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ABSTRACT
We describe LASER, a scalable response prediction platform cur-
rently used as part of a social network advertising system. LASER
enables the familiar logistic regression model to be applied to very
large scale response prediction problems, including ones beyond
advertising. Though the underlying model is well understood, we
apply a whole-system approach to address model accuracy, scala-
bility, explore-exploit, and real-time inference. To facilitate train-
ing with both large numbers of training examples and high dimen-
sional features on commodity clustered hardware, we employ the
Alternating Direction Method of Multipliers (ADMM). Because
online advertising applications are much less static than classical
presentations of response prediction, LASER employs a number of
techniques that allows it to adapt in real time. LASER models can
be divided into components with different re-training frequencies,
allowing us to learn from changes in ad campaign performance fre-
quently without incurring the cost of retraining larger, more stable
sections of the model. Thompson sampling during online inference
further helps by efficiently balancing exploration of new ads with
exploitation of long running ones. To enable predictions made with
the most recent feature data, we employ a range of techniques, in-
cluding extensive caching and lazy evaluation, to permit real time,
low latency scoring. LASER models are defined using a configu-
ration language that ties together the training, validation, and in-
ference pieces and permits even non-programming analysts to ex-
periment with different model structures without modifications to
code or interruptions to running servers. Finally, we show via ex-
tensive offline experiments and online A/B tests that this system
provides significant benefits to prediction accuracy, gains in rev-
enue and CTR, and reductions in system latency.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models; I.2.6
[Artificial Intelligence]: Learning; H.5.3 [Information Systems]:
Web-based Interaction
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1. INTRODUCTION
Online advertising is a multi-billion dollar business and forms

a large swath of the internet economy. It is practiced in various
forms like sponsored search advertising, contextual advertising and
display advertising [5]. These are highly automated systems that
auction ad space for user visits on various publisher pages. The
auction entails ranking eligible ads as a function of advertiser bid
and ad click-through rates (CTR). The advertiser payoff is often
determined through a second-price auction where the winner pays
the minimum price required to win the auction. For performance
based advertising, such a payment is only made when a user clicks
on an ad or performs some advertiser specified post-click action.

Large scale online advertising systems rely heavily on machine
learned models that can accurately predict CTR. This is a diffi-
cult learning problem due to the curse of dimensionality and data
sparseness, but such methods have been studied extensively in the
last few years in the machine learning and data mining communi-
ties. However, deploying such methods for large scale online ad-
vertising systems in a reliable and cost-effective fashion involves
non-trivial challenges, beyond fitting machine learning models to
large data.

An ideal system should allow for scalable model training using
standard and well understood commodity clustered hardware to re-
duce maintenance cost; it should be easy to test a new model on
live traffic without much effort on coding; offline metrics that are
indicative of online performance should be available to terminate
below-par models quickly; the system should also provide a mech-
anism for exploration to avoid ad starvation; finally, runtime com-
putations should scale under latency constraints. The main theme
of this paper is to provide such an end-to-end holistic solution. We
argue that building machine learning models without consideration
to all such issues is not the right approach in practice for adver-
tising systems. Machine learning methods should not be only tied
to out-of-sample predictive accuracy. Careful attention to all such
practical issues is important.
Background We begin with a brief background of an online adver-
tising system. To simplify the exposition, we assume the pay-per-
click model where an advertiser pays only when a user clicks on
an ad. The flow works as follows: an ad server receives a request
when a user visits some publisher page. Depending on the applica-
tion, we may have information about the user and also the context in
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which the request was made. For instance, in sponsored search the
user specified query is a necessary and important context to match
ads, while user attributes might be helpful but of secondary im-
portance. For display advertising, context information includes the
device, the ad placement information, and other information about
how and where the ad is shown. In this setting, user attribute in-
formation plays a more important role since user intent is typically
weak. For a given request, we rank the set of eligible ads based on
some function of advertiser bid and CTR (e.g., the product of bid
and CTR). Such ranking has to be done for thousands of ads under
tight latency constraints (tens of milliseconds).

Our contributions are as follows. We introduce LASER, a holis-
tic end-to-end machine learning solution to deploy response predic-
tion models based on logistic regression to large online advertising
system. We partition the logistic regression model into a purely
feature based cold-start component and an ad-campaign-specific
warm-start component. The cold-start component is trained on
commonly available commodity clustered hardware running MapRe-
duce using the scatter-and-gather Alternating Direction Method of
Multipliers (ADMM) algorithm [4], whereas the warm-start com-
ponent learns residual campaign-level variation through frequent
retraining. LASER also supports explore-exploit via Thompson
sampling [19], which is an easy-to-implement yet powerful algo-
rithm that draws samples from the posterior distribution of warm
start coefficients. To permit low-latency computations at runtime,
we introduce a range of techniques that take advantage of extensive
caching and lazy evaluation. Our models are defined through a flex-
ible configuration language that ties training, validation and infer-
ence pieces together, enabling testing new models without change
to production code. Our system has been fully deployed on a large
social media site, and we illustrate our method through extensive
experiments using both offline data and online A/B tests in a real
online advertising system.

