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Laser-annealing Josephson junctions for yielding scaled-up

superconducting quantum processors
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As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we

present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-

fabrication, we show a nearly tenfold improvement in the precision of setting qubit frequencies. To assess scalability, we identify

the types of “frequency collisions” that will impair a transmon qubit and cross-resonance gate architecture. Using statistical

modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that,

without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However, with the demonstrated

precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in

available quantum systems and will be indispensable as systems continue to scale to larger sizes.
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INTRODUCTION

Realizing robust large-scale quantum information processors is
one of the foremost challenges in quantum science. Many
practical applications have been proposed for robust quantum
computers, including estimating the ground state energy of
chemical compounds and implementing machine learning algo-
rithms1–8. Quantum advantage relative to classical computers can
be realized without full fault tolerance, but requires large quantum
circuits that a classical computer cannot simulate9. Recent
demonstrations have shown qubit circuits nearly at the threshold
for demonstrating quantum advantage10. Much work remains in
order to realize fault-tolerant quantum processors; however, scale-
up of solid-state quantum circuits has shown consistent and
ongoing progress11–20. As the qubit circuits are scaled up, they
must maintain high one- and two-qubit gate fidelities, high qubit
connectivity, and low cross-talk error, which can be measured in a
holistic sense via the quantum volume of the circuit21,22. Lattices
of fixed-frequency transmon qubits represent a promising
architecture for building systems of larger sizes10. A growing
number of systems at the 20–50-qubit scale are now available to
users through cloud access. Fixed-frequency transmons are largely
insensitive to charge or flux noise and have achieved coherence
times of 100 μs and growing. A variety of technical challenges
confront further system scaling, including improving three-
dimensional circuit integration and fast readout. High on the list
of such challenges is the issue of “frequency crowding.”
The cross-resistance (CR) gate, a hardware-efficient all-micro-

wave gate23–26, is readily used to entangle fixed-frequency
transmons with gate fidelities >99%, approaching the threshold
for fault-tolerant codes27. To achieve these fidelities, the CR gate
needs not only high coherence qubits but also a precise setting of
the qubits’ frequencies. The CR gate activates a ZX interaction by
driving one “control” qubit with a microwave pulse at the other
“target” qubit’s transition frequency. The magnitude of the ZX as
well as other Hamiltonian terms depends on the relative
frequencies of the two qubits28,29. Diminished ZX magnitude
increases gate time, while other terms such as ZZ add gate errors.

Neighboring qubits having the wrong detuning will exhibit a
frequency collision in which the ZX may be suppressed or other
undesirable effects arise.
Maintaining high gate fidelities for all pairs in a lattice will require

solving this frequency-crowding problem by precise setting of qubit
frequencies to specified values, as characterized by a standard
deviation σf. To achieve low σf, the tunnel-junction conductance
must be controlled with high precision. Transmon frequency f01
follows hf 01 ’
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is
many times greater than charging energy EC ¼ e2

2C
30. In typical

transmons, a photolithographically defined capacitance C has
dimensions in the tens to hundreds of microns and varies little from
qubit to qubit. The critical current Ic is set by a tunnel barrier of area
~100 × 100 nm and thickness a few nm and is thus challenging to
fabricate with precision better than a few percent31–35. However,
tunnel barrier resistance Rn is readily measurable to precision better
than 0.1% and relates to Ic according to the Ambegaokar–Baratoff
relation Ic ¼ πΔ

2eRn
(where Δ is the superconducting gap energy)36. We

expect imprecision in resistance σR to produce a corresponding
imprecision in frequency σf ¼ 1

