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Abstract. We show that the largest similar copy of a convex polygomwith m edges
inside a convex polygo® with n edges can be computed @(mr? logn) time. We also
show that the combinatorial complexity of the space of all similar copid® iofide Q is

O(mr?), and that it can also be computed@{mr? logn) time.

Let P be a convex polygon witm edges and le® be a convex polygon with edges.

Our goal is to find the largest similar copy Bfinside Q (allowing translation, rotation,

and scaling ofP); see Fig. 1. A restricted version of this problem, in which we just
determine whetheP can be placed insid® without scaling, was solved by Chazelle
[6], in O(mr?) time. See also [1], [8], and [16] for other approaches to the more general
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;x+biy <1

V) (i)

Fig. 1. (i) The polygonP. (ii) The polygonQ and a largest copy d? inside Q.

problem, in whichQ is an arbitrary polygonal region. We remark that the complexity
of the algorithms for the general case is considerably higher, abown?) in [1],
Oo(m3n?) in [16], andO(m*n?) in [8]. See [2], [3], [9], [12], and the references therein
for other related work on the polygon-placement problem.

Problems concerning the placement of one polygon inside another are important in
robotics and manufacturing. This restricted problem is also applicable to an approach
to object recognition recently proposed by Basri and Jacobs [5], based on matching
two-dimensional faces of polyhedral objects. The transformation that places the largest
similar copy of a polygorP, derived from a face of an object model, inside a polygon
Q, derived from an image, is a candidate for a transformation which matches the entire
model to the image.

The geometric setup of the problem is as follows. We observe, following Baird [4], that
similar placements oP can be parametrized nicely by referring to an arbitrarily chosen
reference poinp € P. A placementr is represented by a quadruggkt, u, v), where
(u, v) is a translation op in the plane, and = p cosd, t = p sing, whereP is rotated
by 6 and scaled by, aroundp. Let P, denote the similar copy d® corresponding to the
placementr. The standard placement pyist the origin, witho = 1,0 =u=v =0.

Thus if (x, y) is a vertex ofP in the standard placement, its position at the placement
(s,t,u,v)is (SX—ty + u, tx + sy+ v). Such a placement d? lies fully within Q if

and only if every vertexx;, y;) of P lies in every half-spaca;x + b;y < 1 containing

Q and bounded by the line supporting an edg€ofee Fig. 1. That is, the placement
(s, t, u, v) must satisfy the following system ainlinear inequalities:

a(sx —ty +uw +bjtx +sy+v) <1

or

Lij: (@x +by)s+ (—ay +bhjx)t +au+bjv < 1.
In other words, the spackof all similar placements of insideQ is a four-dimensional
convex polyhedron formed by the intersectiomoh half-spaces. This already implies
that the combinatorial complexity @f is O(m?n?), and that it can be constructed in
O(m?n?) time [15]. However, we improve this bound in what follows, exploiting the
fact thatC is highly degenerate.

In order to find the largest similar copy BfinsideQ, we need to find a point @f that
maximizess? + t? = p2. Unfortunately, maximizing a convex function over a convex
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polyhedral domain is not aloP-type problen{in the setup of [11], where a linear-time
randomized solution for such problems is described), so it appears that the algorithm of
choice is to examine each vertex®and select the one with the largest valusof- t2
(the maximum of such a convex function is clearly attained at a vertéx éfloreover,
sinces® + t? depends only ors andt, it suffices to project onto thest-plane, and
examine only the vertices of that projection.

The main result of the paper is the following theorem.

Theorem 1.

(@) The total number of vertices 6fis O(mr?), and they can all be computed in
time O(mré logn).

(b) The vertices of the projection @f onto the st-plane can be computed in time
o(mrélogn).

Remark. Although part (b) follows immediately from part (a), we give a direct proof
of (b), which is somewhat simpler and provides more geometric insight into the structure
of the problem.

Proof of Theoreni. We prove both parts by applying the standard duality transform
that maps a pointy, &2, &3, &4) to the hyperplané;s + &t + &u + &v = 1 and vice
versa. We denote the coordinates in the dual spas,ity, u*, v*. For 1<i < mand

1 < j <n,letw; j denote the point dual to the hyperplane bounding the half-dpagce
ie.,

wij = (@X +bjyi, -y +iji, a, bj).

