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Micro-cavity based frequency combs, or ‘micro-combs’ [1,2], have enabled many fundamental 

breakthroughs [3-21] through the discovery of temporal cavity-solitons. These self-localised waves, 

described by the Lugiato-Lefever equation [22], are sustained by a background of radiation usually 

containing 95% of the power [23]. Simple methods for their efficient generation and control are 

currently being investigated to finally establish micro-combs as out-of-the-lab tools [24].  

Here, we demonstrate micro-comb laser cavity-solitons. Laser cavity-solitons are intrinsically 

background free and have underpinned key breakthroughs in semiconductor lasers [22,25-28]. By 

merging their properties with the physics of multi-mode systems [29], we provide a new paradigm 

for soliton generation and control in micro-cavities. We demonstrate 50 nm wide bright soliton 

combs induced at average powers more than one order of magnitude lower than the Lugiato-Lefever 

soliton power threshold [22], measuring a mode efficiency of 75% versus the theoretical limit of 

5% for bright Lugiato-Lefever solitons [23]. Finally, we can tune the repetition-rate by well over a 

megahertz without any active feedback.  

Optical frequency combs based on micro-cavity resonators, also called ‘micro-combs’, offer the promise of 

achieving the full capability of their bulk counterparts, yet in an integrated footprint [1, 2]. They have 

enabled major breakthroughs in spectroscopy [3,4], communications [5,6] microwave photonics [7], 

frequency synthesis [8], optical ranging [9,10], quantum sources [11, 12], metrology [13,14] and 

astrocombs [15,16].  

Of particular importance has been the discovery of temporal cavity-solitons in micro-cavities [17-21]. 

Temporal cavity-solitons [2,17-23] are an important example of dissipative solitons – self-confined waves 
balancing dispersion with the nonlinear phase-shift in lossy systems [30]. Practical applications of these 

pulses for micro-combs, however, still face significant challenges. In particular, they achieve a limited mode 

efficiency, defined as the fraction of optical power residing in the comb modes other than the most powerful 

one. Solitons in micro-cavities exist as localised states upon a background, usually a continuous-wave (CW) 

[2,17-23], which results in a dominant mode in the comb spectrum. In this configuration, described by the 
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well-known Lugiato-Lefever equation, bright solitons have a mode efficiency theoretically bounded to 5% 

[23], limiting the efficiency of state-of-the-art micro-combs based on this operating principle [2,23-24,31].  

Furthermore, controlling their fundamental parameters, such as repetition-rate, has posed a challenge. 

Currently, tuning their repetition-rate requires either complex methods involving fast detection, 

microwave signal processing and fast cavity actuation, or novel approaches such as pulsed [16,32] or 

counter-propagating [33] pumping, or heterodyning with coupled micro-resonators [34]. Finding a 

solution to these fundamental issues has attracted significant effort [24, 31]. 

Here, we demonstrate a distinct class of solitary pulses in micro-combs – temporal laser cavity-solitons – 

that directly addresses these challenges. Laser cavity-solitons [22,25-28] have been largely studied in spatial configurations such as semiconductor lasers [25], where they enabled breakthroughs such as all-

optical reconfigurable memories [26]. More recently, they have been observed in both temporal [28] and 

spatio-temporal [35] contexts. They are fundamentally different to externally driven cavity-solitons, which 

are sustained by the energy of the pumping background. Laser cavity-solitons, in contrast, receive energy 

directly from the gain of the lasing medium. As result, they exist without any background light and are 

intrinsically the most energy efficient class of cavity-solitons.  

By nesting a Kerr micro-resonator in a fibre loop with gain, we harvest the intrinsic capability of laser 

cavity-solitons, demonstrating that they can be used to achieve highly efficient, broadband micro-comb 

generation. We excite bright solitons having a bandwidth of more than 50 nm, using average powers less 

than 6% of the threshold for Lugiato-Lefever solitons in an equivalent resonator. Our background-free 

solitons have a mode efficiency of 75%, with a theoretical maximum predicted to be 96%. Furthermore, by 

exploring the properties of multi-mode systems, recently investigated for spatio-temporal mode-locking 

[29] and spatial beam self-cleaning [36], we show that the repetition-rate of our pulses can be adjusted by 

reconfiguring simple parameters such as the laser cavity-length. Without the use of active control, we 

succeed in modifying their repetition-rate by more than a megahertz.  