2
σR

Rh i � fh i, where fh i and Rh i are the
mean values of frequency and resistance, respectively. We can
therefore measure Rn before a chip is cooled in order to assess qubit
frequency imprecision. The best demonstrated precision in setting Rn
at the time of fabrication is 2%34. A 2% variation in Rn indicates a
fractional σf of 1%.
Careful design of lattices can enable error correction codes

while at the same time minimizing the likelihood of “frequency
collisions” and therefore the required σf for fabrication yield37,38.
Yet even the most robust designs require a fractional σf of
0.25–0.5%, which represents a factor of 2–4 improvement over the
best literature results. To overcome such limits will require rework
of individual qubits’ tunnel junctions after fabrication. Thermal
anneal has been shown to increase tunnel resistance Rn, and laser
heating has been demonstrated as a highly localized rework
tool39–44. However, the inherent variability of the anneal process
itself must be overcome, and qubit frequency control utilizing
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such techniques at scale has never been presented in the
literature.
In this paper, we introduce an adaptive post-fabrication

trimming technique that we use to incrementally adjust Rn on a
qubit-by-qubit basis, thereby overcoming inherent variability in
both initial qubit fabrication and the laser anneal. We demonstrate
this improvement in qubit frequency precision clearly in terms of
narrowed frequency distributions. Crucially, we demonstrate qubit
frequency imprecision σf of the same magnitude as the
imprecision of predicting f01 from Rn. To estimate the scalability
of this technique for the fabrication of error-corrected lattices, we
employ a statistical yield model based on σf relative to specific
collision bounds. This model predicts the severity of the
frequency-crowding problem for different topologies and scales
of error-corrected multi-qubit lattices as a function of code
distance. The model demonstrates that, using conventional
transmon fabrication, scaled-up qubit lattices will fail to evade
frequency collisions. In contrast, our trimming technique achieves
adequate σf for scalable fabrication of distance-3 through
distance-7 heavy-square and heavy-hexagon codes. In particular,
this technique enables the high yield fabrication of the distance-3
and distance-5 heavy-hexagon lattices currently deployed as IBM
cloud connected systems22.

RESULTS

Frequency precision σf from transmon fabrication

To assess the σf resulting from qubit fabrication, we developed a
test vehicle containing a large number of identically fabricated
qubits (Fig. 1). We cooled the chip in a dilution refrigerator and
used dispersive readout through half-wave microwave resonators
to measure qubit frequencies45. We measured the frequencies of
31 qubits to a precision better than 100 kHz using a Ramsey fringe
method. The qubit frequencies had random variation σf=

132.3 MHz (Fig. 1) or 2.3% of the median frequency. After warming
the qubits to room temperature, we measured their junction
resistances. The standard deviation σR was 365Ω, 4.6% of the
median Rn. Fractional σf is exactly half of fractional σR, as expected
from Transmon theory and the Ambegaokar–Baratoff relation. A
plot of Rn against transmon frequency (Fig. 1) fits a power law of
approximately � 1

2
power, as expected from theory. To further

assess the fidelity of the frequencies to this f-vs-Rn correlation, we
show the residual scatter after subtracting the fit line. This appears
in the inset in Fig. 1 and exhibits a standard deviation 14.5 MHz or
0.25% of the qubit median frequency. Following transmon theory
and the Ambegaokar–Baratoff relation, this residual scatter could
indicate a qubit-to-qubit variation of up to 0.5% in super-
conducting gap Δ or qubit capacitance C. Small systematic errors
in measuring Rn, for instance, due to substrate conductance, could
also contribute. As we discuss below, future scaling of super-
conducting quantum logic circuits will require improvements in σf

and therefore better control of these parameters.

Tuning using selective laser anneal

To reduce σf, we developed a technique for selective laser anneal
to shift tunnel resistance Rn by pre-calibrated increments (see
“Methods” and Fig. 2). We demonstrate the achievable frequency
control of this technique by shifting the 31 measured qubits into a
two-frequency pattern. We employed an Rn vs f correlation (Fig. 1)
to designate the target resistances. We shifted 16 junctions to one
Rn group and 15 to another Rn group. After tuning, the group of 16
junctions had median resistance 7.984 kΩ and the group of 15 had
median resistance 8.798 kΩ. The 31 junctions clustered around
these medians with an overall precision of σR= 51Ω, about 0.61%.
In a dilution refrigerator, we remeasured the frequencies of the
qubits in the two groups. A change in fridge instrumentation
degraded the readout signal-to-noise ratio of two of the qubits, so

that their remeasurement (using continuous-wave spectroscopy)
had frequency precision of only 2 MHz. The others were
remeasured in the same way as in the first cooldown. The
resulting frequencies appear in Fig. 1. The two frequency groups