2. RELATED WORK
Significant work have been done on machine learning models to

accurately predict CTR for advertising applications [16, 17, 10, 1,
6, 11, 20]. However, these papers only focus on improving offline
model training to improve out-of-sample predictive accuracy; scal-
able model training and good feature construction are the primary
focus. We make a new contribution to this area by providing a
scalable model fitting approach through ADMM that can scale on
standard MapReduce infrastructure. Explore/exploit via Thomp-
son sampling for advertising was recently studied by [6] but in a
simulation and replay framework; no A/B test results on a live sys-
tem were reported as we do in this paper. The issue of scaling
runtime computations has been addressed by some papers sepa-
rately through predictive indexing [2, 9], where the main idea is
to perform pre-computations to do fast retrieval in an approximate
fashion. Our approach is to reduce the generality of the model class
(we confine ourselves to generalized linear models) but take a more
general approach from a systems perspective, leveraging lazy eval-
uation and extensive caching for scalability. Unlike all the previous
papers, to the best of our knowledge, this is the first paper that
provides an end-to-end solution to deploy sophisticated machine
learning models for a large scale online advertising system in an
efficient, reliable and cost-effective fashion. The closest work that
is similar in spirit to ours is [16], but they mainly provide an ex-
tensive summary of experience and issues when fitting large scale
machine learning models in an offline fashion. The focus of that
paper is building an efficient and robust offline training pipeline
to minimize out-of-sample predictive accuracy metrics; issues like

agile model deployment and efficient runtime computations are not
the focus.

3. OUR MODEL
In this section we describe the components of the logistic regres-

sion model used by LASER. This is followed by a description of
our scalable model fitting procedure and our explore/exploit strat-
egy via Thompson sampling.

3.1 Model Description
Notations. Throughout the paper, we will use index i to denote

user i, index j to denote item j (e.g. ad campaigns), and index t to
denote context t (e.g. time of day, day of week, where the item was
shown, etc). The binary response (click or non-click) for a user i
on an item j for context t is denoted as yijt. Since the users, items,
and contexts can all have features, we denote the features for user i
as xi, the features for item (campaign) j as cj , and the features for
context t as zt.

Model. Since the response yijt is binary, it is natural to assume
a Bernoulli model with logistic link function

yijt ∼ Bernoulli(pijt), (1)

where

pijt =
1

1 + exp(−sijt)
. (2)

We model the log-odds sijt as

sijt = ω + s1,c
ijt + s2,c

ijt + s2,w
ijt , (3)

s1,c
ijt = x′

iα + c′jβ + z′
tγ, (4)

s2,c
ijt = x′

iAcj + x′
iCzt + z′

tBcj , (5)

s2,w
ijt = δj + x′

iηj + z′
tξj . (6)

Here, ω is the global intercept, s1,c
ijt consists of all first order inter-

actions or main effects, s2,c
ijt consists of all second order interactions

among features. The parameters ω, α, β, γ, A, B and C are global
coefficients that are shared across all events. We call this set of
unknown coefficients Θc = {ω, α, β, γ, A, B, C} the cold-start
component, because for a new user or ad campaign, we can still
use features to obtain a reasonable estimate of CTR through s1,c

and s2,c.
Since the number of ad-campaigns is relatively small compared

to the number of users, there is heterogeneity in the sample size
available across campaigns. For campaigns with large data, one
could estimate residual campaign specific idiosyncrasies by adding
a warm-start component s2,w in equation (3). The warm-start pa-
rameters would be denoted by Θw = {δj , ηj , ξj}, j = 1, · · · , J .
This component provides a mechanism to learn campaign-specific
corrections and smoothly transition from cold start to warm start
based on the sample sizes of campaigns. Such a transition is pos-
sible by allowing for regularization/shrinkage on coefficients, ob-
tained by constraining them through prior distributions that we de-
scribe below.

Priors. Since the feature set is often high-dimensional, espe-
cially for second-order interaction terms in cold-start and per-campaign
coefficients in warm-start, proper shrinkage and regularization of
coefficients are required to avoid over-fitting. We use Gaussian pri-
ors for all the parameters Θ = {ω, α, β, γ, A, B, C, δj , ηj , ξj}.
Specifically, for scalars ω and δj , the priors become ω ∼ N(0, σω),
and δj ∼ N(0, σδ). For coefficient vectors such as α, β, γ, ηj , and
ξj , we let α ∼ MVN(0, σαI), ηj ∼ MVN(0, σηI) and so forth.
For coefficient matrices A, B and C, we assume entries are i.i.d.
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Gaussian with mean 0 and variance σA, σB and σC respectively.
We estimate the prior variance through cross-validation using a tun-
ing set. Also, for simplicity, in our own implementation we assume
α, β, γ, A, B, and C all share the same prior variance, the δj’s have
the same prior variance, and ηj’s and ξj’s share the same prior vari-
ance for all campaigns.

3.2 Large Scale Model Fitting
Model fitting on a single machine. When the data size is rela-

tively small and can be loaded into the memory of a standard ma-
chine, the model fitting proceeds by using routine methods avail-
able to fit a logistic regression with Gaussian priors (L2 regulariza-
tion).

Posterior mode of (Θc ,Θw ) can be obtained via any convex
optimization algorithm like conjugate gradient, L-BFGS [22], trust
region [15], and others. The model can be trained frequently to
rapidly update the warm-start coefficients.

3.2.1 Model Training with Large Data
For large online advertising systems where training data with

hundreds of millions of observations and hundreds of thousands
of coefficients (if not more) is routine, fitting logistic regression is
challenging. In our system, it is also desirable to have a model
fitting procedure that runs on standard distributed computing in-
frastructure like Hadoop. This simplifies the production workflow
and provides a more reliable system.

Since the coefficient Θc is more stable and changes slowly rel-
ative to Θw , we can have different training frequencies for cold-
start and warm-start components. For the slow-changing Θc , we
have found weekly or bi-weekly training cycles for this compo-
nent to be adequate in practice. The warm-start coefficients Θw

needs to be re-trained more frequently since it is time sensitive and
changes with the activation and termination of ad campaigns. We
have found that re-training this component as frequently as possible
(e.g., on the order of minutes to hours) is important.

