as Latino or Hispanic (LA) in the United States may have
predominately European ancestry and may have relatively recent
admixture with Native American ancestry or both Native American and
African ancestry. In this report we focused on LA individuals with two-way
admixture; cutoffs used were ⩾ 85% for the combination of European and
Native American ancestry, o10% African ancestry and o3% Asian
Ancestry. With exception of the South African data (see below), individuals
not falling into the EA, AA and LA categories were excluded from analysis
(on the basis of low case and/or control numbers).
Data contributed from South Africa were handled separately because

the African ancestry panel used in SNPweights (YRI) is a West African
sample. For the South African sample, the typical GWAS method of
conducting principal components analysis (PCA), followed by visual
inspection of data, was used. In doing so, we identified two populations,
which are the two South African data sets in this report. For comparison of
PGC-PTSD ancestry to previously published meta-analyses of psychiatric
phenotypes see Figure 2a. Recent admixture is evident for AA and LA
participants in this study (Figure 2b).

QC methods, relatedness testing and imputation
QC procedures were performed sequentially on each of the 19 data
subsets as follows: monomorphic SNPs and SNPs with missingness 40.05
were removed, and individuals with missingness 40.02 were removed.
Individuals with heterozygosity 4|0.2| and individuals failing sex checks
were removed. SNPs with missingness 40.02 were removed (a more
stringent SNP missingness filter was applied after individual level filters).
SNPs with differential missingness between cases and controls40.02 were
removed. SNPs failing Hardy–Weinberg equilibrium: controls (Po1 × 10− 6)
and cases (Po1 × 10− 10) were removed. All analyses were performed
using second-generation PLINK.18

PCA was performed within each data set and then across all data sets
using FastPCA.19 PCA was conducted on high-quality SNPs with low LD
passing filters: SNP directly genotyped in all data sets; minor allele
frequency (MAF) 40.05; Hardy–Weinberg equilibrium P41× 10− 4; not
strand ambiguous (i.e. no AT or GC SNPs); not in high LD region (MHC chr6:
25–35 Mb, chr8 inversion chr8:7–13 Mb); and r2 between SNPs o0.2 (i.e.,
the PLINK option: ‘--indep-pairwise 200 100 0.2’, applied twice). Within
each data set, scatterplots of PCs were visually examined and outliers
removed. This process was repeated until cases and controls appeared
evenly interspersed across all PC pairs.
Imputation to the 1000 Genomes20 phase 1 reference was performed

within the PGC pipeline16 using SHAPEIT for phasing21 and IMPUTE2 for
imputation.22 Imputation was performed with a chunk size of 3 Mb with
default parameters on the full set of 2186 phased haplotypes (August
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2012, 30 069 288 variants, release ‘v3.macGT1’). Samples were then
combined (within ancestry groups) for relatedness testing and calculation
of PC covariates. The same filters as above were employed and we
removed one individual from each pair of related or duplicate individuals
(pi-hat value 40.2), preferentially retaining cases.

Single variant analyses, gene and pathway analyses
Single variant analysis (GWAS within each of the 19 data subsets) was
performed using an additive model in PLINK, with the first 10 PCs as
covariates, on dosage data. Fixed-effects meta-analysis was accomplished
using METAL23,24 with inverse variance weighting. Plotting was performed
in R.25 Analyses were completed with both study-specific PCs and with PCs
computed within each ancestry group (‘generic’ PCs for AA, EA, LA and
separately the two South African data sets), with similar results. Final
results in Manhattan, QQ plot, top hits tables and Supplementary
Information online use study-specific PCs.
Gene and pathway analyses were completed using MAGMA (Multi-

marker Analysis of GenoMic Annotation)26 and default parameters as in the
manual (version 1.06). Gene and pathway analyses were conducted on the
16 data sets with individual-level genotype data (versus SNP-level P-values)
so that we could control for ancestry using PCs. This was particularly
important for the AA, LA and South African samples given poorer external
sequence data resources that are needed for the option that uses summary
statistics. Thus, we performed gene-based analyses on each of the 16 data
sets with genotype data and PCs, followed by pathway analyses on the
gene-level results (as per MAGMA procedures). For completeness we also
then used the summary statistic method on the three remaining data sets
for which raw data were not available, and meta-analyzed (at the gene
level, per MAGMA procedures) with the other 16 data sets. Like de Leeuw
et al.,26 we used the MSigDB Canonical Pathways because this list contains
a wide variety of gene sets, drawn from different gene-set databases, thus
providing results that are not overly dependent on the choice of a narrow
set of gene sets.

