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Abstract. We show that the largest similar copy of a convex polygonP with m edges
inside a convex polygonQ with n edges can be computed inO(mn2 logn) time. We also
show that the combinatorial complexity of the space of all similar copies ofP insideQ is
O(mn2), and that it can also be computed inO(mn2 logn) time.

Let P be a convex polygon withm edges and letQ be a convex polygon withn edges.
Our goal is to find the largest similar copy ofP insideQ (allowing translation, rotation,
and scaling ofP); see Fig. 1. A restricted version of this problem, in which we just
determine whetherP can be placed insideQ without scaling, was solved by Chazelle
[6], in O(mn2) time. See also [1], [8], and [16] for other approaches to the more general
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Fig. 1. (i) The polygonP. (ii) The polygonQ and a largest copy ofP insideQ.

problem, in whichQ is an arbitrary polygonal region. We remark that the complexity
of the algorithms for the general case is considerably higher, aboutO(m2n2) in [1],
O(m3n2) in [16], andO(m4n2) in [8]. See [2], [3], [9], [12], and the references therein
for other related work on the polygon-placement problem.

Problems concerning the placement of one polygon inside another are important in
robotics and manufacturing. This restricted problem is also applicable to an approach
to object recognition recently proposed by Basri and Jacobs [5], based on matching
two-dimensional faces of polyhedral objects. The transformation that places the largest
similar copy of a polygonP, derived from a face of an object model, inside a polygon
Q, derived from an image, is a candidate for a transformation which matches the entire
model to the image.

The geometric setup of the problem is as follows. We observe, following Baird [4], that
similar placements ofP can be parametrized nicely by referring to an arbitrarily chosen
reference pointp ∈ P. A placementπ is represented by a quadruple(s, t, u, v), where
(u, v) is a translation ofp in the plane, ands= ρ cosθ , t = ρ sinθ , whereP is rotated
byθ and scaled byρ, aroundp. Let Pπ denote the similar copy ofP corresponding to the
placementπ . The standard placement putsp at the origin, withρ = 1, θ = u = v = 0.
Thus if (x, y) is a vertex ofP in the standard placement, its position at the placement
(s, t, u, v) is (sx− ty+ u, t x + sy+ v). Such a placement ofP lies fully within Q if
and only if every vertex(xi , yi ) of P lies in every half-spaceaj x + bj y ≤ 1 containing
Q and bounded by the line supporting an edge ofQ; see Fig. 1. That is, the placement
(s, t, u, v) must satisfy the following system ofmn linear inequalities:

aj (sxi − tyi + u)+ bj (t xi + syi + v) ≤ 1

or

Li, j : (aj xi + bj yi )s+ (−aj yi + bj xi )t + aj u+ bj v ≤ 1 .

In other words, the spaceC of all similar placements ofP insideQ is a four-dimensional
convex polyhedron formed by the intersection ofmn half-spaces. This already implies
that the combinatorial complexity ofC is O(m2n2), and that it can be constructed in
O(m2n2) time [15]. However, we improve this bound in what follows, exploiting the
fact thatC is highly degenerate.

In order to find the largest similar copy ofP insideQ, we need to find a point ofC that
maximizess2 + t2 = ρ2. Unfortunately, maximizing a convex function over a convex
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polyhedral domain is not anLP-type problem(in the setup of [11], where a linear-time
randomized solution for such problems is described), so it appears that the algorithm of
choice is to examine each vertex ofC and select the one with the largest value ofs2+ t2

(the maximum of such a convex function is clearly attained at a vertex ofC). Moreover,
sinces2 + t2 depends only ons and t , it suffices to projectC onto thest-plane, and
examine only the vertices of that projection.

The main result of the paper is the following theorem.

Theorem 1.

(a) The total number of vertices ofC is O(mn2), and they can all be computed in
time O(mn2 logn).

(b) The vertices of the projection ofC onto the st-plane can be computed in time
O(mn2 logn).

Remark. Although part (b) follows immediately from part (a), we give a direct proof
of (b), which is somewhat simpler and provides more geometric insight into the structure
of the problem.

Proof of Theorem1. We prove both parts by applying the standard duality transform
that maps a point(ξ1, ξ2, ξ3, ξ4) to the hyperplaneξ1s+ ξ2t + ξ3u+ ξ4v = 1 and vice
versa. We denote the coordinates in the dual space bys∗, t∗, u∗, v∗. For 1≤ i ≤ m and
1≤ j ≤ n, letwi, j denote the point dual to the hyperplane bounding the half-spaceLi, j ,
i.e.,

wi, j = (aj xi + bj yi , −aj yi + bj xi , aj , bj ).