Fig. 1 Frequency precision σf. a False-colored image of test-vehicle
chip. Thirty-six fixed-frequency transmon qubits, each including a 500 ×
320 micron planar capacitor (green) and a ~0.1 × 0.1 micron Al/AlOx/Al
tunnel junction, are prepared identically on a 20 × 10mm Si substrate. A
half-wavelength coplanar waveguide resonator at each qubit (red)
enables dispersive readout. Resonators are frequency-multiplexed in
groups of 12 per feedline (blue). b Plot of transmon frequency vs Rn, and
power-law fit of pre-tuned population. Inset histogram (10MHz bins)
shows residual scatter in frequency relative to fit line. c Distributions of
qubit frequencies. Initial median was 5.7025GHz and initial spread was
σf= 132.3MHz (red histogram, 70MHz bins). Using selective laser
anneal (Fig. 2), we prepared these qubits into two distinct frequency
populations with medians 5.430 and 5.7046GHz (black histograms,
10MHz bins). Each population is outlined by a Gaussian curve centered
at its local median frequency. Combined spread is σf= 14.0MHz.
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are approximately normally distributed and have medians f0,1=

5.430 GHz and f0,2= 5.7046 GHz. Calculating σf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf i � f 0;jÞ2
D E

r

,

where f0,j represents f0,1 or f0,2 as appropriate for a given qubit Qi,
we assess the overall precision σf= 14.0 MHz. This imprecision is
nearly identical to the residual scatter from the f(R) fit line (Fig. 1),
which guided the tuning, and the fractional precision σf= fh i ¼
0.25% is slightly better than half of the fractional precision in
setting Rn. Drift in Rn reported in the literature39 does not appear
to be a limiting factor in this study. As we show in “Methods,” the
laser-anneal tuning technique is capable of precisions of 0.3% in
Rn. In future work, the imprecision of 14.5 MHz in predicting f from
Rn could be made the limiting imprecision in σf.

DISCUSSION

Our post-fabrication trimming reduced σf by 9.5× compared to
initial fabrication. To assess whether this level of precision is
sufficient to reliably prepare lattices of fixed-frequency transmons
capable of error-correcting codes, we must quantify the
frequency-crowding problem. Transmon qubits are weakly anhar-
monic and have decreasing transition energies at higher levels.
Therefore, degeneracies among the 0j i ! 1j i, 1j i ! 2j i, and
0j i ! 2j i transitions of nearby qubits can all contribute to
frequency collisions. We must consider the relative frequencies
of both nearest neighbors and next nearest neighbors in the
lattice28,46,47. Figure 3 illustrates the relative positions of nearest-
neighbor and next-nearest-neighbor qubits in a section of lattice,
and Table 1 lists the seven cases most likely to lead to gate
errors28. We can think of them qualitatively as follows: Type 1
causes hybridization of states in Qj and Qk, while in type 2 the CR
pulse excites Qj into the non-computational 2j i state. Type 3
excites Qk to the 2j i state but does not require a CR tone. In
condition 4, ZX is weak, which implies long gate times and
increased gate error28,29. In type 5, the CR gate addresses an
additional neighboring qubit. In type 6, when one qubit is the
target of a CR gate, its next nearest neighbor leaks to the 2j i state.
In type 7, Qj acts as the control, Qi or Qk as the target, and the third
qubit constitutes a “spectator.” An excited-state spectator can

emit a photon that combines with photons in the CR pulse to
excite Qj into the 2j i state.
Around each of the frequency collisions described in Table 1,

we can designate a window of undesired frequencies. This breaks
the frequency space into allowed and forbidden regions. Type 4
listed in Table 1 defines forbidden zones where ZX coupling is too
low. For the other six conditions, we forbid regions where the
frequency collision is the dominant source of gate error. Existing
multi-qubit systems with CR gates typically exhibit two-qubit gate
errors of 1–2% regardless of frequency15,46. Reference 28 considers
an effective Hamiltonian model for the CR gate, as a function of
the relative frequency of control and target qubits. From this
model, we estimate the frequency windows for nearest-neighbor
collisions (Table 1, types 1–3). Within these windows, assuming
typical gate parameters of 30–50MHz drive amplitude and
200–400 ns duration, we expect errors exceeding ~1%. Here we
make an assumption that similar bounds apply to next-nearest-
neighbor interactions (types 5–7). Future lattice scaling will benefit
from defining frequency collisions precisely to achieve specific
quantum volume or error-correction thresholds. Such work can
exploit numerical models22,48 that find CR gate error as a function
of frequency, coupling, and rate.
A useful lattice of qubits should enable high quantum volume