SNP-chip heritability estimation with GCTA
GCTA27–29 was used to estimate SNP-chip heritability (h2SNP) in the EA and
AA subsamples (separately) as follows: following QC, data sets were
combined using PLINK18,30 (that is, the 7 EA bed/bim/fam file sets were

combined into one EA7 bed/bim/fam file set). Genetic relationship
matrices (GRMs) were made (one chromosome at a time for computational
efficiency) using ‘--chr n’ for chromosomes 1–22, ‘--maf 0.01’ to restrict to
SNPs with MAF 41%, ‘--make-grm-bin’ to make the GRMs and then
combined with ‘--mgrm’ command. Heritability estimation with ‘--reml-no-
constrain’ command, specifying a GRM with ‘--grm-bin’, a phenotype file
with ‘--pheno’, prevalence with ‘--prevalence’ quantitative covariates (here,
PCs 1–10) with ‘--qcovar' and binary covariates (here, sex and study
indicator covariates) with ‘--covar’. Prevalence was specified as 11%
(females), 5% (males) and 8% (combined).

Polygenic risk scoring
PRS was conducted using PLINK18,30 for the three major adult psychiatric
disorders (schizophrenia (SCZ),16 bipolar disorder (BIP)31 and major
depressive disorder (MDD)32) for which GWAS results from large studies
are publicly available. SNP-level summary statistics from each of the three
‘discovery’ disorders were used to create the ‘score’ files. Each individual in
this study was scored for genetic risk by weighting risk alleles according to
the natural log of the odds ratio (OR) from each of the discovery disorder
meta-analyses. The following commands were used: to specify the bed/
bim/fam fileset from this study to be scored (--bfile), specify the file with
logORs (--score), stop the default behavior of mean imputation (no-mean-
imputation), specify the file with P-values from the discovery disorder (--q-
score-file) and provide specified ranges of P-values to be scored (--q-score-
range). See Supplementary Table S2 for 38 P-value bins (12 bins per
disorder plus one additional bin for genome-wide significant loci for both
SCZ and BIP). After scoring, the significance and magnitude of polygenic
PTSD prediction was calculated for each of the 38 P-value bins. Two logistic
regressions were run. The first regressed PTSD on polygenic risk score, 10
PCs and study indicator covariates. The second regression was the same as
the first, but with the polygenic risk score term removed. Nagelkerke’s r2

was calculated for both models, and the difference was the r2 for the
polygenic risk score term.

SNP-chip heritability and genetic correlation estimation with LDSC
LDSC33,34 was used on the SNP-level summary statistics from the 7 EA data
sets for which raw genotype data were available. With raw data we could
rule out population stratification and the presence of related individuals, and

Figure 1. Study design for phase 1 PGC-PTSD: (a) single variant GWAS and meta-analyses (b) polygenic analyses. (a) Each of the 19 gray boxes
represents one ancestry-assigned data set/GWAS. Within-ancestry meta-analyses were followed by the transethnic meta-analysis. (b) Blue
boxes denote polygenic analyses. LDSC could not be applied to the African-American (AA) subsample. Latino/Hispanic (LA) and South African
samples were deemed too small for polygenic analyses. GWAS, genome-wide association study; LDSC, linkage disequilibrium score regression;
PGC-PTSD, Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group.
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consequently the constrained version of LDSC could be used, affording
greater power for heritability estimation. By constraining the LDSC
regression intercept to be 1 (that is, the expected χ2 for a single SNP with
LD score equal to zero and with no influence from population stratification),
there is one less parameter to estimate in the LDSC regression and standard
error of the heritability estimate is reduced. For genetic correlation, we
report both constrained and unconstrained results. As with GCTA, we use
population prevalence estimates of 11% (female), 5% (male) and 8%
(combined). Separate male and female heritability estimates were calculated
using sex-specific subsamples of the data. General instructions for LDSC are
provided here: https://github.com/bulik/ldsc

