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Largest Matching Areas for Illumination and

Occlusion Robust Face Recognition
Niall McLaughlin, Ji Ming, Danny Crookes

Abstract—In this paper we introduce a novel approach to
face recognition which simultaneously tackles three combined
challenges: uneven illumination, partial occlusion, and limited
training data. The new approach performs lighting normaliza-
tion, occlusion de-emphasis and finally face recognition, based on
finding the largest matching area (LMA) at each point on the face,
as opposed to traditional fixed-size local area based approaches.
Robustness is achieved with novel approaches for feature ex-
traction, LMA-based face image comparison and unseen data
modeling. On the extended YaleB and AR face databases for
face identification, our method using only a single training image
per-person, outperforms other methods using a single training
image, and matches or exceeds methods which require multiple
training images. On the LFW face verification database, our
method outperforms comparable unsupervised methods. We also
show that the new method performs competitively even when the
training images are corrupted.

I. INTRODUCTION

A. Literature Review

In many real world applications of face recognition, it is

impractical or impossible to obtain more than one training

image per-person. However, the problem of face recognition

given variable lighting, partial occlusion and a single training

image per person is challenging. Both illumination and partial

occlusion may result in large changes in the feature represen-

tation of the appearance of a person, where the changes caused

by these factors can sometimes be greater than the variation

between images of the same person [1], [2]. Given limited

training data, it can be difficult to separate illumination and

occlusion effects from inter-personal variation. In this paper,

we aim to tackle these three problems together. Given a single

training image per person, we develop a new algorithm for

correcting the effects of illumination while disregarding the

effect of partial occlusion.

For recognition with illumination variation, two main cat-

egories of approaches have been tried: those that attempt to

model the appearance variation caused by illumination, and

those that attempt to build an invariant representation of the

face. Many of the original approaches to illumination invariant

recognition involved statistical analysis of the variation of

face images under differing illumination. It has been shown

that a face, viewed from a single direction but under varying

illumination, can be represented using a small number of

eigenfaces [3], [4]. A set of illumination basis vectors can

be constructed for each person using several training images

The authors are with the School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast, Belfast BT7 1NN, U.K. (e-
mail: nmclaughlin02@qub.ac.uk, j.ming@qub.ac.uk, d.crookes@qub.ac.uk).

taken from the same direction but under differing illumination

conditions [5], [6], [7], [8]. Another statistics-based method is

the spherical harmonics representation, which represents the

surface appearance of an object, ignoring cast shadows, in a

9D linear subspace [9], [10], [11]. These statistical methods

require several face images per person captured under differing

illumination conditions to build the illumination models.

Other methods seek an illumination-invariant representation

which allows a single training image to be used for each

person. The Retinex illumination model [12] explains the

observed brightness at each point on the face in terms of the

intrinsic reflectivity at that point, together with the magnitude

and angle of the incident illumination. Given this model, it is

commonly assumed that the low spatial frequency components

of the face image represent the illumination information, while

the high spatial frequency components represent the intrinsic

face reflectivity, that should be recovered for recognition.

Thus, self quotient imaging (SQI) [13], [14], [15], [16] was

used to approximate the illumination using a smoothed version

of the face image, which is subtracted from the logarithm

of the original face image to give an invariant represen-

tation. Similar filtering can be carried out directly in the

frequency domain to remove the low-frequency illumination

components, using the Fourier [17] or DCT [18] transforms.

Taking the opposite approach, the gradient domain reveals the

high frequency variation of pixels relative to their neighbors,

which is invariant to low frequency illumination variation [19],

[20]. Several gradient-domain methods have been developed,

such as edge maps [21], Gradientfaces [22], robust gradient

features [23], and subspace learning using gradient orienta-

tions [24] which can jointly handle illumination variation and

partial occlusion. It is also possible to decompose the face

image into Gabor features and learn which orientations and

scales are most discriminant [25]. Similarly, local binary pat-

terns (LBP) describe the appearance of a local region relative

to its center point, and are therefore invariant to monotonic

illumination change within the local area [26], [27]. Some

recent methods make use of the commonalities between all

human faces. For instance to generate synthetic face images to

improve recognition in challenging conditions [28]. Symmetric

shape from shading models (SSFS) use a generic 3D head

model to recover the shape and albedo of any face using a

single image [29], [30], while 3D morphable head model based

methods re-project a face image to a canonical representation

before recognition [31], [32], [33].

Face recognition given partial occlusion is another challeng-

ing problem that has received much attention. By definition,

partial occlusion affects only certain parts of the face, while
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leaving others unaffected. As a result, use of local face

descriptors, which should be unaffected by occlusion outside

their locality, has been a popular method for tackling this

problem. In [34] the face image is divided into a number of

local areas, and the statistical variability of the training data

within each local area is modeled using a Gaussian function.

The similarity between two images is then defined as the

sum of Mahalanobis distances between all the testing and

training image local descriptors. A similar approach is taken

by [35] and [36], where the training examples are used to

learn statistics for the appearances of each local face area.

During recognition, weights are assigned to every local area

of the testing image, proportional to each area’s likelihood

given the unoccluded training examples. Using examples of

occluded and unoccluded face areas, it is possible to train

a classifier to identify which local areas of a testing image

face are occluded. Examples of several different methods for

modeling the appearance of local face areas, and of performing

classification, exist in the literature. For example, local non-

negative matrix factorization is adopted by [37] to model

the local areas of a face, and a nearest-neighbor classifier

is then used to classify each local area as belonging to

the target class or to the occlusion class. Similarly, in [38]

and [39], examples of occluded images patches are used to

train an SVM classifier to detect occluded areas of a testing

face image. In [40], the KL-divergence between local-binary-

pattern histogram features is used to identify occluded areas;

a KL-divergence threshold is learned from training data to

decide whether a pair of image patches are similar enough

to be included during recognition. The approach in [41]

attempts to select the unoccluded face areas for recognition,

using a maximum posterior probability method. While the use

of local face descriptors has been popular in the literature,

occlusion-robust recognition can also be performed without

explicitly dividing the face into local regions, for example, face

recognition by sparse representation [42], [43], or by random

sampling [44]. Although such methods can recognize a face

under occlusion, the authors of [42] found that superior results

could be obtained by modeling each local area of the face

individually. In effect, use of local descriptors takes advantage

of our prior knowledge that many real-world occlusions cover

contiguous areas of the face (in contrast to salt-and-pepper

type noise which could be viewed as a type of non-contiguous

occlusion).

B. Contributions of this Work

In this paper, we present a novel method for face recognition

that is robust to simultaneous realistic partial occlusion and il-

lumination variation. This method can be used with only a sin-

gle training image per person. Based on the Retinex illumina-

tion model [12], we introduce a new method of comparing the

similarity of face images, that is based on finding the largest

matching area (LMA) at each face location. In contrast to

existing methods for illumination normalization and occlusion

modeling based on fixed-size local image areas, as described

above, image comparison based on the largest matching areas

both improves the discrimination between different persons,

and at the same time, optimizes the accuracy of illumination

normalization. In the new LMA method, we model the unseen

illumination variation and occlusion with a novel unseen-data

likelihood. This is included in a maximum a posteriori (MAP)

framework to capture the largest matching local image areas

for illumination normalization, and to deemphasize occluded

local image areas during recognition. Experiments have been

conducted showing the improved performance of the new

method compared with existing methods from the literature.