The convex hull of the points in{wi, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, denoted byD, is the
dual polytope ofC. It is easy to verify that all the pointswi, j are extreme points ofD
(or, equivalently, that all the hyperplanes bounding the half-spacesLi, j contain facets
of C). Note that, for each fixedj corresponding to an edge ofQ, the convex hullGj

of {wi, j }mi=1 is a similar copy ofP that lies in the 2-planeπj : u∗ = aj , v∗ = bj . The
dual polytopeD, then, is the convex hull ofn similar copies ofP, placed in parallel
2-planes in 4-space. Each facet ofD corresponds to a placementπ of P insideQ such
that Pπ ⊆ Q and there are at least four vertex–edge incidences between the vertices of
Pπ and the edges ofQ.

We begin with the proof of part (b). We exploit the well-known fact that projection
in the primal is slicing in the dual. In more detail, letC2 denote the projection ofC
onto thest-planeu = 0, v = 0, as effected by the mapping(s, t, u, v) 7→ (s, t, 0, 0).
Then a lineαs+ βt = 1 in thest-plane is a supporting line ofC2 if and only if the
hyperplaneαs+ βt = 1 is a supporting hyperplane ofC in R4. This is equivalent, in the
dual, to having the point(α, β,0, 0) belong to the boundary ofD. Thus, computingC2

is equivalent to computing the cross sectionD2 of D with the 2-planeu∗ = 0, v∗ = 0.
Our strategy for computingD2 is first to computeD3, the cross section ofD with the

hyperplaneu∗ = 0, and then to sliceD3 with the planev∗ = 0. Since it is trivial to inter-
sect a three-dimensional polytope with a plane, in time proportional to the complexity
of the polytope, we only consider the construction ofD3.
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Fig. 2. Convex hull of parallel polygons.

Without loss of generality, we can assume that none of theaj ’s is 0. Then each of the
polygonsGj lies outside the hyperplaneu∗ = 0. Hence, any vertexw of D3 must be an
intersection ofu∗ = 0 with an edge ofD, connecting two vertices of a pair of distinct
polygons,Gi andGj , whereGi lies aboveu∗ = 0 andGj lies below. Moreover,w must
also be a vertex of the intersection of the convex hull ofGi ∪ Gj with u∗ = 0. So we
can constructD3 by taking the convex hull, inR4, of every pair of polygonsGi , Gj ,
intersecting all of these subhulls withu∗ = 0, and then taking the convex hull of the
resulting intersections.

We consider the geometry of the subhull of one such pairGi ,Gj . The two parallel
2-planesu∗ = ai , v

∗ = bi andu∗ = aj , v
∗ = bj lie in the common 3-planeFi, j defined

by

(bj − bi )u
∗ + (ai − aj )v

∗ + (bi aj − bj ai ) = 0

and so does the subhull determined byGi ,Gj . The three-dimensional geometry of
conv(Gi ∪ Gj ) in Fi, j is as shown in Fig. 2.

The intersection ofFi, j with u∗ = 0 is the 2-plane

u∗ = 0, v∗ = bi aj − bj ai

aj − ai
,

which is also parallel to the two polygonsGi ,Gj . Slicing the convex hull of the two
parallel polygons with a parallel plane, we get a third parallel polygonGi, j which is the
Minkowski sum of appropriately scaled copies ofGi andGj . This polygon has at most
2m vertices, and it is easy to compute these vertices directly from the vertices ofGi and
Gj . Note thatGi, j lies in bothFi, j and inu∗ = 0.

The 3-polytopeD3 in u∗ = 0 is the convex hull of all these polygonsGi, j . There are
O(n2) such polygons, each with at most 2m vertices, so the total complexity ofD3 is
O(mn2) (which of course is also a consequence of the bound for the overall complexity
of D, as asserted in part (a) and proven below).

The algorithm is simply to form the polygonsGi, j , take their three-dimensional convex
hull, and intersect it withv∗ = 0. Since the Minkowski sum of two convex polygons can
be computed in linear time [10], we spendO(mn2) time in computing the polygonsGi, j .
Their convex hull can be computed inO(mn2 logn) time, using the divide-and-conquer
algorithm of [14] (which now has onlyO(logn) recursive levels, because we start with
the already available polygonsGi, j ). Hence, the total running time isO(mn2 logn).