RESULTS
Single variant (GWAS and meta-analyses), gene and pathway
analyses
No variants achieved genome-wide significance in either the
transethnic or EA meta-analyses. For Manhattan plots, QQ plots
and top hits tables for each of the three meta-analyses, see

Supplementary Figures S1 and S2 and Supplementary Tables
S3–S5. Though not currently informative about individual risk loci,
summary statistics are useful for polygenic predictions and cross-
disorder analyses, and are available for download: www.med.unc.
edu/pgc.
In the AA meta-analysis, one variant on chromosome 13

exceeded genome-wide significance (rs139558732, OR=2.19,
P=3.33×10− 8). This SNP and nearby variants were not present
for analysis in the EA and LA studies because of low frequency (MAF
⩽1%) in those populations. The variant was present in the two
South African data sets, and was no longer genome-wide significant
in the transethnic meta-analysis (OR=2.05, P=1.31×10− 07, only
AA and South African data sets contributing data). To further
investigate the possibility that this chromosome 13 locus in the
KLHL1 gene (see Supplementary Figure S3 for regional plot in AA
meta-analysis) was associated with PTSD in AA individuals, we
requested data from the Army STARRS consortium, and meta-
analyzed results from their data and ours.35 Doing so also resulted

Figure 2. Ancestral composition for phase 1 of PGC-PTSD and principal components (PC) plot of individuals’ data. (a) PGC-PTSD (left)
compared with the largest psychiatric meta-analyses (center) and estimated world ancestry (right). (b) Plot of first two principal components
and assigned ancestry according to the protocol described in the text. Each dot is one individual. GWAS, genome-wide association study;
PGC-PTSD, Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group.
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in loss of genome-wide significance for rs139558732 (OR=1.90,
P=1.0× 10− 06). Thus, despite nominally achieving genome-wide
significance in the AA meta-analyses, we do not report rs139558732
as a PTSD risk variant.
We also conducted meta-analyses of our data with the two

SNPs reported as genome-wide significant by the Army STARRS
consortium.35 STARRS reported one locus for AA (rs159572) and
one for EA (rs11085374).35 Results after meta-analysis for the
reported SNPs were not genome-wide significant (rs159572,
P= 0.2744; rs11085374, P= 1.74 × 10− 05), perhaps unsurprisingly
given lack of consistent association within the Army STARRS
report itself.35

Gene-based and pathway analyses using MAGMA26 yielded no
significant results after correction for multiple testing, consistent
with observation from other GWAS analyses in which gene and
pathway methods did not yield significant findings until the
primary GWAS was well powered enough to identify specific risk
loci. Nevertheless, we present the top gene and pathway results in
Supplementary Tables S7 and S8. Top results for genes did not
include PTSD candidate genes, though GRINA, a glutamate
receptor, was among the top 20 results. The top pathway was
the neurotrophic factor-mediated Trk receptor signaling
pathway,36 which includes BDNF (brain-derived neurotrophic
factor), NGF (nerve growth factor) and other neurotrophin-related
genes, that collectively regulate synaptic strength and plasticity in
the nervous system of mammals.37 Given the primacy of learning
in the PTSD phenotype, this is an intriguing pathway result that
awaits follow-up in a better-powered analysis.

Heritability estimation from molecular genetic (SNP) data
LDSC and GCTA were used to estimate SNP-chip heritability (h2SNP).
Using both methods, female heritability estimates (29% average of
LDSC= 0.36 s.e. = 0.12, P= 0.003 and GCTA= 0.21, s.e. = 0.09,
P= 0.019) were comparable to those for other psychiatric
disorders (see Figure 3). In contrast, in males, the point estimate
was not significantly different from zero and was lower than
previously reported estimates for major psychiatric disorders38

(7% average of LDSC= 0.05, s.e. = 0.13, P= 0.69 and GCTA= 0.08,
s.e. = 0.10, P= 0.43). Analyzing males and females together—as
has been done in published reports—the point estimate was 15%
(average of LDSC= 0.18, s.e. = 0.06, P= 0.003 and GCTA= 0.12,
s.e. = 0.05, P= 0.016). Partitioned heritability estimation39 will be

conducted on future releases of PGC-PTSD data when the z-score
for overall heritability is higher. The current z-score is 3.0, and a
z-score of 7 was deemed adequate for partitioned heritability
analysis in the primary publication.39

In our sample, the point estimate for heritability among AAs was
much lower and not statistically different from zero (GCTA=
− 0.005, s.e. = 0.04, P= 0.45). Unlike our EA samples, we could not
compare this estimate with one from LDSC because LDSC is
currently not suitable for use in populations with recent admixture
(for example, AA and LA).