The remainder of the paper is organized as follows. In

Section II, we describe a piecewise constant illumination

model which forms the basis for this paper’s key idea: the

largest matching area (LMA) approach. In Section III, the

features used to represent each local face image area, and

a method for comparing features given limited training data,

are introduced. In Section IV, we first describe the LMA

approach for identifying the largest matching image areas for

face recognition with robustness to illumination changes, and

we then explain how this approach can be further extended to

provide robustness to partial occlusion. In Section V, experi-

ments are performed to evaluate the new LMA approach and to

compare with results from the literature. Finally, conclusions

are presented in Section VI.

II. LARGEST MATCHING AREA USING

PIECEWISE-CONSTANT ILLUMINATION MODEL

Given a face image, let I(x, y) refer to the brightness of

the pixel at location (x, y), which depends on both the face’s

intrinsic reflectivity R(x, y) and the illumination L(x, y). It

has been observed [12] that in natural images the illumination

varies slowly, i.e., L(x, y) is present at low spatial frequencies,

while the intrinsic reflectance information R(x, y) is present

at higher spatial frequencies. This observation can be used to

construct a model to separate the intrinsic reflectance R(x, y)
from the illumination L(x, y) based on their differences in

spatial variation. Specifically, we assume that surrounding each

location (x, y) there is a small area δ(x, y) in which L(i, j),
for (i, j) ∈ δ(x, y), is approximately constant and can be

described by two constant components: the first component is

additive, modeling the mean pixel brightness within the area

δ(x, y), and the second component is multiplicative, modeling

the variance of the pixel brightnesses over the area δ(x, y).
Therefore, inside δ(x, y) the observed pixel brightness value

I(i, j) at location (i, j) can be expressed as

I(i, j) ≈ βδ(x,y)R(i, j) + αδ(x,y) ∀(i, j) ∈ δ(x, y) (1)

where αδ(x,y) and βδ(x,y) represent the respective constant

additive illumination bias and constant multiplicative illumina-

tion factor associated with the area δ(x, y) surrounding pixel

location (x, y). Equation (1) represents a piecewise constant

illumination model: at each location (x, y), the illumination

will remain even over a contiguous area δ(x, y) of pixels

surrounding (x, y), while the intrinsic reflectance may change

on a pixel-to-pixel basis. The values of αδ(x,y) and βδ(x,y)

can vary across different areas δ(x, y) of the face, to model

globally uneven illumination over the whole image.

In this paper, we study face image recognition assuming

that the illumination condition in each testing image can be
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modeled by (1). For simplicity, we further assume that the

local evenly-lit areas δ(x, y) have a square geometry. But we

do not assume specific knowledge about the size of δ(x, y)
and the values of αδ(x,y) and βδ(x,y). We propose a novel

approach to estimating the size of δ(x, y) for each location on

the face, for normalizing the respective αδ(x,y) and βδ(x,y) to

achieve illumination-invariant face recognition. To maximize

the system’s performance, we assume that, while we have

uncontrolled illumination for the testing images, we have well-

lit training images that can be described by an image-specific

global constant illumination model. The illumination model

for the training images has an analogous expression to (1) but

where δ(x, y) now represents a whole image and αδ(x,y) and

βδ(x,y) are the image-dependent constants. Later in the paper

we show that this assumption can be relaxed.

We use a simplified example to illustrate our idea. Assume

δ(x, y) is a square area on the testing image, for which

the model (1) holds, and hence the constant illumination

factors, αδ(x,y) and βδ(x,y), can be normalized using mean

and variance normalization, for example. Also assume the

illumination in the corresponding area of the training image

is similarly normalized, allowing both areas to be directly

compared. Selecting a fixed size for the area δ(x, y) runs the

risk that the normalization process will corrupt the intrinsic

reflectance information, as some areas are too large to contain

even illumination, while other areas are too small to allow

normalization to be performed effectively. Ideally, we wish to

find the largest area δ(x, y) in which the testing image can

be modeled using the constant lighting condition (1), as this

is likely to achieve the most accurate recovery of the intrinsic

reflectance information.

Seeking an optimal solution to this problem, we propose

the Largest Matching Area (LMA) approach: at each location

(x, y), we find the largest testing image area that can be

matched at the corresponding location by the training image,

with an objective function that favors constant illumination.

Since larger image areas with even illumination can be normal-

ized more accurately, and since larger, correctly-normalized

image areas can be more discriminative (than a smaller area at

the same location) for correct matching, estimating the largest

δ(x, y) based on identifying the largest matching image areas

with even illumination optimizes recognition accuracy. The

above example can be extended to other lighting normalization

techniques which remove the constant illumination factors

αδ(x,y) and βδ(x,y) in order to recover the intrinsic reflectance

information, as will be demonstrated in this paper.

Interestingly, we find that the LMA approach can also

be used to help address the problem of partial occlusion.

When performing face recognition given partial occlusion,

the matching scores from occluded areas should be excluded,

as these areas do not contribute to discrimination between

the faces of different individuals. We show that the problem

of deemphasizing the matching scores from occluded areas

can be embedded within the problem of finding the largest

matching areas between the training and testing images, where

areas mismatching due to occlusion are deemphasized from

the calculation. Hence, to some extent, the LMA framework

is capable of simultaneously tackling the problems of il-

lumination variation and partial occlusion. We will address

all the problems mentioned above, the LMA approach for

illumination normalization, its extension to deemphasizing

partial occlusion and their combination in Section IV. Before

this, in the following section we first describe the features used

in our research to represent the face images.

III. FEATURE REPRESENTATION AND LIKELIHOOD

In this section we explain the feature representation used

to describe each image area. Note that in this paper we

assume all training and testing images have already been

aligned. In terms of notation, we use I to represent a testing

image and use Iδ(x,y) to represent a square area δ(x, y) in

the image containing the pixels surrounding location (x, y),
which can be modeled by the piecewise constant lighting

condition (1) with unknown illumination factors αδ(x,y) and

βδ(x,y). We use Im to represent a training image from person

m, which assumes a global constant illumination model with

image-dependent illumination factors αm and βm, and we

use Imδ(x,y) to represent the area in the image corresponding

to Iδ(x,y). During the feature extraction stage, we normalize

the illumination difference between Iδ(x,y) and Imδ(x,y) by

removing their respective constant illumination factors. Since

we do not assume specific knowledge about the size of

each δ(x, y), we perform lighting normalization and feature

calculation over a range of different sizes for δ(x, y), assuming

that the largest δ(x, y) for which (1) holds is contained within

this range. Finally, we select the optimal estimate for the

largest δ(x, y) to form the matching score for recognition. The

algorithm for deciding the optimal estimate will be detailed in

the next section (see Section IV). In this section we describe

the methods used for calculating normalized features and for

feature comparison, assuming (1) applies to each local area

δ(x, y) being considered.