The convex hull of the points ifw; j | 1 <i <m,1 < j < n}, denoted byD, is the
dual polytope ofC. It is easy to verify that all the points; ; are extreme points ab
(or, equivalently, that all the hyperplanes bounding the half-sphcegontain facets
of C). Note that, for each fixeg corresponding to an edge @, the convex hullG;
of {wi j}{", is a similar copy ofP that lies in the 2-plane;: u* = &, v* = b;. The
dual polytopeD, then, is the convex hull af similar copies ofP, placed in parallel
2-planes in 4-space. Each facetldicorresponds to a placementof P inside Q such
that P, € Q and there are at least four vertex—edge incidences between the vertices of
P, and the edges dD.

We begin with the proof of part (b). We exploit the well-known fact that projection
in the primal is slicing in the dual. In more detail, & denote the projection af
onto thest-planeu = 0, v = 0, as effected by the mappirg, t, u, v) — (s, t, 0, 0).
Then a lineas + gt = 1 in thest-plane is a supporting line a, if and only if the
hyperplanexs + gt = 1is a supporting hyperplane 6fin R. This is equivalent, in the
dual, to having the poindx, 8, 0, 0) belong to the boundary @. Thus, computing’,
is equivalent to computing the cross sectienof D with the 2-planau* = 0, v* = 0.

Our strategy for computing; is first to computeéDs, the cross section @ with the
hyperplanas* = 0, and then to slic®; with the planes* = 0. Since itis trivial to inter-
sect a three-dimensional polytope with a plane, in time proportional to the complexity
of the polytope, we only consider the constructiorfaf
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Fig. 2. Convex hull of parallel polygons.

Without loss of generality, we can assume that none oétlsds 0. Then each of the
polygonsG; lies outside the hyperplang = 0. Hence, any vertew of D3 must be an
intersection ofu* = 0 with an edge o>, connecting two vertices of a pair of distinct
polygons,G; andG;j, whereG; lies aboveu® = 0 andG; lies below. Moreoveny must
also be a vertex of the intersection of the convex hulGpu G; with u* = 0. So we
can construcDs by taking the convex hull, ifR?*, of every pair of polygons;, Gj,
intersecting all of these subhulls witlf = 0, and then taking the convex hull of the
resulting intersections.

We consider the geometry of the subhull of one such G&jiG;. The two parallel
2-planesu* = &, v* = by andu* = a;, v* = by lie in the common 3-plang; ; defined
by

(b —b)u* + (& — a)v* + (biaj —bja) =0

and so does the subhull determined @y, G;. The three-dimensional geometry of
conVG; U Gj) in F; j is as shown in Fig. 2.
The intersection of ; with u* = 0 is the 2-plane

_ biaj —b,-a,—
aj—a

u* =0, v*

which is also parallel to the two polygoi@, G;. Slicing the convex hull of the two
parallel polygons with a parallel plane, we get a third parallel poly@ppwhich is the
Minkowski sum of appropriately scaled copies®fandG;. This polygon has at most
2m vertices, and it is easy to compute these vertices directly from the vertic&sawfd
G;. Note thatG; ; lies in bothF; ; and inu* = 0.

The 3-polytopeDs in u* = 0 is the convex hull of all these polygo@s ;. There are
O(n?) such polygons, each with at mosnhzertices, so the total complexity @ is
O(mr?) (which of course is also a consequence of the bound for the overall complexity
of D, as asserted in part (a) and proven below).

The algorithm is simply to form the polygof®s ;, take their three-dimensional convex
hull, and intersect it with* = 0. Since the Minkowski sum of two convex polygons can
be computed in linear time [10], we spe@dmr?) time in computing the polygor; ;.

Their convex hull can be computed@(mr? logn) time, using the divide-and-conquer
algorithm of [14] (which now has onl® (log n) recursive levels, because we start with
the already available polygoi®; ;). Hence, the total running time 8(mr?logn).