Cross-disorder genetic effects between PTSD and SCZ, BIP and
MDD
Because of the relatively low power for heritability estimation for
PTSD with our current samples, we decided to limit the number of
genetic correlations tested to focus on three major adult
psychiatric disorders (SCZ,16 BIP31 and MDD32) for which GWAS
results from large studies are publicly available. As shown in the
top (EA) portion of Table 1, PRS suggested overlap with both SCZ
and BIP even after overly stringent (because of correlated tests)
Bonferroni correction. Moreover, 58% (22/38) of PRS tests among
EA individuals were nominally significant. For variance explained
by discovery disorder P-value bins and associated statistics, see
Supplementary Table S6. In contrast, PRS revealed no evidence of
overlap with MDD, but this could be because of low power in both
the MDD40 and the present PTSD analysis.41 This possibility is
consistent with evidence of PTSD-MDD genetic overlap found
with the more powerful (constrained) version of LDSC. Con-
strained LDSC results further supported the PRS finding of shared
PTSD-SCZ genetic effects.

DISCUSSION
We believe the present report provides the first molecular genetic
evidence of PTSD heritability and extends previous findings about
shared genetic effects between PTSD and other disorders.8,10–12

These results portend future success in identifying specific PTSD
risk loci when viewed in the context of the trajectories of genetic
discoveries for other complex genetic disorders16,42 that yielded
significant polygenic results before identification of robust single
variant associations. Specifically, examining 20 730 individuals, we
found a molecular genetics-based heritability estimate for EA

Figure 3. PTSD SNP-chip heritability (h2SNP) overall and for males and females separately and comparison with other psychiatric disorders. Gray
bars denote PTSD heritability estimates. Slashed bars reflect SCZ, BIP and MDD heritability estimates calculated using LDSC as applied to
published data.16,31,32 Red lines denote twin study heritability estimates, see Discussion. European-American (EA) samples only per description
in text; error bars reflect s.e. BIP, bipolar disorder; LDSC, linkage disequilibrium score regression; MDD, major depressive disorder; PTSD,
posttraumatic stress disorder; SCZ, schizophrenia; SNP, single-nucleotide polymorphism.
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females of 29% that is similar to h2SNP for schizophrenia and is
substantially higher than h2SNP in EA males (estimate not
distinguishable from zero). We found strong evidence of over-
lapping genetic risk between PTSD and schizophrenia along with
more modest evidence of overlap with bipolar and major
depressive disorder. The combination of informative polygenic
results and lack of robust single variant analyses (in our data and
in the evaluation of previously reported PTSD loci35,43–46) strongly
suggests the need for better powered analyses.
Regarding polygenic results, a distinction must be drawn

between the EA and AA components of this study. For reasons
discussed below, the present report was far more informative for
PTSD genetics in EA individuals than AA individuals, despite
comparable sample sizes (both ∼ 10 000 with 25% cases). Among
EA individuals, these molecular genetic results parallel twin study
results6–9 that showed moderate heritability for PTSD overall and
higher heritability in females than males.
There are several possible reasons why female heritability may

be higher than male heritability, including differences in trauma
exposure47,48 that itself is heritable,49,50 sex-based biology and
sex-based symptom differences. Given that heritability estimates
convey the relative importance of genetic and environmental
influences, sex-based differences in either would affect heritability.
We can assume comparable genetic variation in female and male
subjects because we only used genetic variants that conformed to
Hardy–Weinberg equilibrium expectations (thus implying no
selective removal of particular alleles). This leaves sex-based
differences in relevant environmental influences as one explana-
tion and, indeed, rates of exposure to various types of trauma are
known to vary by sex.51 As well, particular trauma types vary in the
degree to which they are associated with PTSD.52 Greater
variability in the profile of PTSD-inducing environmental influ-
ences in males, as compared with females, would lead to greater
relative importance of environmental factors in the development
of PTSD in males, and this could explain observed lower
heritability estimates in males. This possibility could be tested
via detailed study of trauma and environmental histories of males
and females, combined with mathematical quantification of PTSD
risk based on the frequency and magnitude of PTSD-inducing
effects of relevant variables.
Second, female and male sex may be viewed as environmental