The principle of operation is shown in Fig. 1a. A nonlinear micro-cavity (cavity ‘a’) is embedded within a 

longer amplifying fibre cavity (cavity ‘b’). The pulse propagating in the fibre loop, spectrally limited by the 

laser-gain bandwidth, sustains in the micro-cavity the existence of a pulse which is broadened by the Kerr 

nonlinearity over the gain bandwidth [25,37]. This architecture is inspired by the concept of a filter-driven 

four-wave mixing laser [38]. Our present analysis allows us to define the solitary state existence and 

understand the nature of previous observations [2,38,39]. In particular, we show that the relative position 

of the oscillating modes within the micro-cavity resonances is critical to realise this new class of broadband 

solitary pulses.  

Temporal cavity-solitons can be effectively modelled using mean-field approaches, such as the Lugiato-

Lefever equation [17], where the field in the micro-cavity is described as a pulse propagating in time, along 

with a spatial coordinate periodically looped within the micro-resonator length. Here, we build a set of 

multi-component (or ‘vectorial’) laser mean-field equations [29,36] by coupling together the micro-cavity 

field with the main-cavity ‘super-mode’ fields. (Supplementary/Methods). A super-mode is an optical 

radiation formed by a set of equally-spaced modes of the main-cavity, whose relative spacing (in frequency) 

is set by the micro-cavity free-spectral range (FSR) 𝐹𝐹𝑎𝑎. Quantitively, the mth resonance 𝑓𝑓𝑚𝑚(𝑏𝑏)
of a super-mode 

can be linked to the micro-cavity resonances 𝑓𝑓𝑚𝑚(𝑎𝑎)
 by the relation 𝑓𝑓𝑚𝑚(𝑏𝑏)

= 𝑓𝑓𝑚𝑚(𝑎𝑎) − (Δ − 𝑞𝑞 − 𝑚𝑚 𝛿𝛿) 𝐹𝐹𝑏𝑏,      (1) 

where 𝐹𝐹𝑏𝑏 is the main-cavity FSR and q is an integer defining the order of the super-mode (see Fig. 1b). In 

general, the q-order super-mode is frequency detuned with respect to the micro-cavity resonance by (Δ −𝑞𝑞) 𝐹𝐹𝑏𝑏 , where Δ is the cavity-frequency offset, normalised against 𝐹𝐹𝑏𝑏 .  The key features of the laser are 

determined by the leading-order super-mode, defined for q = 0, which possesses the largest spectral 
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overlap with the micro-cavity resonances. Higher-order super-modes (q ≠ 0) typically experience greater 

coupling losses. Because 𝐹𝐹𝑏𝑏 is not necessarily an integer divisor of 𝐹𝐹𝑎𝑎, we introduce the variable δ, 

normalised against 𝐹𝐹𝑏𝑏 , representing the FSR detuning. 

Two numerical examples of linear and solitary propagation are reported in Fig. 2. We use a spatial 

coordinate periodically closed over the micro-cavity length because the temporal waveform of every super-

mode is periodic with the micro-cavity round-trip time 𝑇𝑇𝑎𝑎 , with a period slightly detuned by δ (Eq. (1)). The 

parameters 𝛥𝛥 − 𝑞𝑞 and δ play the role of the frequency and group velocity mismatches between the micro-

cavity and super-mode fields. A key property of solitary waves in vectorial equations, also recently shown 

for spatio-temporal mode-locking [29], is that all the coupled fields lock to a single group velocity (or 

repetition-rate detuning) 𝑣𝑣 (Fig. 2a and b) and carrier frequency offset 𝜙𝜙 (Fig. 2c, see also model Equations 

in the Methods). Practically, the system provides a well-defined soliton comb, with the nth frequency tooth 𝑓𝑓𝑛𝑛(𝑆𝑆)
expressed as 𝑓𝑓𝑛𝑛(𝑆𝑆)

= 𝑓𝑓𝑛𝑛(𝑎𝑎)
+ ( 𝜙𝜙 − 𝑛𝑛 𝑣𝑣) 𝐹𝐹𝑏𝑏 .      (2) 

The parameters 𝜙𝜙 and 𝑣𝑣 are selected by 𝛥𝛥 and δ, together with the normalised saturated gain 𝑔𝑔 

(Methods/Supplementary).  

The measurements of laser cavity soliton micro-combs at different intra-cavity powers are in Fig. 3a-f. The 

spectra exhibit a bandwidth of up to 50 nm - comparable to the cavity-solitons observed in resonators with 

similar dispersion properties [9,20,21] - and, together with the corresponding autocorrelations (Fig. 3a, c, 

e and inset), are in excellent agreement with theory.  