This completes the proof of part (b). Note that in practical terms, the implementation
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of this algorithm is a straightforward setup followed by a three-dimensional convex hull
computation, which can be performed efficiently with publicly available software.

We now return to the proof of part (a). We first consider the facet® afhose
supporting hyperplanes are parallel to the 2-plathe- 0, v* = 0. The equation of such
a hyperplandn g of a facetF has the formgu* + yv* 4+ 8§ = 0. Hence, ithg contains
a vertex of som&s;, it must contain the entire polygd®; . It then follows thatF must
be the convex hull of the union of two polygo@s, G; (as in the proof of part (b) given
above). The facef is dual to the placement ¢t in which it is shrunk to a point and all
its vertices are incident to the vertex@fwhere edgé of Q meets edgé of Q (so these
two edges must be consecutive edge@pfThe number of such placementsijsand the
complexity of each of the corresponding facet®ign), since it is the three-dimensional
convex hull of 2n points. (It is easily verified that each of these hulls is indeed a facet of
D.) It follows that the overall complexity of these facetsdfis O(mn). Constructing
all these facets is easy to do@(mn) time.

Next, consider the facets &f whose supporting hyperplanes are not parallel to the 2-
planeu* = 0,v* = 0. LetF be such a facet @, and leth be the hyperplane supporting
F. The equation oh can be written as* = as* + gu* 4+ yv* 4 § (for simplicity we
assume, without loss of generality, thaits never infinite). Then, foreach=1, ..., n,
the line¢; of intersection betweeh and the 2-plane; containingG; either touches or
is disjoint fromG;. The equation of; ist* = as* + Ba; + ybj +6,u* = a;, v* = by.
Note that the coefficient uniquely determines the vertex G nearest td;, for every
j, unlessa is a “critical” value equal to the slope of an edge of so@ie There are
v = mnsuch critical slopeg&, corresponding to the orientations at which an edge of
is parallel to an edge @@, and it is easy to compute them, in order, in ti@énnlogn).
Leta; < ap < -+ < a, be these critical slopes.

Let K be an open interval af-coefficients between two successive critical slopes.
Then, for eachj = 1,..., n, there exists a unique vertex ) ; of G;j, such that ifh
is any supporting hyperplane &f whosex-coefficient lies inK, thenh can touchG;,
if at all, only atwj,;. In other words, such ah is also a supporting hyperplane of
S = {wik),j }?:1 (h must of course touch at least one of these vertices, and at least four
if it contains a facet oD). For two adjacent intervalk andK’, the setS¢ is obtained
from S« by replacing one vertex by another vertexy’ (both being adjacent vertices of
someG;). It easily follows that every facdt of D not parallel tau* = 0,v* = O/is either
a facet ofconV &), for some intervaK, or, if thea-coefficient ofF is a critical value, a
facet ofconVS¢ U &), for some pair of consecutive intervdfsandK'. If the vertices
of P andQ are in general position, these latter facets correspond to placements in which
an edge ofP is incident to an edge d®. In fact, we can prove the following stronger
claim. Assumingyy = —oo ande, ;1 = +00, let K; be the open intervaly;, o 1), for
0 <i < v. With a slight abuse of notation, 1§ = S, and let§ denote the unique
element of§\S_3,forl1<i <.

1 For example, Ken Clarksonsull  program, athttp:/netlib.att.com/netlib/voronoi/
hull.html, or loannis Emiris’ chD, available byftp from robotics.eecs.Berkeley.edu in
Ipub/ConvexHull . These and other convex hull programs are listed on the computational geometry software
Web page ahttp://www.geom.umn.edu/software/cglist . Using either of these programs gives a
randomized algorithm which runs in tirf@(mr? logmn), slightly worse than our theoretical result.
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Lemma 2. Every facet F ofD that is not parallel to ¢ = 0, v* = 0 is either a facet
of the convex hull corf®y) or a facet of the convex hull coffy_; U {&}) incident tog
forsomel <i <.