A. Band-Pass Filtering for Preprocessing

As a preprocessing step, we use a band-pass filter to

reduce low-frequency illumination information corresponding

to αδ(x,y) in (1), while retaining the discriminative reflectance

information. The band-pass filter is also intended to remove

high-frequency noise, as well as to further normalize any

residual random, high-frequency illumination factors which

can not be accurately represented by the piecewise constant

illumination assumption. The filter we adopt is the Difference

of Gaussians (DoG) kernel [13], [14], which has previously

been shown to be effective for the task of illumination-

invariant face recognition [27], [45]. Specifically, we use a

centered spatial DoG kernel that can be expressed as follows

DoG(x, y) =
1

√

2πσ2
1

e−(x−y)2/2σ2
1 −

1
√

2πσ2
2

e−(x−y)2/2σ2
2

(2)

where the parameters σ2
1 and σ2

2 specify the variances of the

Gaussian functions and hence the bandwidth of the filter. In

our experiments, their values are fixed at σ2
1 = 1 and σ2

2 = 2.

We apply this filter to all the training and testing images before

any other operations are carried out.
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B. Fourier Magnitude Spectra as Features for Image Area

Representation

Small changes in an individual’s facial expression and/or

head pose mean that even given well aligned face images,

corresponding local areas of pixels may not correspond to the

same physical locations on the faces. To reduce the effect of

these small misalignment errors on recognition, we use the

2D Fourier magnitude spectrum as the feature to represent

each local image area. By taking the magnitude spectrum, we

omit the phase information, allowing us to take advantage of

the shift invariance of the Fourier magnitude representation to

improve the robustness to small misalignment errors and small

facial expression changes. Applying the 2D Fourier transform

to an area Iδ(x,y) in the band-pass filtered testing image, and

assuming the piecewise constant illumination model (1) holds

for the area, the resultant testing image magnitude spectrum

for the area may be expressed as

|Ĩδ(x,y)(u, v)| ≃ βδ(x,y)|R̃δ(x,y)(u, v)|+ δ(u, v)α̃δ(x,y) (3)

where |Ĩδ(x,y)(u, v)| and |R̃δ(x,y)(u, v)| represent the respec-

tive magnitude spectra of the band-pass filtered pixel values

and intrinsic reflectivity of the area, α̃δ(x,y) denotes the resid-

ual constant lighting background, if any, of the area after band-

pass filtering, and δ(u, v) is the Kronecker delta function. We

can obtain the analogous expression to (3) for a corresponding

training image area Imδ(x,y). Suppose we have

|Ĩm
δ(x,y)(u, v)| ≃ βm|R̃m

δ(x,y)(u, v)|+ δ(u, v)α̃m (4)

where |Ĩm
δ(x,y)(u, v)| and |R̃m

δ(x,y)(u, v)| represent the pixel

and reflectivity magnitude spectra of the area Imδ(x,y) after

band-pass filtering, and as in (3) the residual constant lighting

background of the area after band-pass filtering is denoted

by α̃m. To form the feature vector for Iδ(x,y) we take the

magnitude spectral coefficients |Ĩδ(x,y)(u, v)|, discard the ze-

roth coefficient |Ĩδ(x,y)(0, 0)|, and concatenate the remaining

coefficients into a vector. The feature vector for Imδ(x,y) is

obtained in the same way. As indicated in (3) and (4), if

constant lighting is assumed in Iδ(x,y) and Imδ(x,y), ignoring

the zeroth spectral coefficient is equivalent to normalizing the

constant additive illumination biases α̃δ(x,y) and α̃m from the

feature vectors. We use vectors sδ(x,y) and s
m
δ(x,y) to represent

the respective feature vectors obtained for the testing and

training image areas Iδ(x,y) and Imδ(x,y), for each area δ(x, y).

C. Cosine Similarity Based Likelihood for Comparison

We use cosine similarity to compare the feature vectors from

each pair of corresponding local areas from the training and

testing images. The cosine similarity of the pair of feature

vectors sδ(x,y) and s
m
δ(x,y) can be expressed as

CS(sδ(x,y), s
m
δ(x,y)) =

sδ(x,y) · s
m
δ(x,y)

||sδ(x,y)||||s
m
δ(x,y)||

(5)

where the dot operation corresponds to the inner product

between two vectors, and ||s|| represents the norm of vector

s. Cosine similarity is invariant to constant multipliers applied

to the vectors being compared. Assume that the additive

illumination biases of sδ(x,y) and s
m
δ(x,y) have been removed,

by band-pass filtering and discarding the residual zeroth

spectral coefficient as described above, then cosine similarity

will further cancel their multiplicative lighting difference, i.e.,

βδ(x,y) and βm in (3) and (4). Hence we can obtain an

illumination-invariant similarity score between the two areas,

assuming constant illumination.

It should be noted that the above procedures for

illumination-invariant feature calculation and comparison will

work most effectively if the sizes of the evenly-lit image

areas δ(x, y) being considered are large. Hence it can be

understood intuitively that searching for the largest areas

δ(x, y) in the testing image in which the model (1) holds

will lead to improved accuracy of lighting normalization, and

therefore improved accuracy for face image recognition. In the

algorithm to be described in the next section, we will use a

likelihood function to measure how well a given testing image

vector sδ(x,y) is matched by a training image vector s
m
δ(x,y),

in order to search for the largest matching image areas with

even illumination. Following the usual convention in statistics,

we write the likelihood function as p(sδ(x,y)|s
m
δ(x,y)). This

likelihood function is based on the cosine similarity (5) and

takes an exponential function form

p(sδ(x,y)|s
m
δ(x,y)) = MCS(sδ(x,y),s

m
δ(x,y)) (6)

where M > 1 is the base number of the likelihood function.

For magnitude-spectrum based feature vectors, the cosine

similarity define in (5) takes values in the range [0, 1]. The

likelihood function (6) exponentially expands the difference in

cosine similarity between different pairs of feature vectors. In

this paper we have tested a range of base numbers M including

e, to be detailed later. The likelihood function defined above

can be used when there is only a single training image for

each person.

IV. IMAGE MATCHING FOR FACE RECOGNITION

In this section, we first introduce the largest matching area

(LMA) approach for identifying the largest matching image

areas with even illumination. This leads to an algorithm for

face recognition with robustness to illumination variation. We

then further extend this approach to improve robustness to

unknown partial occlusion.