We used intra-cavity laser-scanning spectroscopy (see Methods) (Fig. 3b, c and f) to measure the frequency 

of the oscillating modes and their position within the micro-cavity resonance, obtaining important insights 

into the solitary nature of the solution.  

A bistable system can display both localised and non-localised coherent waves [22]. Solitons are localised 

states that can appear in groups of non-equidistant pulses, such as the triplet seen in Fig. 3e-f.  The stability 

of their tails requires the stability of the background, which is theoretically expected for oscillating modes 

that are red-detuned with respect to the micro-cavity resonance (Methods, Supplementary and Fig. 4a).  

These facts are in excellent agreement with the measurements shown in Figs. 3b, d and f. We attribute the 

small, blue-detuned mode found only in the central resonance to a perturbation on the soliton tails, against 

which localised pulses are robust (Supplementary).  

Conversely, coherent patterns are non-localised, periodic waves which fill the entire cavity. Type I [2] and 

type II combs in the Lugiato-Lefever system are characteristic examples of patterns that typically have a 

narrower bandwidth than solitons. Earlier observations, [2,38-40] limited to picosecond pulse durations 

and displaying Type I ([39] and Supplementary) and II [40] comb shapes, are consistent with this picture. 

Furthermore, laser scanning spectroscopy measurements (see Supplementary and [40]) on these types of 

pulses reveal blue-detuned modes, for which the theory forbids stable solitons but while allowing patterns 

originating from the modulational instability of the background state [22].  

Our experiments demonstrate the inherently higher efficiency of our class of laser cavity-solitons 

compared to Lugiato-Lefever solitons that feature a dominant comb mode, located at the pump wavelength, 

comprising the energy of the CW background (Fig. 4b-c). For Lugiato-Lefever solitons, the mode efficiency 

has a theoretical limit of 5% and 50% for bright and dark solitons, respectively [23]. Our mode efficiency 

in the experiments of Fig. 3 is greater than 75% for bright solutions. Further, we theoretically predict a 

maximum mode efficiency of 96% for bright laser cavity-solitons. This contrasts with state-of-the-art 

devices based on bright Lugiato-Lefever solitons that have mode efficiencies on the order of 1.6% to 5% 

[23,31]. Lugiato-Lefever solitons feature a minimum power excitation threshold above which the Kerr 
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nonlinearity induces bistability, yielding the two CW states necessary for the soliton’s existence (Fig.4a). 

Our laser cavity-solitons, in contrast, require a zero background with a single CW state and exist below the 

Kerr bistability threshold. By comparing experiment with theory, we find that our peak powers injected 

into the micro-cavity are below 50% of the input power threshold of a Lugiato-Lefever soliton for the same 

micro-resonator. Because our injected field is pulsed, the injected average power to the micro-resonator is 

less than 6% of this threshold power (Supplementary).  

To demonstrate the capability of changing the soliton repetition-rate using simple methods, we varied the 

main-cavity FSR detuning 𝛿𝛿 with a delay line that modified the fibre cavity length, and hence the mode-

spacing 𝐹𝐹𝑏𝑏 . Gain and loss were also adjusted to maintain the solitary state. Fig. 5 shows the repetition-rate 

variations for three cases (Fig. 5a). We measured the frequency position of the comb modes against the 

mode number using laser-spectroscopy. We then calculated the best-fit for the first case (Comb 1) and 

subtracted the frequency positions for the three cases, obtaining the residual frequency versus mode 

number in Fig. 5b. This shows a change in repetition-rate of over a megahertz. The theoretical results 

(Fig.5c and Supplementary) demonstrate that, by changing δ within the experimentally achievable range, 

the soliton stability is maintained while its velocity is modified – thus varying the repetition rate. 

Finally, we achieve these localised states by manual adjustment of the fibre cavity parameters, such as 

cavity length, gain current and polarisation losses, in a similar fashion to passively mode-locked lasers. This 

approach enables the use of powerful methods, such as genetic algorithms, that have been instrumental in 

achieving adaptive control of the soliton properties and self-starting operation in passive mode-locking 

[41]. 

In conclusion, we report the observation of temporal laser cavity-solitons in optical micro-combs. Our 

results merge the powerful physics of optical Kerr micro-combs and their ability to generate large 

bandwidths with the unique properties of laser cavity-solitons and multi-mode systems. In contrast to 

conventional coherently-driven cavity-solitons, this new class of cavity-solitons is intrinsically background 

free, making them extremely energy efficient. Furthermore, thanks to a tailored two-cavity configuration, 

crucial properties, such as the repetition-rate, can be controlled with simple elements such as a delay line. 