Proof. Let F be a facet ofD that is not parallel tar* = 0, v* = 0 and that is not a
facet ofconUS). Let W be the set of vertices df, and leti < v be the index such
that thea-coefficient of the hyperplane supportikglies in the (semi-open) interval
(¢i_1, j]. Then, by the above argumem} C §_; U {&}. Supposg < i is the largest
index such thag; € W (i.e., § is obtained fromS_; by inserting one of the points of
W and deleting a point 0§ _1). Then it is easily seen tha&/ € §_1 U {§;}. Hence,F

is a facet oicon(§_1 U {§;}) incident toé;, as asserted. O

This lemma suggests that we should commaey(S) and, for each ki < v, we
compute the facets @on S _1 U {§}) incident tog;. Since the hyperplanes containing
the facets oton S _; U {§}) incident tog& have only three degrees of freedom, this
problem can be formulated as a three-dimensional convex hull problem, and can be solved
in O(nlogn) time; the number of these facets, as well as their overall complexity, is
O(n). Notice that the sef and the verticeg;, for 1 < i < v, can be computed in
O(mnlogn) time. Repeating this algorithm for all4 i < v and computingon( S),
the algorithm produces a total 6f(mr?) facets, ofO(mn?) overall complexity, in time
o(mrélogn).

These arguments prove that the total number of facefsiefO(mr?), and that their
overall complexity, and hence the overall complexitgpis O(mr?). Unfortunately, the
algorithm might produce additionapuriousfacets, which are not facets ®f. Indeed,

a facetF of con(§_; U {&}) corresponds to a placementof P such that there are at
least four vertex—edge incidences between the verticés @find the edges o, and
F is spurious ifP, Z Q. If the «-coefficient of F lies in the intervalK; _; U Kj, then
it follows by definition thatF cannot be spurious. However, if thiscoefficient lies in
another intervaK;, for somej ¢ {i — 1,i}, thenF may be spurious becau® may
violate a constraint , , corresponding to some vertex,, € S\(§-1US). See Fig. 3
for an example: Lek; be the critical slope at which the edgep, of P is parallel to
the edgess of Q. Then, by constructior§_; = {we 1, W5 2, W4 3, W3 4, W15, W76} and
& = wys. Itis easy to verify thatonu{ws 2, wa 3, w3 4, wos}) is a facet ofS_; U {§}
incident to& = wy s, but, as shown in Fig. 3, the corresponding copyaloes not lie
inside Q (this facet is “violated” byw> 1).

Hence, to complete our algorithm, we need to detect and discard the facets of the hulls
conu S ) which are not facets db. This is accomplished as follows. We triangulate
each computed facdt into O(|F|) tetrahedra, using the bottom-vertex triangulation
scheme described in [7]. Let denote the set of resulting tetrahedraj = O(mr?).

Let D* be the bottom-vertex triangulation of the boundarylofWe want to discard
those tetrahedra of that are not facets @*. For a vertexw, let A,, € A be the subset

of tetrahedra incident tw, and letV,, be the set of vertices of the tetrahedranip. It is

easily verified that a tetrahedrdne A, is a facet ofD* if and only if A is a tetrahedron

in the bottom-vertex triangulation of the boundaryooin\V,,), which is necessarily
incident tow. We therefore compute the facetsannuV,,) that are incident tav, by

the reduction, noted above, to a three-dimensional convex hull construction, and then
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) (iD)

Fig. 3. Spurious facets generated by the algorithm: (i) the orientatidd s in Ki_1, where& = wys,
and (ii) a placement o corresponding to a spurious facet®f 1 U {wz 5}.

compute the bottom-vertex triangulation of each such facet. Note that these facets can
be computed irO(|V,,| logn) time, since the vertices d&f,, lie on onlyn 2-planes, so
that the convex hull computation requires o@ylogn) recursive levels; we omit the
easy details. We can now discard those tetrahedng,ithat do not lie on the boundary
of con\V,,). Repeating this procedure for all verticesof D eliminates all spurious
facets computed by the algorithm.

The running time of this step i§_, O(|V,,|logn), where the sum extends over all
verticesw of D. Since) ", |V,,| = 4/A| = O(mr?), the total time spenti® (mr? logn).

This completes the proof of part (a). O

An immediate corollary of Theorem 1(b) is the following.