variables, in that genetic variation is expressed in the context of a

particular individual, and there are differences in female and male
biology (for example, sex hormone levels). To the extent that
the female biological ‘environment’ is more conducive to the
expression of genetic variation, and the male biological ‘environ-
ment’ tends to dampen genetically influenced variability in PTSD
liability, sex itself may account for different heritability estimates in
females vs males. Biological differences have been reported
between sexes regarding responses to trauma51 and responses to
environmental variables thought to mediate the later develop-
ment of PTSD.53 Thus, there may be sex-based biological
differences in trauma liability. In order for such effects to explain
the observed greater heritability in females compared with males,
the specified biological processes would need to lead to greater
expression of genetically influenced liability to PTSD in females
compared with males.
The most pedestrian explanation for sex-based heritability

differences for PTSD is that reliability and/or validity of PTSD
diagnosis differs by sex. Lower male heritability could be a result of
lower reliability and validity of PTSD diagnosis in males, because
heritability estimates are always capped by reliability and validity of
measurement. Regarding this possibility, it would be worthwhile to
examine reasons why particular populations might systematically
over- or under-report PTSD (thereby decreasing reliability and
validity). Perhaps cultural factors that are more permissive for
accurate reporting of PTSD symptoms in females contribute to
more precise measurement of PTSD in females, and this would
permit higher heritability estimates. The same issue of reliability and
validity applies if diagnostic nosology is more appropriate for
females than males. If the current PTSD diagnosis ‘carves nature at
it’s joints’ better for females than males, there will be a lower bound
on male heritability estimates compared with females.
In sum, greater measurement precision of phenotypic and

environmental variables relevant to PTSD, as well as PTSD diagnosis,
will aid accurate estimation of heritability. It will also increase power
in primary GWAS analyses. PGC-PTSD is pursuing these strategies for
continued GWAS efforts, in addition to increasing sample size.
A common misconception about SNP-chip heritability estimates

calculated with GCTA and LDSC is that they should be similar to
twin study estimates, when in reality twin studies have the
advantage of capturing all genetic effects—common, rare and
those not genotyped by available methods. Thus, the assumption
should be that h2SNPoh2TWIN when using GCTA and LDSC, and this
is what we observe for PTSD, as has been observed for many other
phenotypes.54 Though somewhat limited by power in the present
study, strong evidence of shared genetic effects between PTSD
and SCZ, and more modest evidence of shared effects with both
MDD and BIP, is consistent with recent reports of partially shared
genetic effects across nearly all psychiatric disorders34,38 and with
twin study evidence of shared genetic influences on MDD and
PTSD.10–12 No evidence of overlap was found with attention deficit
hyperactivity disorder and autism. However, this could be because
of low power and should be reexamined when PGC-PTSD is
substantially expanded.
In contrast, there were no significant findings for heritability or

shared genetic effects in AA individuals. This should not be taken
as evidence that genetic effects in AA individuals differ from those
in EA individuals. Rather, this report highlights an interpretational
disparity between EA and AA individuals. There are no twin
studies conducted in primarily non-EA populations, and hence
there is no prior information indicating whether heritability might
differ across ancestry groups. Second, polygenic methods like PRS
and LDSC rely on external data resources that are far less common
generally, and nonexistent for many, non-EA populations. Third,
newer methods, such as LDSC, have not been adapted for recently
admixed genomes, and thus they cannot be applied to AA and
many LA individuals. Other factors responsible for lower power in
the AA PTSD analysis are Eurocentric bias on genotyping arrays
and the inherently greater genetic variation in the African portions

Table 1. Cross-disorder effects between PTSD and the three adult
psychiatric disorders