and fault-tolerant operation while avoiding all of the frequency
collisions and forbidden regions presented in Table 1. Both lattice
layout and the pattern of qubit frequencies are relevant. We
consider three types of lattices: square, “heavy square” and “heavy
hexagon” (Fig. 3). Lattices comprise qubits and two-qubit
connections, each qubit being linked to no more than four
neighbors. In many practical implementations, these links
comprise microwave-resonant buses. A square lattice facilitates
“surface code” fault-tolerant codes49. Recent literature describes
hybrids of the surface code with Bacon–Shor-type codes, which
can be employed in heavy-hexagon and heavy-square lattices to
achieve fault tolerance, albeit with lower error thresholds than the
surface code37. In addition to the data and ancilla qubit roles
employed in the surface code, these hybrid codes assign a portion
of the lattice as “flag” qubits.

Fig. 2 “Laser annealing of stochastically impaired qubits” (LASIQ). a Schematic of the apparatus. A 532 nm (frequency doubled) diode-
pumped solid-state laser is used as the laser annealing source. Active power calibration is accomplished via a half-wave plate and PBS
combination, with feedback from a Si-PD. A piezoelectric mirror mount actively aligns the beam to the junction center via image pattern
recognition. The beam is shaped into a four spot pattern in an intermediate image plane by a diffractive beam splitter, to avoid direct
illumination of the junction. The illumination pattern is condensed 4× using a dual-objective relay imaging set-up51,53. Inset with 10 μm scale
bar shows typical qubit junction and surrounding substrate heated by four Gaussian beam spots of diameter ~4 μm. b Adaptive anneal
progression toward Rn targets in 20 tunnel junctions. Greater fractional tuning requires greater anneal powers or durations. Incremental
exposure (anneal number) permits tracking the resistance change so as to monotonically approach a target resistance and not overshoot it. In
this demonstration, colors blue, green, and red correspond to laser powers 1.74, 1.85, and 1.96W, respectively. Rn shift was calibrated
separately for each power. Single anneals lasted ~0.3–8 s. Total durations were ~8–22 s. SHG second harmonic generation, PBS polarizing
beam splitter, Si-PD silicon photodiode, AM alignment mirror, BS beam splitter, TEC thermoelectric cooler.
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In the square lattice, every qubit in the bulk of the lattice lies on
a degree-four vertex, while some at edges have degree two or
degree three. If we populate the square lattice with five distinct
frequencies of qubits, f5 > f4 > f3 > f2 > f1, with appropriate spacing
between the frequencies, we can avoid all the forbidden regions
of Table 113. In Fig. 3, we illustrate this pattern for a square lattice
capable of a distance-5 (d= 5) rotated surface code. Condition 4
of Table 1 requires fcontrol > ftarget, so the pattern also fixes the
direction of CNOT gate for each pair.
In contrast to the square lattice, the heavy-square lattice

includes both degree-two and degree-four vertices in the bulk.
Degree-one, degree-two, or degree-three vertices appear at the
edges. We take advantage of this pattern to make all the degree-
two vertices control qubits, using a three-frequency pattern f3 > f2
> f1. Since every control qubit (frequency f3) is linked to at most
two target qubits, we need only two properly chosen target-qubit
frequencies (f1 and f2) to satisfy conditions 5–7 of Table 1, as
shown in Fig. 3. A third type of lattice, the heavy hexagon, uses a

similar scheme. Here the bulk of the lattice includes degree-three
and degree-two vertices. Additional degree-two and degree-one
vertices lie at the edges. In this lattice, all of the frequency
collisions and forbidden regions can be satisfied using only three
frequencies f3 > f2 > f1, with all control qubits residing on degree-
two vertices with frequency f3.
We use a Monte Carlo model to quantify the frequency

crowding in each lattice type. We sample the qubits at random
frequencies drawn from normal distributions characterized by σf