A. The LMA Approach

For face recognition, we consider comparing a testing image

I against each of the training images Im, by comparing

the feature vectors sδ(x,y) and s
m
δ(x,y) from locations (x, y),

where within the compared areas δ(x, y), the testing image

is assumed to have a constant lighting condition (1). At each

location (x, y), we aim to find the largest area δ(x, y) over

which this constant illumination assumption holds, thereby in-

creasing the accuracy and discrimination of the feature vectors

sδ(x,y) and s
m
δ(x,y) used to compare the images. We formulate

the problem of estimating the largest δ(x, y) as a maximum

a posteriori (MAP) problem, based on the likelihood function

defined in (6).
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Given a testing image area represented by feature vector

sδ(x,y), and assuming an equal prior probability P for all

possible matching image areas s
′, we define the posterior

probability of matching with the training image area s
m
δ(x,y)

as

P (smδ(x,y)|sδ(x,y)) =
p(sδ(x,y)|s

m
δ(x,y))P

∑

All s′ p(sδ(x,y)|s
′)P

≃
p(sδ(x,y)|s

m
δ(x,y))

∑

m′ p(sδ(x,y)|s
m′

δ(x,y)) + p(sδ(x,y)|φ)

(7)

where p(sδ(x,y)|s
m
δ(x,y)) is defined in (6), as the likelihood

that a given testing image area sδ(x,y) is matched by the

training image area s
m
δ(x,y). This likelihood is “accurate” if the

lighting condition in the corresponding testing image area can

be modeled by (1). The denominator, the average likelihood of

sδ(x,y), is approximated by a sum of two terms. The first term

is the average likelihood of sδ(x,y) over all the corresponding

training image areas, assuming that sδ(x,y) will be matched

by at least one of these training areas. Again, this average

likelihood is accurate only if the given testing image area can

be modeled by (1). The second term, p(sδ(x,y)|φ), tries to

model the likelihood of the given testing image area when

it violates the constant illumination assumption, which can

happen, for example, when the area δ(x, y) is too large.

This term is also intended to model any testing image areas

affected by occlusion, or by a combination of illumination and

occlusion, which will also be addressed in this paper. In any of

these unseen-data conditions, the likelihoods in the first term

and in the numerator, p(sδ(x,y)|s
m
δ(x,y)), will become invalid.

In our studies, we model the unseen-data likelihood

p(sδ(x,y)|φ) using a mixture model, with resemblance to a

conventional Gaussian mixture model (GMM). Specifically,

we use a large set of natural image samples gathered from the

training images, plus simulated random noisy image patches,

to model testing image areas with variable lighting conditions

and occlusion. Each sample image is represented using an

identical feature representation to that used to model the

face images: band-pass filtered Fourier magnitude spectra

with constant-lighting normalization, extracted at every image

location, and over a range of scales. We then group all the

feature vectors with the same scale into a feature vector set,

to simulate the unseen testing image areas of the same scale.

Denote by Bδ the feature vector set consisting of all the feature

vectors of the sample image areas with scale δ. Given a testing

image vector sδ(x,y), and assuming that it will match at least

one of the feature vectors in Bδ , but we do not necessarily

know which, it is suitable to model the likelihood of sδ(x,y)

by using a mixture model over Bδ . Specifically, we calculate

the likelihood p(sδ(x,y)|φ) over the k-nearest neighbor (k-NN)

set within Bδ

p(sδ(x,y)|φ) =
1

k

∑

s∈Bδ(k)

p(sδ(x,y)|s) (8)

where Bδ(k) ⊂ Bδ is the feature set containing the k closest

feature vectors for the given testing feature vector sδ(x,y)

measured in terms of the likelihood (6). Further details of the

implementation of (8) for selecting the sample image set and

the value of k will be discussed in Section V.

Testing image areas with uneven illumination (and hence

distorted feature vectors) are likely to have low likelihoods

p(sδ(x,y)|s
m
δ(x,y)) given the correct training image areas, but

not necessarily low likelihoods given the incorrect training

image areas (which is why we obtain recognition errors). The

presence of the unseen-data likelihood p(sδ(x,y)|φ) helps to

reduce the posterior probability (7) should such an erroneous

match happen. In the event of occlusion, where low likeli-

hoods p(sδ(x,y)|s
m
δ(x,y)) may result for all the training image

areas, the presence of the unseen-data likelihood prevents the

posterior probability from growing large, due to the tending-to-

zero of both the numerator and denominator likelihoods, which

would give a false indication of matching if not corrected.

Alternatively, for the testing image area sδ(x,y) with even

illumination and matching training image area s
m
δ(x,y), we

can assume that the corresponding likelihood p(sδ(x,y)|s
m
δ(x,y))

is most-likely greater than the corresponding unseen-data

likelihood p(sδ(x,y)|φ), because

p(sδ(x,y)|φ) ≃
1

k
p(sδ(x,y)|s

m
δ(x,y))

≤ p(sδ(x,y)|s
m
δ(x,y)) (9)

In (9) above, the first approximation is based on the assump-

tion that the matching, i.e., most-likely, training image area

s
m
δ(x,y), is included in Bδ(k), and will therefore dominate

the mixture-based likelihood (8). The above inequality (9)

indicates that for correctly matching training and testing image

areas, the effect of the unseen-data likelihood p(sδ(x,y)|φ)
tends to be small and hence, a large posterior probability

can be obtained from (7). Therefore, posterior probability (7)

can be used to identify the most-likely matching training and

testing images areas with even illumination. Given a training

image area and testing image area with even illumination, a

large posterior probability will be obtained; conversely, a small

posterior probability may indicate a mismatched training area

and/or uneven illumination in the given testing area, assuming

even illumination in the training image.

At each location (x, y), we aim to find the largest area

δ(x, y) over which the testing image can be modeled by (1).

This problem may be solved by estimating the largest match-

ing testing image area, over the training images, with an

objective function that favors constant illumination. Since

larger image areas are generally more discriminative and can

be normalized more accurately assuming even illumination,

estimation based on searching for the largest matching image

areas with even illumination optimizes the accuracy. We now

reveal another important property of the posterior probability

that allows the estimation to be carried out, i.e., it favors the

continuity of match, by giving larger posterior probabilities to

larger matching image areas with even illumination. Assume

that sδ(x,y) and s
m
δ(x,y) are a pair of matching testing and train-

ing image areas, in terms of constant lighting and having the

greatest likelihood, i.e., p(sδ(x,y)|s
m
δ(x,y)) ≥ p(sδ(x,y)|s

m′

δ(x,y))
for any m′ 6= m, and p(sδ(x,y)|s

m
δ(x,y)) ≥ p(sδ(x,y)|φ).

Furthermore, assume ǫ(x, y) is a smaller area with the same
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origin as δ(x, y) and is contained within δ(x, y). Then the

above property says that:

P (smǫ(x,y)|sǫ(x,y)) ≤ P (smδ(x,y)|sδ(x,y)) (10)

That is, the posterior probability increases as the size of the

matching image areas with even illumination increases. For

clarity of presentation, the proof of inequality (10) is included

in Appendix A.

Therefore based on (10), for each training image Im,

at each location (x, y), we can obtain an estimate of the

largest area δ(x, y) of the testing image that can be modeled

using the constant illumination assumption, by maximizing

the posterior probability P (smδ(x,y)|sδ(x,y)) over δ(x, y) that

favors the continuity of matching image areas with constant

illumination. Given the unknown but fixed lighting condition

of the testing image, we assume that the optimal estimate

of the largest δ(x, y), in terms of the maximum posterior

probability, will be obtained on the training image with the

largest matching area of reflectance due to the inequality (10).