Laser-cavity solitons represent a new and powerful mode of operation for micro-combs, offering many 

advantages that will help pave the road towards enabling these devices to move out of the laboratory 

towards real-world applications. 
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Figure 1. Principle of operation of micro-comb laser cavity-soliton formation. a. A short pulse (green) propagates 

in the micro-cavity (blue) sustained by a longer pulse (red) and a weak higher-order ‘super-mode pulse’ (purple) in 

the amplifying loop (yellow). This depicts the fundamental operation of a single soliton per cavity. b. Cold-cavity 

spectral distribution. Micro-cavity resonances are depicted in green, amplifying-cavity resonances are in black, with 

leading and first-order super-modes highlighted in red and purple, respectively. The normalised frequency offset 

between the central frequency of the leading super-mode and the micro-cavity resonance is Δ; similarly, the frequency 

offset is Δ-1 for the central frequency of first-order super-mode. In the convention used here and in Eq. (1), positive values of Δ correspond to a leading order super-mode red-detuned with respect to the micro-cavity resonances. The variable δ is the normalised FSR detuning, appearing when the two cavities are not commensurate.  
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Figure 2. Theoretical propagation of linear and solitary pulses. Micro-cavity and gain cavity have a group velocity 

mismatch δ = 0.03. In these examples we used Δ =0.47; g= 0.14 and N=30 in Eqs. (3) and (4) in the Methods. a. Evolution 

of the micro-cavity and multi-modal amplifying-cavity fields in the linear case. The quantities in the upper and lower 

panels are the overall field intensities in the two cavities are   |𝑎𝑎(𝑡𝑡, 𝑥𝑥)|2  and ∑ �𝑏𝑏𝑞𝑞(𝑡𝑡, 𝑥𝑥)�2𝑁𝑁−𝑁𝑁 , with reference to Eq. (3) 

and (4) in the Methods. The group velocity of the fields is better shown in the insets, where the direction of the field is 

marked with an arrow. The mismatch between such group velocities causes a periodical decoupling of the fields. b. 

Solitary propagation: both fields lock to the same group velocity v. c. Equivalent spectral distribution of the super-

modes within a resonance of the micro-cavity (Supplementary). Such a spectrum, for the linear case (orange), 

highlights the presence of many frequency components, one for every super-mode with frequency offset Δ − 𝑞𝑞. In the 

case of solitary propagation (blue), conversely, all the modes lock to the frequency 𝜙𝜙.  
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Figure 3. Temporal laser cavity-soliton measurement. a. Soliton generation, for two equidistant solitons per round-

trip. Intra-cavity power at the output of the amplifier is 100 mW and at the output of the micro-cavity is 20 mW. 

Spectrum (in logarithmic scale) and autocorrelation (left inset). The experimental measurements (blue) are compared 

to the theoretical solitary state (red). Fit parameters are Δ = 0.49; g= 0.1. The theoretical normalised soliton frequency 

is 𝜙𝜙 = −0.475, corresponding to a red-shifted frequency of 36 MHz (Eq. 2) for 𝐹𝐹𝑏𝑏 = 77 MHz (Methods). The right inset 

reports the theoretical intensity profile in the micro-cavity. b. Intra-cavity spectrum (blue), evidencing within each 

micro-cavity resonance the lasing modes (red dots, red-shifted of approximately 32 MHz from the micro-cavity centre, 

in excellent agreement with the theory). The three plots correspond to the comb wavelengths highlighted in panel (a) 

by different colour shading. c, d. The same measurements at higher fibre gain for two equidistant solitons per round-

trip, leading to 150 mW intra-cavity power at the output of the amplifier and 30 mW at the output of the ring, showing 

that the bandwidth of the soliton increases with the gain. Fit parameters are Δ =0.47; g= 0.14, with 𝜙𝜙 =  −0.474. The 

shape of the spectrum diverges from the sech-like, triangular shape of the case a,b. The formation of the lateral wings 

can be qualitatively related to a modulational instability effect on the peak of the pulse,  shown in the theoretical 

intensity pulses in the right inset [22]. e, f. The same measurements for three solitons per round-trip for the same intra-

cavity power of case c, d. Fit parameters are Δ = 0.49; g = 0.11, with 𝜙𝜙 = −0.477. Because there is an additional soliton 

in the cavity, the energy per soliton is lower than the case c,d, leading to a narrower spectrum. The autocorrelation 

shows that the solitons are not equidistant, highlighting the localised nature of the solution. 
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Figure 4. Temporal laser cavity-soliton and Lugiato-Lefever cavity-soliton comparison. a. Plot of laser cavity-

soliton input field peak power versus normalised offset Δ, calculated for various gain values (g=0.05 to 0.14 for plots 

from purple to green). Thick lines mark the stable self-localised solutions, both in the main graph and the inset, where 

it is reported the soliton frequency 𝜙𝜙. Note that negative values of 𝜙𝜙  correspond to red-shifted frequencies with respect 

to the micro-cavity centre, in agreement with the experiments. The grey region marks the region of existence of the 