Note that for known cold-start coefficients, the warm-start co-
efficients can be computed independently for each ad campaign.
Thus, we are able to decompose a big logistic regression into sev-
eral small logistic regressions that can be trained independently of
each other. This can be done routinely on Hadoop by splitting the
data using campaign id as key in the map phase, and running inde-
pendent per campaign regression in the reduce phase. To train the
cold-start component, we adopt the ADMM algorithm that scales
through a scatter-and-gather approach. It partitions data and runs
an independent regression on each partition, but obtains a consen-
sus estimate by combining estimates across partitions after each
iteration. A few iterations of such a scatter-and-gather approach
are enough for convergence, provided we are careful in how we
initialize and adjust the step size of the algorithm across iterations.

3.2.2 Estimating Cold-Start Coefficients on Hadoop
Traditional logistic regression model fitting approaches such as

conjugate gradient or trust region require many iterations (e.g. at
least in the order of 100s) to converge; running them on a Map-
Reduce infrastructure like Hadoop usually introduces significant
I/O overhead. This is mainly because each iteration is a new Map-
Reduce job, and since the input and output of mappers and reducers
are through disk, popular Map-Reduce infrastructures like Hadoop
are not suitable for iterative algorithms that require large number of
iterations. Although new infrastructures, such as Spark [21], have
emerged recently that are more efficient for iterative machine learn-
ing algorithms, their development is still in an early stage; full in-
tegration to the Hadoop system in a production environment could

have considerable costs in terms of stability, multi-user resource
management, and software compatibility.

In our LASER system, we adopt the Alternating Direction Method
of Multipliers (ADMM) algorithm [4] to obtain cold-start coeffi-
cient estimates, and our implementation is developed to work with
the widely adopted Hadoop Map-Reduce infrastructure. ADMM
can be shown to converge to the posterior mode obtained by fitting
logistic regression to the entire data on a single machine. Com-
pared to other popular fitting algorithms, such as conjugate gradient
or trust region, ADMM requires significantly fewer outer iterations
(i.e. Map-Reduce jobs) to converge. After applying a few modifi-
cations, like better initialization and step size selection, we have
found 5-10 outer iterations of ADMM provides good predictive
performance in practice. The number of inner iterations required to
fit smaller logistic regression to each partition is still significant, but
that does not involve I/O overhead, hence is efficient on Hadoop.

3.2.3 The ADMM Algorithm to Fit L2 Regularized
Logistic Regression

Suppose we partition the data randomly into R partitions. For
each partition r, denote the data as dr and coefficient as Θr . Also
denote the logistic loss function (i.e. negative log-likelihood) for
each partition r as Lr(Θr; dr), and the L2 penalty function on Θ
as P(Θ). The main idea of ADMM is to assume each partition
r has its own coefficient Θr , and assume our interest is to obtain
a global consensus estimate Θ, obtained by imposing a constraint
Θr = Θ for all r = 1 . . . R. The optimization problem is formally
given by

min
RX

r=1

Lr(Θr; dr) + P(Θ), (7)

subject to

Θr − Θ = 0, r = 1 . . . R. (8)

The ADMM algorithm for large scale logistic regression can be
described as follows: At iteration l + 1, the estimate for Θr which
is denoted by Θl+1

r can be fitted independently and in parallel by

Θl+1
r = argminΘr

Lr(Θr; dr) + ρ/2
‚‚‚Θr − Θl + ul

r

‚‚‚
2

(9)

where ρ is the step size (learning rate) that controls the convergence
rate, Θl is the consensus estimate of Θ at iteration l, and ul

r intu-
itively is a measure of the partition-specific bias of the coefficients.
When Θl+1

r for all r = 1 . . . R are obtained through a Map-Reduce
job, we aggregate the results and compute the mean of Θl+1

r for all
r = 1 . . . R as Θ̄l+1, and the mean of ul

r for all r = 1 . . . R as ūl.
The consensus estimate at l + 1, Θl+1 can be estimated by

Θl+1 = argminΘP(Θ) + (Rρ/2)
‚‚‚Θ − Θ̄l+1 − ūl

‚‚‚
2

(10)

and

ul+1
r = ul

r + Θl+1
r − Θl+1 (11)

Expediting convergence of ADMM. In our use ADMM we
have found two ways to improve the empirical convergence rate.
First, we observed that the convergence of ADMM is sensitive to
the initialization of the consensus Θ0. We found a simple initial-
ization approach that improves the convergence of ADMM signif-
icantly. The idea is to run independent logistic regression on each
partition and use the mean of the parameters from the R partitions
as the initialization of Θ0 to start ADMM.

Second, we observed that the convergence and performance of
ADMM is quite sensitive to the step size ρ. One possible way to im-
prove is to adaptively change the step size ρ over iterations. In gen-
eral, a larger step size pushes the partition parameters more towards
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the current estimate of the global consensus; on the other hand, a
smaller step size gives each partition more freedom to explore their
own data to estimate partition parameters. With the consensus ini-
tialization, we have a good starting point for the global parameter.
Hence, it will be meaningful to strongly force each partition’s coef-
ficients to be close to the current global consensus at the beginning.
After a couple of iterations, reducing the step size to let each par-
tition explore more may further boost the performance. Based on
this idea, we found empirically that with consensus initialization,
the exponential decay of ρ over iterations is a good choice which
balances the global convergence with exploration within the parti-
tions. Specifically, we adaptively adjust ρ as follows,

ρ(l+1) = ρ(0)e−τl (12)

where ρ(0) is the base learning rate, τ is the decay the rate, and l is
the number of iterations.

Combining the two approaches, we are able to significantly re-
duce the number of iterations until convergence of ADMM. The
empirical results of how the two approaches improve the ADMM
convergence on our data can be found in Section 5.2.