This completes the proof of part (b). Note that in practical terms, the implementation
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of this algorithm is a straightforward setup followed by a three-dimensional convex hull
computation, which can be performed efficiently with publicly available software.1

We now return to the proof of part (a). We first consider the facets ofD whose
supporting hyperplanes are parallel to the 2-planeu∗ = 0, v∗ = 0. The equation of such
a hyperplanehF of a facetF has the formβu∗ + γ v∗ + δ = 0. Hence, ifhF contains
a vertex of someGj , it must contain the entire polygonGj . It then follows thatF must
be the convex hull of the union of two polygonsGi , Gj (as in the proof of part (b) given
above). The facetF is dual to the placement ofP in which it is shrunk to a point and all
its vertices are incident to the vertex ofQ where edgei of Q meets edgej of Q (so these
two edges must be consecutive edges ofQ). The number of such placements isn, and the
complexity of each of the corresponding facets isO(m), since it is the three-dimensional
convex hull of 2m points. (It is easily verified that each of these hulls is indeed a facet of
D.) It follows that the overall complexity of these facets ofD is O(mn). Constructing
all these facets is easy to do inO(mn) time.

Next, consider the facets ofD whose supporting hyperplanes are not parallel to the 2-
planeu∗ = 0,v∗ = 0. LetF be such a facet ofD, and leth be the hyperplane supporting
F . The equation ofh can be written ast∗ = αs∗ + βu∗ + γ v∗ + δ (for simplicity we
assume, without loss of generality, thatα is never infinite). Then, for eachj = 1, . . . ,n,
the line`j of intersection betweenh and the 2-planeπj containingGj either touches or
is disjoint fromGj . The equation of̀ j is t∗ = αs∗ + βaj + γbj + δ, u∗ = aj , v∗ = bj .
Note that the coefficientα uniquely determines the vertex ofGj nearest tò j , for every
j , unlessα is a “critical” value equal to the slope of an edge of someGj . There are
ν = mnsuch critical slopesα, corresponding to the orientations at which an edge ofP
is parallel to an edge ofQ, and it is easy to compute them, in order, in timeO(mnlogn).
Let α1 < α2 < · · · < αν be these critical slopes.

Let K be an open interval ofα-coefficients between two successive critical slopes.
Then, for eachj = 1, . . . ,n, there exists a unique vertexwi (K ), j of Gj , such that ifh
is any supporting hyperplane ofD whoseα-coefficient lies inK , thenh can touchGj ,
if at all, only atwi (K ), j . In other words, such anh is also a supporting hyperplane of
SK = {wi (K ), j }nj=1 (h must of course touch at least one of these vertices, and at least four
if it contains a facet ofD). For two adjacent intervalsK andK ′, the setSK ′ is obtained
from SK by replacing one vertexw by another vertexw′ (both being adjacent vertices of
someGj ). It easily follows that every facetF ofD not parallel tou∗ = 0,v∗ = 0 is either
a facet ofconv(SK ), for some intervalK , or, if theα-coefficient ofF is a critical value, a
facet ofconv(SK ∪ SK ′), for some pair of consecutive intervalsK andK ′. If the vertices
of P andQ are in general position, these latter facets correspond to placements in which
an edge ofP is incident to an edge ofQ. In fact, we can prove the following stronger
claim. Assumingα0 = −∞ andαν+1 = +∞, let Ki be the open interval(αi , αi+1), for
0 ≤ i ≤ ν. With a slight abuse of notation, letSi = SKi and letξi denote the unique
element ofSi \Si−1, for 1≤ i ≤ ν.

1 For example, Ken Clarkson’shull program, athttp://netlib.att.com/netlib/voronoi/

hull.html , or Ioannis Emiris’ chD, available by ftp from robotics.eecs.Berkeley.edu in
/pub/ConvexHull . These and other convex hull programs are listed on the computational geometry software
Web page athttp://www.geom.umn.edu/software/cglist . Using either of these programs gives a
randomized algorithm which runs in timeO(mn2 logmn), slightly worse than our theoretical result.
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Lemma 2. Every facet F ofD that is not parallel to u∗ = 0, v∗ = 0 is either a facet
of the convex hull conv(S0) or a facet of the convex hull conv(Si−1 ∪ {ξi }) incident toξi

for some1≤ i ≤ ν.