Lugiato-Lefever bright solitons. b. Intensity profile in the micro-cavity for a laser cavity-soliton (Δ =0.47; g= 0.14, blue 

line) and a Lugiato-Lefever cavity-soliton at the power threshold (orange line), highlighting the presence of a strong 

background in the Lugiato-Lefever case. c. Spectrum of the theoretical cases in b. The strong background of the Lugiato-

Lefever cavity soliton results in a dominant comb mode at the centre of the spectrum. Laser cavity-soliton line generally 

possess higher power spectral density.  
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Figure 5. Temporal laser cavity-soliton repetition-rate control. a. Spectra. The fibre cavity length is changed within 

a broad range of 150 µm. Gain and losses had been readjusted to maintain the solitary state showing two equidistant 

solitons per round-trip; intra-cavity powers are 20 mW, 25 mW and 30 mW, in blue, orange and black, respectively. b. 

Residual frequency shift against mode number with respect to the best-fit for the Comb 1 case (blue). Combs 2 and 3 

show a change in FSR and, hence, repetition-rate variations of 1.9MHz and 3.2MHz with respect to Comb 1. c. Calculated 

propagation of a stationary solitary solution when Δ =0.49 and g= 0.1, for 𝛿𝛿 = 0; 0.01; 0.02. The solitary wave is 

maintained in all three cases.  
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Methods 

Experimental Setup 

The experimental setup is built around a high index doped silica integrated resonator with FSR~48.97 GHz 

and linewidth Δ𝐹𝐹𝐴𝐴 <140MHz (within the experimental measurement uncertainties), corresponding to a Q 

factor of ~1.3 million. The micro-resonator has a minimum in the transmission spectrum around 1552 nm, 

which is visible also in the comb generation and features transmission losses of 60%.  

The micro-ring was inserted in an anomalous dispersion, polarisation-maintaining Ytterbium-Erbium co-

doped fibre-cavity. This cavity comprised a delay line, polarisation optics, an optical isolator as well as a 10 

nm tuneable bandpass filter (resulting, when matched to the amplifier spectral response, in a Gaussian 

linewidth of Δ𝐹𝐹𝐹𝐹 =650 GHz). Note that the soliton spectra in Fig. 3 and 4 well exceed such a bandwidth. The 

FSR of the cavity was about 77 MHz. 

 In sharp contrast to passively mode-locked lasers that intrinsically need a gain-dampening mechanism, 

cavity-solitons do not necessitate a fast-saturable absorption because they arise from the bistability of the 

system [22]. For this reason, we used a full polarisation-maintaining loop to prevent any effect related to 

fast gain saturation and standard passive mode-locking, further confirming the bistable origin of the pulses. 

Note that the fibre amplifier had a recovery time in the order of 10 ms [42], well above the soliton 

repetition-rate and main-cavity round-trip.  

The intra-cavity lines were measured by laser-scanning spectroscopy (Supplementary). The scanning laser 

was calibrated with a 6.95 MHz Mach-Zehnder and by beating it with a 250MHz reference comb [43]. The 

micro-comb output was extracted at the drop-port of the micro-ring and was characterised with a second 

harmonic generation, background-free, non-collinear autocorrelator, optical spectrum-analyser and radio-

frequency detection, obtained with a fast oscilloscope. The intra-cavity energy was measured with two 

monitors at the drop-port of the micro-resonator  and the output of the amplifier before all system losses. 

The soliton cases presented in the experiments show the presence of multiple pulses in the cavity. Our 

present setup could not run at a lower saturation powers which would allow for the observation of single 

soliton states.  

Soliton states could be maintained over a time scale of minutes. The long-term stability of the solitary state 

was limited by mechanical and acoustical perturbations. Electronic feedback and proper packaging to 

screen mechanical and acoustical perturbations is expected to improve the system stability.  