We express the estimate found over Im as

δ̂m(x, y) = (11)

arg

{

P (sm
δ̂m(x,y)

|sδ̂m(x,y)) = max
δ(x,y)

P (smδ(x,y)|sδ(x,y))

}

In face recognition, we form the matching score for each

training image Im by using the corresponding posterior

of the estimate, i.e., P (sm
δ̂m(x,y)

|sδ̂m(x,y)). Specifically, for

every given testing image I , we calculate the posteriors

P (sm
δ̂m(x,y)

|sδ̂m(x,y)) for each training image Im of each

person m at every location (x, y). Then, the overall score for

training image Im matching the given testing image I can be

defined as

Γ(Im, I) =
∑

(x,y)

lnP (sm
δ̂m(x,y)

|sδ̂m(x,y)) (12)

where the sum is over all locations (x, y) within the images

being compared. Algorithm 1 outlines the method for solving

the estimation problem (11) and for calculating the match

score (12).

In the above description, we have made two assumptions.

The first assumption is that the training images can be mod-

eled by image-specific constant illumination. This assumption

effectively means that the size of the largest matching areas

(i.e., δ(x, y)), subject to constant illumination, is decided

by the testing image only. Thus it helps to maximize the

size of the matching areas that can be found between the

training and testing images to obtain greater discrimination.

If we drop this assumption and allow the training images to

have random, piecewise constant lighting as in the testing

images, the new algorithm may still be applicable. But in

this case it will focus on the largest matching areas δ(x, y)
in which both the training image and the testing image can

have constant illumination. Such areas may be smaller than

with the corresponding constantly-lit training images. In our

experiments, we will demonstrate the applicability of the new

algorithm to this situation, i.e., given more adverse training

conditions. Our second assumption is that each person m

Data: Testing image I , training image Im, unseen-data

feature vector sets Bδ

Result: Posterior matching score for each training image

for each location (x, y) in testing image I do

for each area size δ(x, y) do
Calculate feature vector sδ(x,y) for testing image

area Iδ(x,y)
Calculate unseen-data likelihood p(sδ(x,y)|φ)
using (8)

for each training image Im and corresponding

area s
m
δ(x,y) do

Calculate likelihood p(sδ(x,y)|s
m
δ(x,y))

using (6)
end

for each training image Im and corresponding

area s
m
δ(x,y) do

Calculate posterior P (smδ(x,y)|sδ(x,y))
using (7)

Record the maximum posterior

P (sm
δ̂m(x,y)

|sδ̂m(x,y)) over δ(x, y), i.e., (11)

end

for each person m do
Add the above obtained

lnP (sm
δ̂m(x,y)

|sδ̂m(x,y)) to the match

score (12)
end

end

end

Algorithm 1: Algorithm for computing the posterior match-

ing score for each training image.

has only one training image Im. However, this algorithm can

be easily extended to accommodate multiple training images

for each person, by calculating the sum in the denominator

of (7) over all the training images of all the persons, and by

calculating an average match score (12) for each person over

all the training images for the person.

B. Extension to Occlusion Robustness

In (12) we assume that the optimal local areas selected for

comparison, in terms of the maximum posterior probability

of matching, will contain valid face features. We can fur-

ther extend this method to model random partial occlusion

of the testing images, in which some local areas do not

contain valid face features. We assume that an occluded

testing image area sδ(x,y) can be modeled by the unseen-data

likelihood p(sδ(x,y)|φ), leading to a low posterior probability

P (smδ(x,y)|sδ(x,y)) for any training face image areas s
m
δ(x,y).

Using this assumption we can improve robustness to partial

occlusion by deemphasizing local areas with low posterior

probabilities from the overall score for each face. In other

words, instead of using all local areas for recognition, we aim

to choose only the reliable local areas (defined in terms of

large posterior probabilities) for recognition. This will retain

as much inter-personal discriminative information as possible

while improving robustness to partial occlusion.



7

The problem of identifying all reliable local areas can be

formulated as a higher-level MAP problem, similar to (7),

which makes use of the previously calculated local area poste-

rior matching scores. Specifically, given a testing image I , we

obtain its maximum local area posteriors P (sm
δ̂m(x,y)

|sδ̂m(x,y))

for each training image Im, along with the unseen-data poste-

riors P (φ|sδ(x,y)), which are identical for all the training im-

ages. The unseen-data posteriors are calculated using (7) with

the numerator likelihood replaced by the unseen-data likeli-

hood p(sδ(x,y)|φ). We sort these probabilities in descending

order. Let P (sm
δ̂m(xj ,yj)

|sδ̂m(xj ,yj)
) denote the sorted posterior

probabilities for training image Im, with j = 1, 2, ..., J denot-

ing the index of the face area locations in sorted order, from the

highest posterior probability to the lowest posterior probability

(assuming a total of J areas). Similarly, let P (φ|sδ(xl,yl))
denote the sorted unseen-data posterior probabilities, indexed

by l = 1, 2, ..., J , from the highest posterior-probability area

to the lowest posterior-probability area. To select the optimal

local areas for recognition, we formulate a posterior proba-

bility for each training image Im, using the corresponding

P (sm
δ̂m(xj ,yj)

|sδ̂m(xj ,yj)
) for Im, as a function of the number

of local areas with the highest posterior probabilities. This

posterior probability can be expressed as

P (Im|I,J ) = (13)
∏J

j=1 P (sm
δ̂m(xj ,yj)

|sδ̂m(xj ,yj)
)

∑

m′

∏J

j′=1 P (sm
′

δ̂m′ (xj′ ,yj′ )
|sδ̂m′ (xj′ ,yj′ )

) +
∏J

l=1 P (φ|sδ(xl,yl))

where 1 ≤ J ≤ J is the number of the highest-posterior

areas used in forming the posterior probability P (Im|I,J ).
Thus, the new matching score for training image Im, in place

of (12), can be defined as the maximum P (Im|I,J ) over J ,

i.e.,

P (Im|I, Ĵm) = max
J

P (Im|I,J ) (14)

where Ĵm is an estimate of the number of the optimal local

areas for comparing the testing image I against the training

image Im. In a similar way to the proof of inequality (10), we

can show that the posterior (13) favors continuity of matching:

higher posteriors are obtained when more local areas are

matched (in terms of higher local area posteriors than any

of the competitor areas including the unseen-data). Therefore,

given a testing image, we can assume that an optimal estimate

of all reliable local areas will be obtained on the training

image with the largest number of matching areas, due to the

maximum posterior. Eq. (14) can be viewed as an extension

of the problem (11). Through finding the largest matching

areas between the training and testing images, (11) obtains an

estimate of the optimal local areas for lighting normalization,

while (14) obtains an estimate of the optimal combination of

local areas for deemphasizing occlusion.

V. EXPERIMENTS

A. Data, Implementation and Experimental Conditions

In our experiments, we tested the proposed LMA system’s

ability to cope with both illumination variation, combined

illumination variation with partial occlusion, and limited train-

ing data. Face identification experiments were carried out

using two databases: the extended-YaleB database and the AR

database, and a face verification experiment was carried out

using the LFW database.