3.2.4 Fitting Algorithm: Putting It All Together
Our algorithm for fitting the cold start and warm start compo-

nents at different frequencies is described in Algorithm 1. We note
that:

• Since Θc is purely feature driven, it changes slowly and
needs to be trained less frequently (e.g., once every few days
or few weeks) but since Θw captures fast-changing item spe-
cific behaviors, it has to be updated quickly (e.g., every few
minutes/hours).

• By treating Θc as a known offset in the model, Θw can either
be obtained via running independent logistic regression for
each item based on a moving window, or independent online
logistic regression for each item learned on data that are split
in batches. Our approach to online logistic regression utilizes
the dynamic state space concept by using the posterior from
the previous batch process as priors for the current batch to
transition into a new state. In our current LASER system we
adopt the moving window approach for simplicity. We plan
to test the online logistic regression approach in the future.

• Although it may appear redundant to include Θw when esti-
mating Θc using ADMM, this detail is in fact critical since
without including Θw in the fitting of Θc , we will intro-
duce bias when estimating Θc , especially when the clicks
are sparse in the data (i.e. CTR is small).

3.3 Explore-Exploit with Thompson Sampling
The goal in online advertising is to estimate CTR to maximize

revenue; improving out-of-sample predictive accuracy is not our
main objective. This is an explore/exploit problem, and there is a
positive utility associated with serving ads that have low empirical
means but high variances. We exploit ads that are known to be good
based on current knowledge for near term gains, but also explore
those that could be potentially good for longer-term gains.

Several explore/exploit schemes have been used in the litera-
ture. Examples include epsilon-greedy, the upper confidence bound
approach (UCB) [3, 14], Gittins index [8] and Thompson sam-
pling [19, 18, 6]. Of these, Thompson sampling works well when
the posterior distribution of parameters is available. [6] showed

Algorithm 1 LASER Model Fitting Algorithm
for every D days do

Obtain the most recent data and use ADMM to fit Θc and Θw

simultaneously by treating item-id as features.
for every M minutes do

Obtain the most recent data
Split the data by item id
for each item j in parallel do

Treat Θc as a given offset and fit (or update) {δj , ηj , ξj}
(i.e. Θw for item j)

end for
end for

end for

that Thompson sampling is better than other schemes like epsilon-
greedy, UCB, and exploit-only approaches through simulation stud-
ies conducted on an advertising application. They however did not
test it on a real advertising system. In our LASER system, we adopt
Thompson sampling and find it to work well in practice.

The main idea of Thompson sampling is to draw a sample from
the posterior of parameters (Θc ,Θw ), and compute CTR based
on the drawn sample instead of using the posterior mode. Intu-
itively, this introduces more exploration for ad campaigns that have
high posterior variances due to small sample sizes. Since Θc is
estimated using large amounts of data, we assume the posterior is
peaked and always use the mode as a plug-in estimate. However,
we do obtain the posterior of Θw and draw samples from it at serv-
ing time. We assume this posterior is Guassian centered around the
estimated mean and posterior covariance. For simplicity and fast
runtime computation, the posterior covariance matrix is assumed
to be diagonal.

3.4 Efficient Computation of Interaction Terms
For computing CTR according to model described in Equation

(3), we have to compute quadratic terms of the form x′
iAcj , where

xi and cj are feature vectors and A is a matrix of coefficients. Com-
puting these interaction terms at runtime can be expensive. We re-
duce this cost by pre-computing

Ãj = Acj

or the equivalent product with xi. In general, the number of ads is
smaller than number of users, hence it is more beneficial to com-
pute Ãj .

At the time of inference, the scoring system only computes the
inner product x′

iÃj , saving considerable computation. This tech-
nique is particularly effective when the set of all cj is much smaller
than the set of all xi, since the offline pre-computation is not too
costly and the set of Ãj coefficients can be effectively cached. The
full set of Ãj values only needs to be computed when the original
coefficients A are updated, but new and changed items will need
their Ãj values re-computed, either on demand or on a frequent
schedule.
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4. CONFIGURATION AND INFERENCE
In addition to achieving high performance on the typical metrics

used to benchmark click prediction systems, the LASER system
is designed to satisfy additional requirements needed for deploy-
ment in a web-scale advertising system. In the previous section,
we described using ADMM to scale training on commodity clus-
ter systems. In this section, we present our solutions to two addi-
tional challenges posed by our application: flexible configuration
and real-time inference.

4.1 Flexible Configuration
Models rarely stay constant: we are always working to improve

performance, introduce new features, and accommodate changes
in the training data. To facilitate rapid model experimentation,
LASER specifies the feature construction and transformation struc-
ture using a JSON-based [7] configuration language that drives both
the training process and online inference. The model’s feature pro-
cessing is expressed through the arrangement of three types of com-
ponents: sources, transformers, and assemblers, whose configura-
tions can be changed and refined without code modifications or ser-
vice restarts. We have developed a rich library of components that
can be used without modification as well as standard interfaces for
the implementation of application-specific functionality.

4.1.1 Sources
Source components translate features from external sources into

a numeric feature vector representation. The specification for sources
is deliberately left rather vague: features can come from almost
anywhere and be originally in any conceivable format. So long as
the component can translate these features into a numerical vector,
it can be used as a feature source.

For ad click prediction, we created sources for the user, ad cam-
paign, and context features as described Section 3. The user and ad
sources pull features off of the user profile and ad copy respectively,
including both standardized features, like known entities, and less
structured features, like the text of an ad. The context source en-
codes all information we have about where and when the ad is dis-
played, such as the time of the request, the page where it is to be
shown, the displayed size, and the formatting of the ad.