 

Model 

The main features of the laser can be obtained by a simple mean-field model (see Supplementary for the 

complete derivation) that, in its normalised form, reads:  

𝜕𝜕𝑡𝑡𝑎𝑎 +
𝑖𝑖𝜁𝜁𝑎𝑎
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑎𝑎 + 𝑖𝑖 |𝑎𝑎|2𝑎𝑎 =  −𝜅𝜅𝑎𝑎 + √𝜅𝜅 � 𝑏𝑏𝑞𝑞𝑁𝑁

𝑞𝑞=−𝑁𝑁  (3) 

𝜕𝜕𝑡𝑡𝑏𝑏𝑞𝑞 + 𝛿𝛿𝜕𝜕𝜏𝜏𝑏𝑏𝑞𝑞 +
𝑖𝑖𝜁𝜁𝑏𝑏
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏𝑞𝑞 − 2𝜋𝜋 𝑖𝑖 (𝛥𝛥 − 𝑞𝑞)𝑏𝑏𝑞𝑞 =  𝜎𝜎𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏𝑞𝑞 + 𝑔𝑔 𝑏𝑏𝑞𝑞 − � 𝑏𝑏𝑝𝑝𝑁𝑁

𝑝𝑝=−𝑁𝑁 + √𝜅𝜅𝑎𝑎, (4) 

where a and bq are the optical field envelopes for the micro-resonator and amplifying cavities, respectively, 

and are expressed as a function of the normalised propagation time t and space coordinate x. Here we have 

considered the generic interaction with 2N+1 super-modes bq, for |𝑞𝑞| ≤ 𝑁𝑁; the mode with q=0 corresponds 

to the leading mode. 
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The time t accounts for the propagation over different round-trips and is normalised against the main-

cavity round-trip Tb=1/Fb=12.5 ns. The space coordinate x, defined for |x|<1/2, is associated to the frame 

moving with the pulse and is normalised against the micro-cavity round-trip length, which corresponds to 

a round-trip time Ta=1/Fa =20 ps. 

The left- and right-hand sides of the equations contain the conservative and dissipative terms: ζ(a,b) >0, Δ 
and δ are the normalised coefficients for the cavity (anomalous) dispersions, the cavity-frequency offset 

and the group velocity mismatch. The latter term considers the effective FSR detuning between the two 

cavities as in Eq. (1); κ, g and σ represent the coupling, saturated gain and bandwidth of the spectral-

filtering, respectively.  

Specifically (see Supplementary for the derivation), the normalised coupling parameter is 𝜅𝜅 =  𝜋𝜋 Δ𝐹𝐹𝐴𝐴𝑇𝑇𝑏𝑏 ≈
2 𝜋𝜋, being the micro-cavity linewidth Δ𝐹𝐹𝐴𝐴 approximately twice the FSR of the main-cavity (in the 

experimental condition). The normalised dispersions are 𝜁𝜁(𝑎𝑎,𝑏𝑏) = −𝛽𝛽(𝑎𝑎,𝑏𝑏)𝑣𝑣(𝑎𝑎,𝑏𝑏)𝑇𝑇𝑏𝑏/𝑇𝑇𝑎𝑎2 for which 𝑣𝑣(𝑎𝑎,𝑏𝑏) and 𝛽𝛽(𝑎𝑎,𝑏𝑏) are the group-velocities and group velocity dispersions of the two cavities, respectively. In the 

simulations, we used 𝜁𝜁𝑎𝑎 = 1.25 × 10−4, 𝜁𝜁𝑏𝑏 = 3.5 × 10−4 , obtained with values |𝛽𝛽𝑎𝑎|≈-20 ps2/km and |𝛽𝛽𝑏𝑏|≈-

60 ps2/km (within our experimental constraints). We used a gain bandwidth 𝜎𝜎 = (2𝜋𝜋𝑇𝑇𝑎𝑎Δ𝐹𝐹𝐹𝐹)−2 ≈
1.5 × 10−4, based on a 650 GHz intra-cavity spectral filter. The gain g, considered as the saturated-gain of 

the amplifier, is normalised against the main-cavity length and, together with Δ and 𝛿𝛿 in Eq. (1), is an 

adjustable parameter in our numerical datasets.  