The extended YaleB database [7] contains the frontal face

images of 38 persons, each captured under 64 illumination

conditions without occlusion. As per the standard testing

protocol, the images were split into 5 subsets based on

illumination angle: Subset 1 (0◦−12◦), Subset 2 (13◦−25◦),
Subset 3 (26◦ − 50◦), Subset 4 (51◦ − 77◦), and Subset 5

(78◦ − 90◦). A single image evenly illuminated image from

Subset 1 was used as the training image for each person, i.e.,

Condition P00A+00E+00, and testing was carried out using all

other images. Example images from each illumination subset

are shown in Fig. 1.

The AR face database [46] consists of the frontal face

images of 100 persons, captured with varying combinations

of illumination, partial occlusion and facial expressions. This

database was captured over two sessions spaced two weeks

apart, and hence contains a relatively large degree of intra-

personal appearance variation. A single clean image from

Session 1, Condition 1, with even illumination, neutral facial

expression and no occlusion was used as the training image

for each person. All tests were carried out using images from

Session 2, Conditions 14 - 26, with varying facial expressions,

occlusions and lighting. The pre-aligned version of the AR

database was used for all experiments. Examples images are

shown in Fig. 2.

The Labeled Faces in the Wild (LFW) database [47] consists

of around 13,000 face images from 1680 individuals, where

all the faces images have been collected from the Web. The

face images therefore exhibit a high degree of variation in

illumination, pose, and expression, the only restriction being

that faces were detected using the Viola-Jones detector [48].

The deep-funneled version of LFW [49] was used in our

experiments, and all images were cropped to include only the

face area.

The LMA system’s parameters were kept consistent across

all databases. Specifically, all images were preprocessed using

a DoG filter with parameters σ1 = 1, σ2 = 2, in (2), as

in [27]. Optimization over the size of the local image areas

δ(x, y), which had square geometry, in (11), was carried out

over the following range of scales: 5 × 5, 7 × 7, 9 × 9, . . . ,

29 × 29 pixels. The features, representing local image areas

at each scale, were sampled from a grid covering the whole

face image with a stride of 5 pixels. The base number M
in (6) was fixed to 1×109. The unseen-data likelihood model,

p(sδ(x,y)|φ) in (8), was built on a feature set Bδ consisting

of the feature vectors of 1000 image areas at each scale δ,

randomly selected from all training image areas of all persons.

In our experiments, slightly better performance was obtained

by augmenting this feature set with the feature vectors of

randomly generated square image patches at each scale δ,

where each pixel value was drawn from normal distribution

∼ N (128, 162). Over this feature set, the k closest feature

vectors were chosen for each testing image area at each scale

to calculate p(sδ(x,y)|φ). In our experiments, k was set to 10.



8

In Section V-F, we will investigate the sensitivity of the system

to differing parameters.

For real-world applications efficiency may be important.

Our system takes around 0.02 seconds to compare two face

images on a single-core 3GHz machine in Matlab. The time

needed to search a large gallery could be reduced as the task of

comparing a probe with the gallery is inherently parallel. The

majority of our system’s execution time is used for feature

extraction, however in practice this step only needs to be

performed once per face image and the results stored for later

use.

B. Recognition Results on Extended YaleB

We first compare the face recognition performance of the

proposed LMA system on extended YaleB with results from

the literature. The comparison is presented in Table I. It can

be seen that for illumination Subsets 1 to 3, all systems

were able to attain perfect accuracy. We observed that the

illumination change from the training data in these subsets

is not significant and does not pose an issue for recognition.

Illumination Subsets 4 and 5 contain much larger variation

from the training data. For Subset 4, our system produced

results comparable with the existing literature, and for Subset

5, containing the most challenging illumination conditions, our

proposed system was able to outperform ELT [27], PCML [50]

and L&S [51], and achieved the same accuracy as OLHE [52]

which used all images from Subset 1 for training. We also

compare with IGO-LDA [24], which achieves an average

accuracy over all subsets of 97.80%, compared with LMA’s

average accuracy of 99.62%. Table I also includes the LMA

results without using the unseen-data model, which will be

discussed later.

C. Recognition Results on AR

We now compare the face recognition performance of our

LMA system tested on the AR database with results cited

from the literature. Table II shows the comparison. When

training the LMA system, a single image with frontal lighting

from Session 1, Condition 1 was used for each person. The

examples taken from the literature for comparison all used

more than one training image per-person. Images from Session

2 were used during testing.

From Table II it can be seen that the LMA system is able to

perform better than or comparably with existing systems from

the literature [42], [53], [54], [55], particularly for occluded

conditions, achieving 98% recognition rate with sunglasses

occlusion, and 96% with scarf occlusion. These results are

notable, as only a single training image per person was used by

the LMA system, while the other systems being compared with

used 8 training images per person. On the clean conditions

the LMA system achieved an accuracy rate of 99% (the only

error occurred as a result of a corrupted testing image W-027-

14.bmp).

D. Fixed Size versus Maximum Size

The LMA system searches for the largest matching area

with constant illumination between the testing and training

images at each point on the face. In this experiment, we

compare fixed-size area based recognition with the LMA

approach. We use the same posterior probability based scoring

algorithm (12), with the optimal estimate of the matching area

δ̂m(x, y) replaced by fixed-size area δm(x, y) for all (x, y) and

m. We have tested a range of scales for the fixed δm(x, y).
The comparison is intended to confirm our intuition that by

maximizing the size of matching area at each point of the

face, discrimination and accuracy for lighting normalization

improves over the use of fixed-size local areas.

The accuracy rates obtained for each fixed local area size

from 5×5 up to 29×29 are shown in Fig. 3 for the extended

YaleB database and in Fig. 4 for the AR database. In addition

the recognition accuracy produced by the LMA system is

included in both figures as a horizontal line for comparison.

In both figures, for recognition based on fixed-size local areas,

as the size increases, recognition accuracy also increases until

a certain size. For very small areas it is unlikely that there

will be enough discriminative information to accurately match

between testing and training images. Also for very small areas

the lighting normalization process may cause corruption to

the intrinsic reflectance of the image, further degrading the

discrimination. Conversely for very large areas, illumination

variation, occlusion and other factors can again make accurate

normalization difficult, even between images of the same

individual. Ideally, we would like to base recognition on the

maximum local area size at each location, as this is likely to

achieve the best accuracy for normalization and discrimination.

However, it is not always possible to know the optimal local

area size a priori, as it depends on the characteristics of

the given testing data and training data. By comparing the

recognition accuracy curve in Fig. 3 for the extended YaleB

database with that of Fig. 4 for the AR database, it can be seen

that optimal recognition accuracy occurs at different local area

sizes in both databases. The proposed LMA system exceeds,

in the case of the AR database, and is comparable with, in the

case of the extended YaleB database, the best accuracy with

fixed-size local areas. Hence the LMA approach is capable

of automatically adapting to different databases and testing

conditions.