PRS LDSC unconstrained
RG (s.e.), P

LDSC constrained
RG (s.e.), P

EA
SCZ Yes min

P= 3.9 × 10− 4
No 0.10 (0.06)

P= 0.13
Yes 0.33 (0.08)
P= 1.3 × 10− 5

BIP Yes min
P= 7.0 × 10− 5

No − 0.02 (0.13)
P= 0.85

No 0.16 (0.10)
P= 0.11

MDD No min P= 0.15 No 0.21 (0.17)
P= 0.22

Yes 0.34 (0.12)
P= 0.006

AA
SCZ No min P= 0.14 NA NA
BIP No min P= 0.05 NA NA
MDD No min P= 0.35 NA NA

Abbreviations: AA, African-American; BIP, bipolar disorder; EA, European
American; LDSC, linkage disequilibrium score regression; MDD, major
depressive disorder; min, minimum; NA, not applicable; PRS, polygenic risk
scoring; PTSD, posttraumatic stress disorder; RG, genetic correlation from
LDSC; SCZ, schizophrenia. Bonferroni multiple testing correction for PRS is
0.05/38= 1.3 × 10− 3. LDSC cannot be applied to data from individuals with
more recent admixture (for example, AA), and hence ‘NA’.
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of AA individuals’ chromosomes, necessitating more markers to
achieve the same proportion of genomic coverage. Given these
factors, publication of this relatively large sample of AA individuals
is particularly important.
Our findings suggest that a sample of ∼10 000 individuals (with

25% cases) is not sufficient—in EAs or in AAs—to identify robust risk
loci. A larger sample size and greater genotyping coverage
(particularly in AA individuals) will afford greater power in future
single variant association analyses. As well, it is possible that highly
standardized phenotyping and/or ascertainment of more specific
populations may increase power by decreasing phenotypic hetero-
geneity, as is arguably the explanation for success of the CONVERGE
consortium.55 Future work needs to more carefully consider trauma
exposure, a necessary though not sufficient condition for the
development of PTSD. Although the majority of controls (87.7%) in
the current analysis were trauma exposed, the inclusion of
nontrauma-exposed controls may have reduced power to detect
PTSD loci. Moreover, sex differences in both type and quantity of
trauma exposure are well documented56 and will be important to
consider in future research examining sex differences in heritability.
In the interim, the successful polygenic analyses discussed above
(that is, significant heritability estimates and genetic correlations)
mean that the summary statistics made available with this report will
be informative for PTSD studies when used with appropriate
polygenic methods (for example, PRS and LDSC).
In summary, we find that PTSD—a disorder that by definition

requires an environmental exposure, trauma—is also partly
genetic in origin. This result comes as a foregone conclusion for
researchers steeped in the behavioral genetics literature, but for
those unfamiliar with twin studies or skeptical of their results,
heritability based on molecular genetic data is compelling.
Reassuringly, these molecular genetic heritability results are
consistent with twin studies. All available evidence suggests that
PTSD heritability among females is higher than males. Overall,
PTSD heritability is comparable to that of MDD, but female
heritability is close to that of SCZ and BIP, two of the most
genetically influenced psychiatric disorders. Male PTSD SNP-chip
heritability, in contrast, was lower than any recorded for a major
psychiatric disorder and not distinguishable from zero with
current sample sizes. Although large in comparison with previous
reports, the current sample size of over 20 000 was still a limiting
factor in single variant analyses. The strong evidence of shared
genetic effects between PTSD and SCZ is worth further investiga-
tion and consistent with data from birth cohort studies that have
found early childhood factors such as low IQ57,58 and psychotic
symptoms59 to be risk factors for both syndromes, but not for
MDD or BIP. More variable evidence suggests that larger samples
are needed to precisely resolve genetic overlap for BIP and MDD.
Finally, the distribution of individuals of different ancestries in this
analysis illuminated analytical and interpretational disparities for
individuals of all ancestries as compared with EA individuals, and
highlights the need for large genetic studies in non-European
populations. Data from the largest genetic examination of PTSD to
date demonstrate significant heritability for the development of
PTSD, suggest at least partial genetic mediation of comorbidities,
and outline important areas for future progress in understanding
the genomic architecture of PTSD.
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