Proof. Let F be a facet ofD that is not parallel tou∗ = 0, v∗ = 0 and that is not a
facet ofconv(S0). Let W be the set of vertices ofF , and leti ≤ ν be the index such
that theα-coefficient of the hyperplane supportingF lies in the (semi-open) interval
(αi−1, αi ]. Then, by the above argument,W ⊆ Si−1 ∪ {ξi }. Supposej ≤ i is the largest
index such thatξj ∈ W (i.e., Sj is obtained fromSj−1 by inserting one of the points of
W and deleting a point ofSj−1). Then it is easily seen thatW ⊆ Sj−1 ∪ {ξj }. Hence,F
is a facet ofconv(Sj−1 ∪ {ξj }) incident toξj , as asserted.

This lemma suggests that we should computeconv(S0) and, for each 1≤ i ≤ ν, we
compute the facets ofconv(Si−1 ∪ {ξi }) incident toξi . Since the hyperplanes containing
the facets ofconv(Si−1 ∪ {ξi }) incident toξi have only three degrees of freedom, this
problem can be formulated as a three-dimensional convex hull problem, and can be solved
in O(n logn) time; the number of these facets, as well as their overall complexity, is
O(n). Notice that the setS0 and the verticesξi , for 1 ≤ i ≤ ν, can be computed in
O(mnlogn) time. Repeating this algorithm for all 1≤ i ≤ ν and computingconv(S0),
the algorithm produces a total ofO(mn2) facets, ofO(mn2) overall complexity, in time
O(mn2 logn).

These arguments prove that the total number of facets ofD is O(mn2), and that their
overall complexity, and hence the overall complexity ofC, is O(mn2). Unfortunately, the
algorithm might produce additionalspuriousfacets, which are not facets ofD. Indeed,
a facetF of conv(Si−1 ∪ {ξi }) corresponds to a placementπ of P such that there are at
least four vertex–edge incidences between the vertices ofPπ and the edges ofQ, and
F is spurious ifPπ 6⊆ Q. If the α-coefficient ofF lies in the intervalKi−1 ∪ Ki , then
it follows by definition thatF cannot be spurious. However, if thisα-coefficient lies in
another intervalKj , for some j 6∈ {i − 1, i }, thenF may be spurious becausePπ may
violate a constraintLu,v corresponding to some vertexwu,v ∈ Sj \(Si−1∪ Si ). See Fig. 3
for an example: Letαi be the critical slope at which the edgep1 p2 of P is parallel to
the edgee5 of Q. Then, by construction,Si−1 = {w6,1, w5,2, w4,3, w3,4, w1,5, w7,6} and
ξi = w2,5. It is easy to verify thatconv({w5,2, w4,3, w3,4, w2,5}) is a facet ofSi−1 ∪ {ξi }
incident toξi = w2,5, but, as shown in Fig. 3, the corresponding copy ofP does not lie
insideQ (this facet is “violated” byw7,1).

Hence, to complete our algorithm, we need to detect and discard the facets of the hulls
conv(SK ) which are not facets ofD. This is accomplished as follows. We triangulate
each computed facetF into O(|F |) tetrahedra, using the bottom-vertex triangulation
scheme described in [7]. Let1 denote the set of resulting tetrahedra;|1| = O(mn2).
Let D∗ be the bottom-vertex triangulation of the boundary ofD. We want to discard
those tetrahedra of1 that are not facets ofD∗. For a vertexw, let1w ⊆ 1 be the subset
of tetrahedra incident tow, and letVw be the set of vertices of the tetrahedra in1w. It is
easily verified that a tetrahedron1 ∈ 1w is a facet ofD∗ if and only if1 is a tetrahedron
in the bottom-vertex triangulation of the boundary ofconv(Vw), which is necessarily
incident tow. We therefore compute the facets ofconv(Vw) that are incident tow, by
the reduction, noted above, to a three-dimensional convex hull construction, and then
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Fig. 3. Spurious facets generated by the algorithm: (i) the orientation ofP lies in Ki−1, whereξi = w2,5,
and (ii) a placement ofP corresponding to a spurious facet ofSi−1 ∪ {w2,5}.

compute the bottom-vertex triangulation of each such facet. Note that these facets can
be computed inO(|Vw| logn) time, since the vertices ofVw lie on onlyn 2-planes, so
that the convex hull computation requires onlyO(logn) recursive levels; we omit the
easy details. We can now discard those tetrahedra in1w that do not lie on the boundary
of conv(Vw). Repeating this procedure for all verticesw of D eliminates all spurious
facets computed by the algorithm.

The running time of this step is
∑

w O(|Vw| logn), where the sum extends over all
verticesw ofD. Since

∑
w |Vw| = 4|1| = O(mn2), the total time spent isO(mn2 logn).

This completes the proof of part (a).