E. Unseen-Data Model

In this analysis, we examine the ability of the LMA system

to cope with training and testing mismatch that could be

caused by illumination variation, partial occlusion, or other

types of variation. In particular, we investigate the effective-

ness of modeling the mismatch by using the unseen-data

likelihood, i.e., p(sδ(x,y)|φ), in the posterior probability (7)

for improving recognition accuracy. The comparison was

conducted between the LMA systems with/without including

this model. The results for both the extended YaleB and AR

databases by the LMA system without this model are included

in Table I and Table II, respectively.

In the YaleB database, which does not include any realistic

partial occlusion, use of the unseen-data model improves

recognition accuracy for Subset 5, which contains the most

challenging illumination conditions. This may be due to very
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dark areas of the face being captured by the unseen-data

model and hence being deemphasized from the posterior

probability of the whole face. These very dark areas are

more likely to be corrupted by noise and hence less likely

to contribute discriminative information. In the AR database,

including the unseen-data model also leads to an improvement

in recognition accuracy for the majority of testing conditions.

The improvement is more significant for some severe testing

conditions, such as screaming which causes a large expression

change, and combined occlusion/illumination variation (e.g.,

sunglasses + illumination changes). In two cases, we observed

a small drop in accuracy.

A new set of experiments was conducted, to systematically

assess the robustness of the LMA system to varying amounts

of partial occlusion. The extended YaleB database was used in

the new experiments, to simulate testing conditions containing

both varying amount of occlusion and at the same time

significant illumination variation. For each person, a single

un-occluded, evenly-illuminated face image was used as the

training image. During testing, images with simulated partial

occlusion were generated by randomly replacing a contiguous

square of the testing image, with an unrelated image, covering

20%, 40%, 60% or 80% of the testing image area. During

testing, no knowledge of the position and nature of the

occlusion was provided to the system. Example testing images

with simulated occlusion are shown in Fig. 5. In this ex-

periment, for each occlusion amount, the average recognition

accuracy over all illumination subsets was recorded. Similar

experiments were conducted previously by other researchers

(e.g., [56] and [42]). Our LMA-based results, with/without

including the unseen-data model, are shown in Figure 7 along

with the results from the literature. As expected, when the

amount of occlusion is increased the performance of the

system decreases. However, use of the unseen-data model in

the LMA system significantly increases recognition accuracy

compared to without this model. The results produced by the

LMA system compare favorably with those of [56] and [42].

The posterior probability of a match between a clean face

image and realistic images with: facial expression change,

illumination change, and partially occluded local areas, is

visualized in Fig. 6.

F. Parameter Sensitivity

The sensitivity of the LMA system to varying the values of

parameters was tested, particularly, the base number M used

in the likelihood function (6), and the k-NN set cardinality

k used in calculating the unseen-data likelihood (8). This

experiment was performed using the AR database, and while

one parameter was varied, the other parameters remained at

the values described at the beginning of this section.

The change in recognition accuracy that results from varying

the value of the base number M is shown in Fig. 8. As the

value of M is increased from e to 109, the overall recognition

accuracy also slightly increases, however the performance of

the system is not highly sensitive to the specific value of this

parameter used. As mentioned earlier, a value of M = 109

was used to obtain the results presented above. The change

in recognition accuracy that results from varying the value

of the k parameter is shown in Fig. 9. It can be seen that

when the k parameter is decreased from 1000 to 10, the

recognition accuracy increases. Small values of k may lead

a more accurate estimate of the likelihood of a given feature

vector. However, the system is again not highly sensitive to

the specific value of this parameter used.

G. Misalignment Robustness

When performing face recognition, the probe image must

be accurately aligned with the gallery images to allow cor-

responding face regions to be compared. In this experiment

we investigate the robustness of magnitude Fourier features

to small misalignment errors, compared with discrete cosine

transform (DCT) features. This experiment was carried out

using the extended-YaleB database, and identification accuracy

was averaged over all illumination subsets. During testing, all

probe images were translated diagonally by a specified number

of pixels, simulating misalignment of the probe and gallery

images.

The results presented in Table III show that magnitude

Fourier features are more robust to misalignment error than

DCT features. Magnitude Fourier features even gives some

benefit when no misalignment is introduced, suggesting that

these features may be more robust in the general case.

H. Different Training Images

In many situations it may not be possible to obtain an un-

occluded, evenly illuminated, training image for each person.

As mentioned in Section IV-A, the LMA approach can be

applied in situations where both the training and testing data

have varying lighting conditions that can be modeled by (1).

The AR database was used to demonstrate this. In contrast

to the earlier experiments where a clean image was used for

training, in this experiment, corrupted images were used for

training, including those with partial occlusion, illumination

variation, or combinations of both corruption conditions, with

the same testing conditions.

Table IV shows the results, where for each training condi-

tion, the recognition accuracy results were averaged over all

testing conditions. We can see that the best overall average

recognition accuracy was achieved with the training image

without occlusion and with the right illumination condition,

although this accuracy is only marginally better than that

achieved using the non-occluded, frontal-illumination condi-

tion. The lowest overall performance was observed when the

scream condition was used as the training image for each

person. As the LMA system was not specifically designed to

handle expression changes, this is not unexpected. Again, we

see the importance of the unseen-data model for improving

robustness, compared to the system without this model.

I. Face Verification

We assess the face verification performance of the pro-

posed system using the Labeled Faces in the Wild (LFW)

database [47]. In contrast with recent approaches making use
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of deep neural networks [57] which require large training

sets, our face verification system is unsupervised, meaning

we do not make use of the LFW training set for setting the

system’s parameters to better distinguish between same and

different face image pairs. Therefore the system’s parameters

remain identical to those used in all previous experiments. For

given pair of images, we calculate the posterior probability

of matching, using a modified version of (7), where the

denominator is calculated using the union of a large set of

face images randomly selected from the LFW training-set, and

one of the images in the verification pair. And the unseen data

likelihood, (8), is calculated using a large set of randomly

selected image patches from the LFW training-set.

The standard LFW testing protocol was followed, with

results calculated using 10-fold cross-validation using the

suggested data splits. Overall results are presented as an ROC

curve, see Fig. 10. Our proposed LMA system achieved an

Area Under the Curve (AUC) score of 0.8304, which is

superior to other unsupervised face verification methods such

as, Local higher-order statistics [58] with an AUC of 0.8107,

or, Locally Adaptive Regression Kernels [59] with an AUC of

0.7830. Although some other unsupervised methods achieve

better performance (e.g. [60] AUC of 0.9405), they make use

of additional pre-processing steps such as fitting 3D head

models to cope with pose variability [60]. We showed in our

method that some robustness to pose variation may also be

achieved by finding the largest matching areas between the

pose varying images for comparison.

VI. CONCLUSION

In this paper we have presented a novel approach to achiev-

ing robustness in face recognition, based on finding the largest

matching area at each point. Our method tackles three com-

bined challenges simultaneously: uneven illumination, partial

occlusion, and having only a single training image per person.

Experiments show that, compared with other methods from the

literature, our method outperforms methods which use only a

single training image per person, and matches or outperforms

methods which require multiple training images. Further tests

in the paper show the importance of two factors in the success

of the new method: the inclusion of an unseen-data model, and

finding the (dynamic) largest matching area rather than a fixed-

size patch. It is also shown that performance is much better if

the single training image is good quality and non-occluded,

although the method still performs competitively when the

training image is corrupted.