The actual implementations of these sources are clearly specific
to a given environment, but can often be reused widely within a site.
For example, our user profile features are standardized across many
applications and generated in a common format, so we can use the
user source built for ad click models in all response prediction tasks
that use user profile data as an input.

4.1.2 Transformers
Like sources, transformers emit feature vectors; however, they

are further constrained to only consume other feature vectors in the
system as input (i.e. feature vector outputs from sources or other
transformers). Transformers implement vector-to-vector functions
that modify the feature vectors into a form that is more useful for
a specific prediction task. Because they both consume and emit a
common datatype, transformers are even more easily reused than
sources.

Some examples of the basic transformers included in the LASER
system are:

Subset transformer. Sources are typically written for maximum
reuse, so they often include features that may not be useful in a
given application. The subset transformer allows the modeler to
specify exactly which features are needed (usually based on feature
selection results), so that the dimensionality of the feature space can
be reduced.

Bucketing transformer. Sometimes discretizing a numerical
feature into several categorical features can provide better model
performance. For example, we might have the time of a request
encoded as seconds since midnight, but it’s more useful to encode
it as one of eight discrete 3 hour day parts. The bucketing trans-
former allows the model writer to specify how to encode a real val-
ued feature into set of ordinal or categorical binary features, each
representing a range of the original real value.

Disjunction transformer. The disjunction transformer com-
bines several fine-grained binary features into a single coarser bi-
nary feature using the logical-OR operation.

Interaction transformer. The interaction transformer operates
on a pair of inputs and computes their outer product. As a practical
implementation matter, the interaction transformer also performs a
subset operation using results from feature selection, since it is rare
that all interaction features in the outer product are useful, and it is
far less expensive to never compute them than to subset them in a
subsequent transformer.

Function transformer. The function transformer applies a user-
specified function to its input vector. Among other applications,
this permits feature linearization and basis expansions.

4.1.3 Assembler
The final component in the LASER feature transformation pipeline

is the assembler. Unlike the other types, there is typically only a
single assembler in the end of a model configuration file. The as-
sembler takes inputs from each transformer or source output that is
to be used in the model, and packages them together into a single
block feature vector that is then used for model training, validation
and inference.

4.1.4 Example Model
In Figure 1 we provide a simple example of a LASER model with

two feature sources and three transformers. This model obtains its
input features from the user and the ad campaign sources. The fea-
ture vectors produced by each of these sources are fed through sub-
set transformers, where we keep the country and occupation fea-
tures from the user, and the title and body text features from the ad
campaign. These vectors then become the input to an interaction
transformer that creates interaction terms between the user’s coun-
try and occupation and the ad campaign’s title and body text. The
assembler finally gathers the output feature vectors from the sub-
set and interaction transformers and packages them for training and
inference.

Should we wish to modify what feature terms are used in this
model or how they are generated — e.g. by adding a third source,
changing the features kept by the subset transformers, or modifying
how feature vectors flow through the pipeline — we only need to
change this JSON file. Extensive model changes can thus be made
without modifying code in either the training or inference systems.

4.2 Real-time Inference
Given a trained model, predicting the CTR for a new event may

appear trivial, but performing such inference in real-time at web
scale presents a host of challenges. Each user visit generates one
or more requests to LASER to score and rank between several hun-
dred and a few thousand ads, with each request requiring features
for the user, context and each ad. LASER must gather these fea-
tures and score these requests quickly — typically within 10-20
milliseconds — to prevent delays in dependent systems.
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{
objects: [{
"name": "user_source",
"class": "org.laser.source.UserSource",
"parameters": { ... }

}, {
"name": "ad_source",
"class": "org.laser.source.AdSource",
"parameters": { ... }

}, {
"name": "user_subset",
"class": "org.laser.transformer.Subset",
"parameters": {
"input": "user_source",
"features": ["country", "occupation"]

}
}, {
"name": "ad_subset",
"class": "org.laser.transformer.Subset",
"parameters": {
"input": "ad_source",
"features": ["title", "body"]

}
},{
"name": "user_ad_int",
"class": "org.laser.transformer.Interaction",
"parameters": {
"inputs": [ "user_subset", "ad_subset" ],
"interactions": [["country", "occupation"], ["title", "body"]]

}
}, {
"name": "assembler",
"class": "org.laser.assembler.Assembler",
"parameters": {
"inputs": ["user_subset", "ad_subset", "user_ad_int"]

}
}]

}

Figure 1: A simple LASER model

4.2.1 “Better Wrong Than Late”
It often takes time to compute a feature vector. For example,

the ad and user sources must retrieve feature data from a remote
data store that may not be able to respond within the time window
LASER has to process a request, particularly if we have to query
for many items. The same situation would arise in the case of a
transformer that has to perform a computationally expensive oper-
ation on its input.

One advantage of the logistic regression models we use is that
they degrade gracefully when features are missing. Offline, we can
compute the mean of each term in the model using an unbiased
sample of impressions. Then if features are missing for a given
term, we can substitute this expected value as a reasonable approx-
imation to the term. LASER exploits this mechanism to ensure that
scoring remains quick by treating as missing any features that are
not immediately available.

We call this approach the “better wrong than late” philosophy,
since slightly less accuracy is preferable to not being able to gener-
ate a prediction because data takes too long to arrive. Any com-
ponent in a LASER model that expects to block or take exces-
sively long to compute its output vector (typically, but not always,
sources) is written such that it returns an empty value if the ac-
tual vector is not immediately available. When these empty values
reach the assembler, the system will interpret them using the miss-
ing values for that part of the model. Processing of these vectors
proceeds in a background thread and upon completion, the created
feature vector is stored in a cache for instant lookup on subsequent
requests that need the same data.