Corollary 3. The largest similar copy of P inside Q can be computed im@? log n)
time

We conclude this paper by constructing a pair of polygBnand Q, with m andn
vertices, respectively, so that there &remr?) placements oP insideQ, each of which
induces four incidences of the for(p, e), wherep is a vertex ofP andeis an edge of
Q. This implies that the combinatorial bound of Theorem 1(a) is tight in the worst case.

The construction is depicted in Fig. 4. Lrebe of the form 2+ 2, for some positive
integerl, m an even integer, anol the origin. The firsin/2 verticesq, .. ., 02 of Q
are evenly distributed along the arc of the unit-radius circle, centeredwdtich goes
from —x /6 torr /6 (in counterclockwise direction). The vertiags,, 1 - - - gn are evenly
distributed along a tiny arc of a larger circle, say the circle with radius-20and
center(10, 0), and we let the tiny arc span the orientations betweert /2(10+ ¢) and
7 4+ ¢/2(10+ ¢), so that its arc length is. The value ofe will be chosen sufficiently
small, in a manner to be detailed in a moment.

We place one vertepy, of P at the origino and the remainingr— 1 vertices, equally
spaced, onacircular arc of radiﬁlﬁcentered a(t%, 0), that spans the orientations between
—m /40 and+/40.
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m — 1 vertices

n/2 vertices

Fig. 4. PolygonsP andQ for which there exisf2 (mr?) similar placements oP in Q with four vertex—edge
incidences per placement.

Claim. If ¢ is chosen sufficiently smalthen the following holdsFor every triple
n/2+1<i<n1<j<n/2,andl <k <m-2,thereis aplacement of P inside, Q
using translationrotation, and scalingsuch that the vertex,pof P coincides with the
vertex ¢ of Q, and such that the edge p«+1 of P coincides with the edgeaj1 of Q.

Notice that every such placement®finduces four vertex—edge incidences between
P andQ, and is thus a vertex df.

Proof. We consider the scaling, rotation, and translatiorPahat placespk px+1 on
the line¢ supporting; g;+1 and also placepm atg;.

As in Fig. 5, letq be the midpoint of edge; gj1; g is also the orthogonal projection
of the origino onto the line? supportingd;g;+1. Letq’ be the projection opm, which
is placed atyi, onto{. Letq” be the projection onté of 0/, the center of the small circle
whose boundary contains the poims . .., pm—1, Which is appropriately shifted with
P. Letq” be the intersection af with the line passing througp,, = g; ando’. Finally,
let s be the intersection af with the line supportinggm pm—1 (at this placement o).

The distance frong to ' is at moste. The angleq” pmq’ is the same as the angle
g”0'q”, which, by the construction d®, is at mostr/(40). The anglesp,q” is exactly
7r/(40). Since the distance fromp, to g’ is at most 14+ ¢, the distance frong to sis

d(@.s) <d@.q) +d(.s) < e+ <1+e)tan%.

We can choose small enough so that

T . T
&+ (1+e)tanﬁ < sma =d(q, gj+1),
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1

Fig. 5. Proof of claim.

which then implies that this placement Bffully lies below the segmenpmg;+1. An
analogous argument shows tiaies above the segmem,g;, so P lies insideQ, as
claimed. O

We therefore obtain the following result.

Theorem 4. There exist a convex m-gon P and another convex n-gon Q such that
there areQ (mr?) placements of similar copies of P insidg €ch of which induces
four vertex—edge incidences between P and Q

Remarks. (1) A weakness of the above lower-bound construction is that it only yields
placements ofP with “degenerate” vertex—edge contacts, including a vertex—vertex
contact and an edge—edge containment. Is there another construction, in which there
areQ(mr?) similar placements oP inside Q, such that at each of them four distinct
vertices ofP touch four distinct edges @? This extends a similar open problem, asking
for Q(mr?) congruentplacements oP inside Q, each with three contacts of distinct
vertices ofP with distinct edges of); see [13] for details.

(2) Another open problem is whether the algorithm for finding the largest similar
placement o inside Q can be improved. Such an improvement could be by at most a
logarithmic factor if we have to compute the entire spdgces is implied by the above
lower bound. Can we do better if we only need to compute the largest placemeft of
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