APPENDIX A: PROOF OF INEQUALITY (10)

This inequality can be proven if we can assume that, at a

given location, larger areas will normally be more discrimina-

tive than smaller areas to identify if the two areas are matching

or not. This can be expressed in terms of likelihood ratios:

p(sδ(x,y)|s
m
δ(x,y))

p(sδ(x,y)|s
m′

δ(x,y))
≥

p(sǫ(x,y)|s
m
ǫ(x,y))

p(sǫ(x,y)|s
m′

ǫ(x,y))
(15)

where, as defined in (10), sδ(x,y) and s
m
δ(x,y) are two matching

feature vectors in terms of having the greatest likelihood ratio

p(sδ(x,y)|s
m
δ(x,y))/p(sδ(x,y)|s

m′

δ(x,y)) for all s
m′

δ(x,y) 6= s
m
δ(x,y),

and sǫ(x,y) is a sub-vector in s
m
δ(x,y) representing a smaller im-

age area, with s
m
ǫ(x,y) representing the corresponding matching

sub-vector in s
m
δ(x,y), and s

m′

ǫ(x,y) representing the correspond-

ing mismatching sub-vector in s
m′

δ(x,y). Equation (15) simply

indicates that larger likelihood ratios will be obtained based

on larger image areas to differentiate between matching and

mismatching images at the given location. Based on (9), we

can have a similar inequality concerning the likelihood ratio

associated with the unseen data:

p(sδ(x,y)|s
m
δ(x,y))

p(sδ(x,y)|φ)
≥

p(sǫ(x,y)|s
m
ǫ(x,y))

p(sǫ(x,y)|φ)
(16)

Dividing both the numerator and denominator of (7) by

p(sδ(x,y)|s
m
δ(x,y)), and applying the above two likelihood-ratio

inequalities to the expression, we can obtain the posterior

probability inequality (10).
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TABLE I
Recognition accuracy, on the extended-YaleB database, comparing the LMA

approach with the literature. The results show the number of correctly

recognized images for each testing condition. The total number of testing

images in each subset is shown in brackets in the Illumination Subset

column. The symbol * indicates that more than one training image per

person was used. We also show the results for our proposed approach

without the unseen data model (LMA-UDM).

Illumination LMA LMA ELT PCLM OLHE* L&S
Subset -UDM [27] [50] [52] [51]

1 (263) 263 263 263 263 - 263
2 (456) 456 456 456 456 456 456
3 (455) 455 455 455 455 455 440
4 (526) 524 523 523 426 512 223
5 (714) 707 703 694 693 707 493

TABLE II
Recognition accuracy (%) on the AR database, comparing the LMA based

approaches with the literature. For LMA, a single clean image from Session

1 was used for training and all images from Session 2 were used during

testing. All the other systems for comparison use more than one training

image per-person.

Recognition Accuracy (%)

Test Condition LMA LMA SRC DICW MRF CRC
-UDM [42] [53] [54] [55]

Clean 99 99 - - - -
Smile 96 94 - - - -
Anger 99 99 - - - -
Scream 66 56 - - - -
Illum. Right 100 100 - - - -
Illum. Left 100 100 - - - -
Illum. Both 97 100 - - - -
Sunglasses 98 96 97.5 99.5 99 94.2
Sg.+Illum. R 98 80 - - - -
Sg.+Illum. L 93 80 - - - -
Scarf 97 98 93.5 98 97.5 95.8
Scarf+Illum. R 95 94 - - - -
Scarf+Illum. L 89 88 - - - -

TABLE III
Identification accuracy, averaged over all illumination subsets of the

extended-YaleB database. These results compare the robustness to

misalignment of the proposed system with either 2D magnitude Fourier

features or 2D DCT features.

Offset (pixels) 0 1 2 3 4 5 6

Mag. Fourier 99.91 99.91 99.74 96.5 89.55 78.94 60.95
DCT 97.07 97.06 95.18 89.93 77.12 62.77 38.38

1 2 3 4 5

Fig. 1. Example images from the extended YaleB database showing the typical
illumination in each subset. A single image from illumination subset 1 was
used as the training image for each person, and all other images were used
during testing.

TABLE IV
Recognition accuracy (%) on the AR database, with a single corrupted

training image from varying conditions, averaged over all testing

conditions. Results are shown for the LMA system tested with and without

the unseen-data model.

Average Recognition Accuracy(%)

Training Condition LMA LMA (no unseen-data model)

Clean 94.38 91.08
Smile 83.53 67.92
Anger 84.00 77.76
Scream 50.53 32.53
Illum. Right 94.53 86.69
Illum. Left 92.69 87.30
Illum. Both 89.53 83.84
Sunglasses 80.38 71.08
Sunglasses + Illum. Right 77.92 64.61
Sunglasses + Illum. Left 75.84 64.00
Scarf 81.23 70.69
Scarf + Illum. Left 76.84 62.69
Scarf + Illum. Left 74.53 63.53

Clean Smile Anger Scream Illum. Right Illum. Left Illum. Both

Sunglasses Sg + Illum. Right Sg + Illum. Left Scarf Scarf + Illum. Right Scarf + Illum. Left

Fig. 2. Example images from the AR database. In our experiments, either
a single clean image or an imperfect image with nonuniform illumination
and/or partial occlusion was used as training for each person, and all other
images were used during testing. Testing and training images were selected
from different sessions.
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Fig. 3. Average recognition accuracy (%) on the extended YaleB database,
for the system using fixed-size local areas as the size was varied. Also shown,
as a solid line, is the recognition accuracy produced by the LMA system.
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Fig. 4. Average recognition accuracy (%) on the AR database, for the system
using fixed-size local areas as the size was varied. Also shown, as a solid
line, is the recognition accuracy produced by the LMA system.

20% 40% 60% 80%

Fig. 5. Test images showing artificial occlusion, generated using the extended
YaleB database. The percentage of the total image area covered by the
occlusion is shown above each image.

Fig. 6. Best viewed in color. This figure illustrates the posterior probability
of a match between a clean training image and realistically corrupted testing
images, where red indicates a high posterior probability, and blue indicates a
low posterior probability. On the top row, the three images on the left show
expression variation, and the three images on the right show illumination
variation. The images on the bottom row show combined partial occlusion
with illumination variation.
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Fig. 7. Average recognition accuracy (%) over all testing subsets of the
extended YaleB database as the percentage of artificial occlusion was varied.
The LMA systems is compared to the PCANet [56] and SRC [42] systems.
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Fig. 8. Average recognition accuracy (%) over all testing subsets of the AR
database, as the base number M in (6) was varied.
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Fig. 9. Average recognition accuracy (%) over all testing subsets of the AR
database, as the value of the k parameter in the k-NN unseen-data model (8)
was varied.



14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

LMA System (This work)

LHS

LARK

Fig. 10. ROC curve comparing performance on the LFW database of the
LMA system with the LARK [59] and LHS [58] methods.