and count the collisions defined in Table 1 (see “Methods” and Fig.
6). In Fig. 4, we show the mean number of frequency collisions
predicted by the Monte Carlo model for each lattice type and
frequency pattern, as a function of σf. As σf→ 0, the lattice
approaches the ideal patterns of Fig. 3 and has zero frequency
collisions. As σf increases, the number of frequency collisions rises
steadily. As σf→ f01− f12, the different conditions appearing in
Table 1 all become likely, and a limiting number of frequency
collisions is reached. Yield follows the inverse trend, as seen in Fig.
4. As σf increases, the likelihood of finding a “collision-free” chip
falls off sharply. While the step sizes between frequency setpoints
f1 to f5 are important, absolute values of setpoints are not. Setting
f1= 5.0, f2= 5.07, and f3= 5.14 GHz works as well as f1= 5.05, f2=
5.12, and f3= 5.19 GHz.
The yield and mean collision number are a function of the

several different collision types and bounds, so they are not
readily susceptible to an analytic formulation. However, we can
propose a simplified model for yield: in order for a lattice to be
collision-free, every qubit in the lattice must fall within some
frequency “window” ±Δf relative to its setpoint. Presuming the
qubit frequencies are normally distributed, the probability of this
occurring goes as the cumulative distribution function, raised to

the power N, where N is the number of qubits:
R ðΔf=σf Þ
�1 e�

1
2
x2dx

h iN

.

In the yield plot in Fig. 4, we fit this expression to find Δf for each
lattice.
These model results allow us to predict how different lattice

types and frequency patterns will respond to fabrication impreci-
sion. As shown in Fig. 4, if imprecision σf is >30 MHz, any d= 5
lattice will exhibit >10 frequency collisions of one or another of
the types listed in Table 1, causing the affected gates to have error
rates above ~1%. However, if σf= 10 MHz then on average the d
= 5 square lattice will exhibit 5 frequency collisions, while the
heavy-square and heavy-hexagon lattices will exhibit 0.1 fre-
quency collision. Considered in terms of yield, we see from Fig. 4

Fig. 3 Lattice and frequency pattern examples. Lattices are capable of d= 5 codes. Patterns of qubit frequencies avoid all conditions in Table
1. Statistical model is applied to these examples and to equivalent lattices at d= 3 and d= 7 (see Supplementary Figs. 1–9). Square lattice
includes 49 qubits in a 5-frequency pattern. Heavy-square lattice includes 73 qubits in 3-frequency pattern. Heavy-hexagon lattice includes 65
qubits in 3-frequency pattern. In a portion of the heavy-hexagon lattice, we indicate qubits’ intended gate roles: control (black circles) or
target (white circles), as well as code roles: data (D), ancilla (A), or flag (F)37. Inset shows relative positions of qubits for collision definitions of
Table 1. Qj is coupled to nearest-neighbors Qi and Qk. Qubits Qi and Qk are next nearest neighbors.

Table 1. Seven most likely types of frequency collision.

Type Definition Participants Bounds

1 fj,01= fk,01 Nearest-neighbor qubits Qj, Qk ±17MHz

2 fj,02= 2fk,01 Control qubit Qj, target qubit Qk ±4MHz

3 fj,01= fk,12 Nearest-neighbor qubits Qj, Qk ±30MHz

4 fk,01 < fj,12 or fj,01
< fk,01

Control qubit Qj, target qubit Qk —

5 fi,01= fk,01 Qj is control to Qi and/or Qk and is
nearest neighbor to both

±17MHz

6 fi,01= fk,12 or fi,12
= fk,01

Qj is control to Qi and/or Qk and is
nearest neighbor to both

±25MHz

7 fj,02= fk,01+ fi,01 Qj is control to Qi and/or Qk and is
nearest neighbor to both