4.2.2 Caching And Lazy Evaluation
All terms in a LASER model take the form of a dot product be-

tween a coefficient vector and a feature vector, both of which may
be indexed by one or more of the entities present in the request
being scored. A typical model has 10 or more such terms. We of-
ten observe that these terms recur unchanged across different items
that are being scored. For example, in a single request, we may be
asked to score multiple items for the same user i, so the term x′

iα

can be reused. Or we may have a popular item j that we need to
score for all users visiting the site during a given period of time;
in this case the term c′jβ can be shared across all the users from
different requests.

Partial Results Cache. We can save considerable time by caching
the scalar values of each of these terms. Subsequent requests can
use these cached values, saving the overhead of repeatedly com-
puting the dot product. We call the structure that manages this op-
eration the Partial Results Cache (PRC), as it stores pieces of the
final score. The entries in the PRC, which are simply these scalar
dot products, are referenced using keys that uniquely identify the
feature and coefficient vectors in the term. Because both the keys
and values are small — unlike the feature vectors and coefficients
— the PRC can be made very large, improving its effectiveness.

Keyed Feature Vectors. In order to index into the PRC, all
sources and transformers emit keyed feature vectors, a combina-
tion of a string key and the actual feature vector. These keys obey
the following two constraints:

1. For each component, the output vector’s key must be com-
puted from only information passed in on the request and/or
the keys, but not the actual content, of any input vectors.

2. If two keyed feature vectors have equal keys, they must also
have equal values.

Keyed feature vectors are implemented using lazy evaluation [12].
On each request, LASER components generate only the keys, which
can be computed very quickly. The vector content is a thunk [13]:
a function that can compute the actual vector on demand. On a
PRC hit, the thunk is never evaluated so we do not pay the cost of
constructing the actual feature vector.

How the sources and transformers obey these constraints is up to
the implementor. In our application, we construct keys by combin-
ing the unique name of the source or transformer with identifying
informatiom about the vector, such as the ID of the underlying item
in the case of sources or the value of the input keys in transformers.

Using the PRC for real-time inference. To illustrate how the
PRC helps with real-time inference, consider the user main effect
term, x′

iα, in the example model from Figure 1. Upon receiving a
request, LASER passes request information into the pipeline, caus-
ing the user source to emit a keyed feature vector with a fully con-
structed key, which takes a form like “user_source:i”. Provided
all objects in the pipeline follow similar naming conventions, this
form of key obeys the necessary constraints: because source and
transformer names are unique, no other component will generate
the same key for a different vector even if they refer to the same
user i. Likewise, the keyed feature vectors for two different users
will be different due to their different values of i. Finally, this form
of key does not require any information other than what is available
from the request.

This keyed feature vector then passes to the user subset trans-
former, which emits its own keyed feature vector. This vector has
the key, “user_subet:user_source:i”, which again follows the con-
straints by relying on the uniqueness of both the transformer name
and input key to guarantee uniqueness of the output key. At this
time, neither the user source nor the user subset transformer has
done any computation to create the actual vector values.

When scoring this section of the model, the inference engine will
use the keyed feature vector’s key and a key that identifies the co-
efficient vector1 to look up the scalar value of the term in the PRC.
1Because coefficients do not flow through an abitrary transformer pipeline, keying
them is considerably easier. In our implementation, we simply use the identity of the
coefficient term, α in this case, along with an identifier of the model, such as a unique
name or version number.
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If the PRC contains that value, then no further work needs to be
done: all scoring for this section has been reduced to some tiny
string manipulations and a cache lookup.

On a PRC miss, we first execute the thunk in the keyed feature
vector produced by the user subset transformer. This thunk per-
forms the actual subset computation, but first needs the original
user feature vector, which it obtains by evaluating the thunk in the
user source’s keyed feature vector. Once all the lazy computations
complete, the inference engine can use the final vector value along
with the coefficients to compute the dot product, which it then puts
into the PRC for reuse.

PRC effectiveness Figure 2(a) demonstrates the effectiveness
of these techniques using a LASER model with around 20K bi-
nary features in the cold-start section. The number of features in
the warm-start section depends on the total number of campaigns
we train. We typically see 20-100 non-sparse entries in the fea-
ture vector for a single item in a request. For this test, we took a
single instance of LASER running in a production ad serving en-
vironment and disabled the Partial Results Cache for a period of
about 30 minutes. During this test, we saw response times leap
49% from a baseline of 9.4ms to a peak of 14.0ms. Upon reactivat-
ing the caches, performance immediately dropped back to pre-test
levels. Below, we show the marginal cost of scoring an item us-
ing LASER with the PRC is approximately 6μs, so the additional
5.6ms latency is equivalent to scoring an additional 930 items. Dur-
ing this test, we were scoring 927 items on average, so disabling
the PRC is equivalent to doubling the size of the request. Despite
only caching computation — slow, off-process communication is
handled by additional caching layers — the PRC is a major contri-
bution to LASER’s speed and scalability.

4.2.3 Performance Evaluation
To evaluate the scalability of the LASER system, we gathered

one week’s worth of performance data at two hour increments from
an instance serving live ad traffic. Figure 2(b) plots LASER’s aver-
age time to score a request against the number of requests received
per second. As the request volume increases, LASER’s latency is
largely unaffected: we observe no significant correlation between
the number of requests per second and the time it takes to process
each one. This is not surprising since there are no explicit depen-
dencies between requests (i.e. LASER inference is “embarrasingly
parallel”), so additional requests can be handled easily up until ma-
chine resources are exhausted or lock contention on shared caches
becomes an issue. In our experience, this tipping point occurs at
around 300-350 requests per second per server with existing hard-
ware, beyond which latencies rise dramatically.