The stationary states are defined as 𝑎𝑎(𝑡𝑡, 𝑥𝑥) = 𝑎𝑎𝑆𝑆(𝑥𝑥 − 𝑣𝑣𝑡𝑡) exp[2𝜋𝜋𝑖𝑖𝜙𝜙𝑡𝑡], 𝑏𝑏𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 𝑏𝑏𝑞𝑞,𝑆𝑆(𝑥𝑥 − 𝑣𝑣𝑡𝑡) exp[2𝜋𝜋𝑖𝑖𝜙𝜙𝑡𝑡], 

where the normalised frequency offset 𝜙𝜙 and the normalised velocity 𝑣𝑣 are as in Eq. (2). Solitary solutions 

are found by numerical continuation considering 11 super-modes (i.e. with N=5), while stability is 

investigated with linear perturbation analysis and propagation considering 61 super-modes (i.e. with 

N=30). 
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Section SM1: Derivation of the Model Equations 

Our experimental configuration can be described by a system comprising two travelling-wave 

resonators, as depicted in Fig. S1a. Such a system features a Kerr cavity (‘a’, red circle) nested in 

an amplifying main-cavity (‘b’, black loop). In our experiments, such cavities are, respectively, a 

micro-ring resonator and a fibre-loop with gain. The amplifying-cavity is effectively an open loop, 

linked to the input and output ports of the ring. For simplicity, we model it as a closed cavity, 

adding an effective length of approximately half the circumference of the ring between these two 

connection points. The main-cavity field at the input of the amplifying loop is subtracted and 

replaced by the evolution of the input field after propagating in the ring (typically, half 

circumference). 

In a more formal description, we define two space coordinates 𝑋𝑋(𝑎𝑎,𝑏𝑏) for the two cavities, with 

coupling points at 𝑋𝑋(𝑎𝑎,𝑏𝑏) = 0 and 𝑋𝑋(𝑎𝑎,𝑏𝑏) = 𝐿𝐿(𝑎𝑎,𝑏𝑏)

(1)
. The minimum propagation path of a pulse within 

the micro-cavity is 𝐿𝐿𝑎𝑎 = 𝐿𝐿𝑎𝑎(1)
+ 𝐿𝐿𝑎𝑎(2)

, which corresponds to a round-trip time 𝑇𝑇𝑎𝑎. Because there is 

no physical connection between points 𝑋𝑋𝑏𝑏 = 𝐿𝐿𝑏𝑏(1)
 and 𝑋𝑋𝑏𝑏 = 0 of the gain loop, a pulse propagating 

in the main-cavity necessarily travels the micro-cavity section 𝐿𝐿𝑎𝑎(2)
 so that the minimum 

propagation path is, in this case,  𝐿𝐿𝑏𝑏(1)
+ 𝐿𝐿𝑎𝑎(2)

.  

Therefore, in our model it is convenient to consider the main-cavity as closed with an adjusted 

round-trip time 𝑇𝑇𝑏𝑏 ,   obtained by adding an auxiliary length 𝐿𝐿𝑏𝑏(2) ≈ 𝐿𝐿𝑎𝑎(2)
 between the points 𝑋𝑋𝑏𝑏 =𝐿𝐿𝑏𝑏(1)

 and 𝑋𝑋𝑏𝑏 = 0 (Fig. S1a, dashed black line) so that the total length of the cavity is, consequently, 𝐿𝐿𝑏𝑏 = 𝐿𝐿𝑏𝑏(1)
+ 𝐿𝐿𝑏𝑏(2)

. The length 𝐿𝐿𝑏𝑏(2)
 will be exactly defined below and we will properly configure the 
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optical field at the main-cavity input point 𝑋𝑋𝑏𝑏 = 0, so that it will depend only on the field in the 

micro-resonator at the point 𝑋𝑋𝑎𝑎 = 𝐿𝐿𝑎𝑎.  

We consider 𝑇𝑇𝑏𝑏 ≫ 𝑇𝑇𝑎𝑎 and define an integer M which approximately represents the ratio between 

the two round-trips. Such a quantity allows us to count how many modes of the long cavity are 

contained in the free-spectral range (FSR) of the micro-cavity, Fig. S1b. Specifically, we have 

 𝐹𝐹𝑎𝑎 = (𝑀𝑀 − 𝛿𝛿)𝐹𝐹𝑏𝑏 , (S1) 

with the FSR given by 𝐹𝐹(𝑎𝑎,𝑏𝑏) = 𝑇𝑇(𝑎𝑎,𝑏𝑏)
−1  for the two cases. The variable |δ| < 1/2 represents the FSR 

detuning, as in Eq. (1) in the main text, and allows for modelling non-commensurate loops, i.e. 

for periods 𝑇𝑇𝑏𝑏 which are not exactly divided by 𝑇𝑇𝑎𝑎.  