±17MHz

For bus-coupled transmon qubits employing cross-resonance gates and

having anharmonicity ~−330MHz. Relative qubit positions illustrated in

inset of Fig. 3. Bounds for types 1–3 are estimated from model results28 as

the frequency region around each degeneracy in which gate errors due to

frequency collisions exceed ~1%. For instance, nearest-neighbor qubits Qj

and Qk exhibit a type 1 collision if their frequencies obey fk,01−17MHz <

fj,01 < fk,01+ 17 MHz. Bounds for types 5–7 are based on those in types

1 and 3.
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that if σf= 10MHz, then for a d= 5 device, a square lattice with
5-frequency pattern has a 0.8% likelihood to be collision free,
whereas a heavy-square lattice with 3-frequency pattern has 90%
likelihood and heavy hexagon with 3-frequency pattern has 92%
likelihood. Alternatively we can ask, how well do we have to
control σf? If we seek a 10% yield, then Fig. 4 indicates that, for a
d= 5 device, a square lattice with 5-frequency pattern requires σf
< 8MHz, whereas a heavy-square lattice with 3-frequency pattern
requires σf= 16 MHz and heavy hexagon with 3-frequency pattern
requires σf= 17MHz. Although the square lattice requires 10–20%
fewer qubits than the other types at each distance d, it requires far
better frequency precision.
The as-fabricated σf seen in Fig. 1 is 132.3 MHz (see “Results”).

The Monte Carlo modeling finds that for a heavy-hexagon lattice
at d= 3 scale this σf can enable 0.1% yield of collision-free chips.
Other lattice types and larger scales will all have yield ≪0.1%. The
re-tuned σf= 14.0 MHz demonstrated in Fig. 1 will improve the
yield in all types of lattice. Predictions of the Monte Carlo model
for σf= 14.0 MHz appear in Table 2. At d= 5 scale, the heavy-
hexagon and heavy-square lattices and 3-frequency patterns
should be collision-free nearly one-third of the time, while at

d= 7 scale the yield is about four times smaller, still reasonable for
prototype systems.
As seen from the Monte Carlo analysis, the laser-anneal rework

method can scale to the >100 qubit size, enabling a well-chosen
lattice and frequency pattern to implement d= 7 error-correction
codes free of frequency crowding. To examine needs for the next
generation of chips up to the 1000-qubit level, we can coarsely
estimate requirements by extrapolating the fixed window model for
the heavy-hexagon lattice as shown in Fig. 5. While the σf= 14.0MHz
demonstrated here enables practical yield up to the 100–200 qubit
scale, it is clear that roughly a factor of two further improvement is
needed to scale toward 1000 qubits. Since this precision is also better
than the resistance-to-frequency prediction precision shown in this
work, development of further refinements in tuning and frequency
prediction approaches will be necessary as the scale of fixed-
frequency transmon circuits surpass the 100 qubit milestone.

METHODS

Chip fabrication

A chip of the kind used to determine σf and to test our laser-anneal rework
process appears in Fig. 1. All microwave elements comprise Nb films
~200 nm thick on a silicon substrate. Each qubit is coupled to a readout
resonator but is not directly coupled to any nearby qubits. All transmon
capacitors are identical. Junctions are fabricated using identical electron-
beam lithographic patterns and deposited simultaneously using double-
angle deposition and oxidation50. The individual qubit design is similar to
that used in ref. 27 with anharmonicity f12− f01≃−330 MHz. Junctions
have linear dimension ~100 nm and are designed for Ic of ~30 nA. During
packaging, we accidentally damaged 3 of the 36 qubits and found these to
be non-functional when cooled in a dilution refrigerator. We left 2 of the
remaining 33 qubits un-tuned as experimental controls, so that our tuning
demonstration includes 31 qubits.

Tuning using selective laser anneal

We have built an integrated junction rework system that can measure and
modify the junction resistance. Figure 2 shows a schematic of our laser
annealing system, which we call Laser Annealing of Stochastically Impaired
Qubits (LASIQ). The laser output is generated by a diode-pumped solid-
state laser, frequency doubled to 532 nm. Active power control of the
anneal beam from approximately 1.7 to 2W is performed using a piezo-
rotary mounted waveplate and polarizing beam splitter, which is
adaptively adjusted based on a pick-off beam measured on a downstream
silicon photodiode. A precision-timed shutter exposes the device for
0.3–10 s, and beam alignment is performed using a mechanical mirror
mount, which directs the beam via pattern recognition to the transmon
junction center. To achieve a more consistent anneal, the beam is shaped
into a four-spot pattern, which avoids directly illuminating the junction but
uniformly heats the surrounding substrate51.
By careful control of laser power and pulse duration, we use this system