Figure 2(c) shows LASER’s time per request against the aver-
age number of items being scored per request. This graph shows
a very clear (R2 = 0.98) linear correlation between items scored
and response time: each additional item adds about 6μs to the re-
quest time. LASER can thus easily be scaled to rank thousands of
items per request while still maintaining real-time responsiveness.
If the number of items increases to the point that latency becomes
an issue, it is usually straightforward to break them apart so that
they can be serviced by separate threads or even servers.

5. EXPERIMENTS
In this section we describe our experimental results on the fol-

lowing aspects: (a). A convergence study of ADMM comparing
the original ADMM to the improved version that includes better
initialization and adaptive selection of step size ρ. (b). An offline
experiment that compares the full model in Equation (1) - (3) with
a couple of baseline models. (c). An online A/B test result showing

the performance of our LASER models with and without Thomp-
son sampling.

We denote the models considered in our experiments as follows:

• CONTROL is a per-campaign CTR counting model that gets
updated per 15 minutes. For each item (campaign) j, it ob-
tains the number of clicks NCj and number of views NVj

from the entire campaign history, and the predicted CTR is
equal to NCj/NVj .

• COLD-ONLY is the cold-start-component-only model that mod-
els sijt by

sijt = ω + s1,c
ijt + s2,c

ijt . (13)

• LASER is the full model that is specified in Equation (1) - (3)
that contains both the cold-start component and the warm-
start component. At serving time LASER uses the poste-
rior mean of Θw to score, which means for new campaigns
with no data in the previous batches, all the warm-start coef-
ficients are 0.

• LASER-EE is the LASER model that uses Thompson sam-
pling in the serving time. To be conservative we adjust the
posterior variance of Θw by 0.1. We note that the adjustment
of the posterior variance in Thompson sampling is a common
practice that may provide better performance [6].

5.1 The Data
Our data for offline experiments consist of 45 days of advertising

event logs for a major social network site from July 16 to August
29, 2012. We use the first 30 days of data as training and the last
15 days data as test. To fit models, we down-sampled the negatives
but re-adjusted the probabilities to obtain CTR estimates on the
original scale. After downsampling, both the training and test sets
consist of hundreds of millions of events.

We use thousands of features for xi and cj for both user and item
(ad campaign), and hundreds of features for the context feature zt.
For instance, the ad campaign features include n-grams, categories,
advertiser characteristics, among others. The context features in-
clude time of day, day of week, the page id that the ad is shown,
and the format id that the ad is placed with. We use mutual infor-
mation and the minimum support criteria to do feature selection on
these features and the two-way interactions between all pairs. Fi-
nally we obtain a cold-start feature set that contains roughly 20K
binary features. We note that 20K is just the dimensionality of the
cold-start features; the total number of warm-start features that oc-
cur in the model depends on the total number of campaigns. To
predict CTR for a user, campaign and context triplet, roughly 20-
100 such binary features occur per example.

5.2 The Study of ADMM Convergence
In Figure 3 we compare the convergence speed of the original

ADMM algorithm [4] with the improved ADMM algorithm using
the two variations described in Section 3.2: the initialization of the
consensus Θ0 at the first iteration, and an exponential decay of step
size ρ over iterations. In Figure 3 the average test log-likelihood
versus the number of iterations is shown. We use ADMM to denote
the original algorithm, ADMM-M to denote the ADMM algorithm
with only the consensus initialization but without adaptive ρ and
ADMM-MA to denote the ADMM algorithm with both consensus
initialization and adaptive ρ. We note that the consensus initializa-
tion significantly boosts the convergence rate of ADMM in terms
of the test log-likelihood. With consensus initialization, the test
log-likelihood of the first iteration of ADMM-M is close to the test
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(a) Effect of disabling PRC (b) Latency versus request frequency (c) Latency versus request size

Figure 2: LASER performance tests
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Figure 3: Convergence of the original ADMM compared to
ADMM with initialization and adaptive ρ.

log-likelihood from the 6th iteration of ADMM. Making ρ to adap-
tively evolve across iterations makes the convergence even faster.
Figure 3 shows that it only takes ADMM-MA 6 iterations to reach
the same log-likelihood that ADMM takes 20 iterations to reach.
The two modifications to ADMM above reduced the model train-
ing time by approximately 70% for our data.

5.3 Offline Experiments
Using the data described in Section 5.1 we compare the perfor-

mance of our LASER model to two baselines: the CONTROL model
which only uses the campaign-CTR as the score (i.e. similar to
warm-start only model), and the COLD-ONLY model which only
contains the cold-start component. The ROC curves along with the
AUC values (numbers in the legend of the figure) for the three mod-
els are shown in Figure 4. It is obvious that our LASER model that
consists of both cold start and the warm start components provide
the best performance in terms of the predictive accuracy.

5.4 Online A/B Test Results
In this section we show the result of an online A/B test experi-

ment that was run from July 31 to August 6, 2013 in the advertis-
ing system of a major social network site. The site traffic is split
randomly by user id into three buckets: CONTROL (10%), LASER

(85%) and LASER-EE (5%). In general, we routinely run several
such tests in our system and ramp new models that perform better
than the status quo.

Overall performance. In this example, the daily performance
lifts over CONTROL for LASER and LASER-EE in terms of two
major business-related metrics CTR and CPM (cost per impression)
are shown in Figure 5 and 6 (The overall improvements are shown
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Figure 5: Percent improvement in CTR for LASER and LASER-
EE versus CONTROL, Jul. 31–Aug. 6.

in the figure legends). We note that for both metrics, LASER and
LASER-EE are significantly and consistently better than CONTROL

(more than 6.5% CTR lift and more than 10.5% CPM lift over the
7 days). On the other hand, the overall performance of LASER

and LASER-EE are similar. This is interesting, since one would
intuitively expect the latter to be inferior due to the exploration cost,
because both models share the same training data.