An immediate corollary of Theorem 1(b) is the following.

Corollary 3. The largest similar copy of P inside Q can be computed in O(mn2 logn)
time.

We conclude this paper by constructing a pair of polygonsP and Q, with m andn
vertices, respectively, so that there areÄ(mn2) placements ofP insideQ, each of which
induces four incidences of the form(p, e), wherep is a vertex ofP ande is an edge of
Q. This implies that the combinatorial bound of Theorem 1(a) is tight in the worst case.

The construction is depicted in Fig. 4. Letn be of the form 2l + 2, for some positive
integerl , m an even integer, ando the origin. The firstn/2 verticesq1, . . . ,qn/2 of Q
are evenly distributed along the arc of the unit-radius circle, centered ato, which goes
from−π/6 toπ/6 (in counterclockwise direction). The verticesqn/2+1 · · ·qn are evenly
distributed along a tiny arc of a larger circle, say the circle with radius 10+ ε and
center(10, 0), and we let the tiny arc span the orientations betweenπ−ε/2(10+ ε) and
π + ε/2(10+ ε), so that its arc length isε. The value ofε will be chosen sufficiently
small, in a manner to be detailed in a moment.

We place one vertexpm of P at the origino and the remainingm−1 vertices, equally
spaced, on a circular arc of radius1

4, centered at( 3
4, 0), that spans the orientations between

−π/40l and+π/40l .
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Fig. 4. PolygonsP andQ for which there existÄ(mn2) similar placements ofP in Q with four vertex–edge
incidences per placement.

Claim. If ε is chosen sufficiently small, then the following holds. For every triple
n/2+1≤ i ≤ n, 1≤ j < n/2,and1≤ k ≤ m−2, there is a placement of P inside Q,
using translation, rotation, and scaling, such that the vertex pm of P coincides with the
vertex qi of Q, and such that the edge pk pk+1 of P coincides with the edge qj qj+1 of Q.

Notice that every such placement ofP induces four vertex–edge incidences between
P andQ, and is thus a vertex ofC.

Proof. We consider the scaling, rotation, and translation ofP that placespk pk+1 on
the line` supportingqj qj+1 and also placespm atqi .

As in Fig. 5, letq be the midpoint of edgeqj qj+1; q is also the orthogonal projection
of the origino onto the linè supportingqj qj+1. Let q′ be the projection ofpm, which
is placed atqi , onto`. Letq′′ be the projection ontò of o′, the center of the small circle
whose boundary contains the pointsp1, . . . , pm−1, which is appropriately shifted with
P. Let q′′′ be the intersection of̀ with the line passing throughpm = qi ando′. Finally,
let s be the intersection of̀ with the line supportingpm pm−1 (at this placement ofP).

The distance fromq to q′ is at mostε. The angleq′′′pmq′ is the same as the angle
q′′′o′q′′, which, by the construction ofP, is at mostπ/(40l ). The anglespmq′′′ is exactly
π/(40l ). Since the distance frompm to q′ is at most 1+ ε, the distance fromq to s is

d(q, s) ≤ d(q,q′)+ d(q′, s) ≤ ε + (1+ ε) tan
π

20l
.

We can chooseε small enough so that

ε + (1+ ε) tan
π

20l
< sin

π

6l
= d(q,qj+1),
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Fig. 5. Proof of claim.

which then implies that this placement ofP fully lies below the segmentpmqj+1. An
analogous argument shows thatP lies above the segmentpmqj , so P lies insideQ, as
claimed.

We therefore obtain the following result.

Theorem 4. There exist a convex m-gon P and another convex n-gon Q such that
there areÄ(mn2) placements of similar copies of P inside Q, each of which induces
four vertex–edge incidences between P and Q.

Remarks. (1) A weakness of the above lower-bound construction is that it only yields
placements ofP with “degenerate” vertex–edge contacts, including a vertex–vertex
contact and an edge–edge containment. Is there another construction, in which there
areÄ(mn2) similar placements ofP inside Q, such that at each of them four distinct
vertices ofP touch four distinct edges ofQ? This extends a similar open problem, asking
for Ä(mn2) congruentplacements ofP inside Q, each with three contacts of distinct
vertices ofP with distinct edges ofQ; see [13] for details.

(2) Another open problem is whether the algorithm for finding the largest similar
placement ofP insideQ can be improved. Such an improvement could be by at most a
logarithmic factor if we have to compute the entire spaceC, as is implied by the above
lower bound. Can we do better if we only need to compute the largest placement ofP?
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