to adjust Rn. This process overcomes the imprecision due to transmon
fabrication, with a residual imprecision σf due to the rework process. To
develop the process, we prepared a set of 126 junctions identical to qubit
junctions and measured their response to a range of laser powers and
exposure times. We recorded Rn shifts up to 15% relative to initial Rn for
total anneal durations varying from 2 to 80 s and laser powers varying from
1.6 to 2 W. Response to laser power in particular was highly nonlinear.
Based on these empirical calibrations of Rn shift to power and exposure, we
established a qubit tuning process: We first measure the transmon
junction’s Rn using four-point probing of the transmon capacitor pads at
25 °C. Using a f(Rn) prediction based on a previously determined
correlation curve (Fig. 1), we assign the junction a target resistance
corresponding to the target frequency in a multiqubit chip lattice. Because
the anneal can shift Rn in only one direction, the target must be higher
than the initial Rn. We anneal the qubit junction using laser power and
duration chosen from our calibration set, then remeasure its Rn. By
remeasuring after each anneal, we can adjust for random variation in the
amount of Rn shift. A junction requiring large shifts in Rn may require
repeated anneals to reach its target, as shown in Fig. 2. The control
algorithm increases the resistance until the measured value is within 0.3%
of the target value. In a separate trial of tuning precision, >300 junctions
were tuned to target Rns ranging from 0.4 to 14.5% above their initial

Fig. 4 Frequency-crowding trends as a function of σf. Results of
Monte Carlo simulation (see “Methods”). Simulation was applied to
the lattices and frequency patterns shown in Fig. 3, capable of
distance-5 codes, as well as to d= 3 and d= 7 scale lattices of
square, heavy-square, or heavy-hexagon type (See Supplementary
Figs. 1–9 for lattice layouts and Table 2 for numbers of qubits.).
a Average number of collisions. b Fraction of cases having zero
frequency collisions. Color-coded dotted lines are fits of each lattice

yield to expression
R ðΔf=σf Þ
�1 e�

1
2
x2dx

h iN

, where N is the number of

qubits and ±Δf defines an allowable window around frequency set
points (see Table 2). Using this expression, two solid red lines predict
yield for the heavy-hexagon lattice type at 300 and 1000 qubits,
using Δf= 27.99 and 26.32 MHz, respectively. See Fig. 5 for
estimation of Δf as a function of qubit number.
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values and landed successfully within this 0.3% margin. We observed this

precision to be independent of the target Rn. We expect 0.3% imprecision

in Rn to introduce 0.15% imprecision in transmon frequency.

Monte Carlo frequency-crowding model

Using a Monte Carlo model, we can estimate the incidence of frequency

collisions in a lattice as a function of σf. We assume that imperfect

frequency setting will distribute qubit frequencies normally around their

design frequencies with standard deviation σf. For lattices of the type

shown in Fig. 3, we designate 3–5 frequencies f1, f2, f3, f4, f5 spaced at

regular intervals in the pattern shown. We set f1= 5 GHz, similar to real-

world transmons22,52. We sample the qubit frequencies randomly around

these values and count the collisions throughout the lattice, as listed in

Table 1. To avoid unnecessary counting of type 4, we designate the higher-

frequency qubit of every pair to be the control for that gate pair. This

process is illustrated in Fig. 6. We repeat the frequency assignment and

counting to build statistics for a given lattice and frequency pattern. We

then repeat the model for a range of σf values from 0 to 150MHz. We

repeat the entire process over a range of frequency spacings to find the

spacing that minimizes frequency collisions at each value of σf. As a

function of σf, we can then extract (1) the mean number of total collisions

in the lattice and (2) the fraction of repetitions that result in zero collisions
(yield). Our simulations used 1000 repetitions except to find yield <1% in
d= 5 lattices and <0.2% in d= 3 lattices, which used 4000 repetitions, and
in d= 7 lattices to find mean collisions for σf < 16MHz or yield >50% (100
repetitions) or to find mean collisions for σf > 16MHz (40 repetitions).

DATA AVAILABILITY

The experimental data presented in this manuscript are available from the

corresponding author upon reasonable request.
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