Segmented analysis by campaign warmness. To better under-
stand the difference between LASER and LASER-EE, we split the
observed data into 8 different segments based on the "degree of
warmness" of the campaigns. The degree of warmness for a cam-
paign at a given time is defined as the number of training sam-
ples in the training data before the specified time that contain the
campaign. We are unable to reveal the actual splitting criteria of
the segments, but they are obtained through logarithmic binning
on campaign sample size. We also note that segment #1 contains
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Figure 6: Percent improvement in CPM for LASER and
LASER-EE versus CONTROL, Jul. 31–Aug. 6.

the campaigns with almost no data in training, while segment #8
consists of campaigns that are served most heavily in the previ-
ous batches so that their CTR can be estimated quite accurately.
The distributions of the number of impressions over the 8 segments
served by LASER and LASER-EE are shown in Figure 7, and the
CTR and CPM lifts of LASER and LASER-EE over CONTROL for
the 8 campaign warmness segments are shown in Figure 8 and 9.
From these figures we note the following interesting points:

• For the “cold-start" campaigns that have very little data to
learn from (i.e. segment #1), the CTR and CPM performance
of LASER-EE are significantly worse than LASER model and
CONTROL due to its exploration property. Due to the same
reason, more impressions are also served in this segment for
LASER-EE relative to LASER, due to higher posterior vari-
ances of the warm-start coefficients.

• For segment #1 LASER is much better than CONTROL. This
is because the cold-start features are helpful in providing a
good CTR estimate for relatively new campaigns. The fact
that cold-start features help is also corroborated by the AUC
numbers in offline experiments.

• LASER-EE provides significantly better performance for both
CTR and CPM than LASER in segments #3 to #5, and from
the impression distribution plot it is clear that these three
segments are the segments with the largest amount of traf-
fic. This is expected since winners in these segments were
able to win despite the optimism Thompson sampling pro-
vided to new campaigns that were participating in these auc-
tions, hence only the best would win. This is not the case
for LASER where the cold-start campaigns use an average
CTR estimate. It is interesting to note that for LASER-EE the
losses due to exploration are compensated by the increased
performance in these segments.

Number of campaigns served. Although from our A/B test
experiments LASER-EE does not provide better performance than
LASER in terms of overall CTR and CPM, it provides valuable ex-
ploration data that can be used by the exploit-only model LASER. It
also adds more diversity in terms of number of campaigns served to
a user segment, which is good for the long-term marketplace health.
This can be seen in Figure 10, the percentage increase in the num-
ber of campaigns served by LASER-EE over LASER. Note that the
bucket size of LASER-EE is only 5% while LASER’s bucket size is
85%. For a fair comparison we did 20 bootstraps within the LASER

bucket to obtain 20 sampled 5% buckets. We then take an average
of the number of campaigns and the number of impressions served
over the 20 bootstrap samples for each campaign warmness seg-
ment for LASER. It is obvious from the figure that for almost all
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Figure 8: Percent improvement in CTR for LASER and LASER-
EE versus CONTROL by campaign warmness segment.

segments LASER-EE is serving significantly more campaigns than
LASER, in every campaign segment.

Although it is difficult to compare LASER-EE and LASER since
the latter learns from exploration data generated by the former, the
results above show that in our system, LASER-EE, with an ex-
plore/exploit scheme built-in, is better than its exploit-only counter-
part. In general, we recommend running Thompson sampling and
its exploit only counterpart together and analyzing the explore/exploit
behavior. It is worthwhile to start with the explore/exploit model on
a relatively smaller fraction (e.g. 5%-10%) and gradually ramp up,
based on performance.

Observed vs expected ratio. Another offline metric that we
have found very useful before launching a new model on live traffic
is the ratio of observed versus expected number of clicks (o/e ra-
tio). The observed number of clicks is simply the number of clicks
in the data and the expected number of clicks can be computed by
the sum of the predicted CTR for each impression. Since in serving
time only the top-ranked campaigns are served for each impression
and there are often thousands of campaigns to be ranked in the auc-
tion, selection bias tends to choose campaigns with over-estimated
CTR (also referred to as winner’s curse). Therefore, a good CTR
prediction model should have lower curse, reflected in an o/e ra-
tio that is close to unity. In Figure 11 we show such ratios for
LASER, LASER-EE and CONTROL. It is obvious that LASER and
LASER-EE in general have a much better o/e ratio than CONTROL,
and it is also not surprising that LASER-EE has the worst o/e ratio
for the segment #1 (“cold-start") since it is mainly exploring there.
We have found this offline metric to be a better indicator of online
model performance than standard out-of-sample predictive accu-
racy metrics like AUC and log-likelihood that are used to measure
quality of a supervised learning algorithm.
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Figure 9: Percent improvement in eCPM for LASER and
LASER-EE versus CONTROL by campaign warmness segment.
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6. CONCLUSION
We introduced LASER, a scalable response prediction platform

used as a part of a social network advertising system. Although
the logistic regression model we used is standard, the major contri-
bution of this paper comes from integrating several key compo-
nents to obtain a scalable, reliable and accurate end-to-end sys-
tem. These include: a large-scale model fitting algorithm that uses
ADMM with modifications, a novel system design that enables
flexible configuration and fast inference with low latency, and an
explore-exploit serving scheme using Thompson sampling with in-
teresting insights illustrated through A/B tests on a live system.
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