 

Figure S1. Principle of operation. a. Scheme of the nested, travelling-wave cavities 

configuration: a Kerr micro-cavity (‘a’ – red loop, with length 𝐿𝐿𝑎𝑎 = 𝐿𝐿𝑎𝑎(1)
+ 𝐿𝐿𝑎𝑎(2)

), is nested in an 

amplifying main cavity (‘b’ – black line, with length 𝐿𝐿𝑏𝑏 = 𝐿𝐿𝑏𝑏(1)
+ 𝐿𝐿𝑏𝑏(2)

). We define two space 

coordinates 𝑋𝑋(𝑎𝑎,𝑏𝑏) for the two cavities, with coupling points at 𝑋𝑋(𝑎𝑎,𝑏𝑏) = 0 and 𝑋𝑋(𝑎𝑎,𝑏𝑏) = 𝐿𝐿(𝑎𝑎,𝑏𝑏)

(1)
. 

b. Scheme of the modes interaction, with the resonances of the micro-cavity (red) and modes 

of the main-cavity (black). The Kerr micro-cavity resonances possess a linewidth ΔFA and each 

mode (of index m) a central frequency fm
(a). 

The optical fields in the two cavities 𝐴𝐴(𝑇𝑇,𝑋𝑋𝑎𝑎) and 𝐵𝐵(𝑇𝑇,𝑋𝑋𝑏𝑏) are expressed in [√W] and are slowly 

varying in time 𝑇𝑇, defined in [s]. 

It is convenient to expand such functions in a set of cavity modes 𝑎𝑎𝑚𝑚(𝑇𝑇) and 𝑏𝑏𝑛𝑛(𝑇𝑇), defined in [�J] 

(as usually done in coupled-mode theory) [1] and given by 

 𝐴𝐴(𝑇𝑇,𝑋𝑋𝑎𝑎) = � 𝑎𝑎𝑚𝑚(𝑇𝑇)�𝑇𝑇𝑎𝑎 exp �2𝜋𝜋𝑖𝑖𝑚𝑚𝑋𝑋𝑎𝑎𝐿𝐿𝑎𝑎� ,

∞
𝑚𝑚=−∞  (S2) 

 𝐵𝐵(𝑇𝑇,𝑋𝑋𝑏𝑏) = � 𝑏𝑏𝑛𝑛(𝑇𝑇)�𝑇𝑇𝑏𝑏 exp �2𝜋𝜋𝑖𝑖𝑛𝑛 
𝑋𝑋𝑏𝑏𝐿𝐿𝑏𝑏� .

∞
𝑛𝑛=−∞  (S3) 



17 

 

In this way, we can study their dynamics using a set of very general, standard coupled-mode 

equations [1] for all the interacting modes, which can be generalised for a large class of resonator 

types. Specifically, our full model, which accounts for the whole dynamic, reads as 

 
𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑇𝑇 = −�2𝜋𝜋 𝑖𝑖 𝑓𝑓𝑚𝑚(𝑎𝑎)

+  𝜋𝜋 𝛥𝛥𝐹𝐹𝐴𝐴 + 𝑖𝑖 𝑣𝑣𝑎𝑎𝛽𝛽𝑎𝑎
2

(2 𝜋𝜋𝑓𝑓𝑚𝑚(𝑎𝑎)
)2 � 𝑎𝑎𝑚𝑚 − 𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑇𝑇𝑎𝑎 �𝛿𝛿𝑗𝑗−𝑚𝑚,𝑝𝑝−𝑙𝑙𝑗𝑗,𝑝𝑝,𝑙𝑙 𝑎𝑎𝑗𝑗𝑎𝑎𝑙𝑙𝑎𝑎𝑝𝑝∗ +

𝑆𝑆𝑎𝑎�𝑇𝑇𝑎𝑎 , (S4) 

 
𝑑𝑑𝑏𝑏𝑛𝑛𝑑𝑑𝑇𝑇 = −�2𝜋𝜋 𝑖𝑖 𝑓𝑓𝑛𝑛(𝑏𝑏) − 𝐺𝐺 𝑣𝑣𝑏𝑏 + �𝑖𝑖 𝑣𝑣𝑏𝑏𝛽𝛽𝑏𝑏

2
+

1

(2π Δ𝐹𝐹𝐹𝐹)2𝑇𝑇𝑏𝑏� (2 𝜋𝜋 𝑓𝑓𝑛𝑛(𝑏𝑏)
)2 � 𝑏𝑏𝑛𝑛 +

𝑆𝑆𝑏𝑏�𝑇𝑇𝑏𝑏 , (S5) 

where 𝑣𝑣(𝑎𝑎,𝑏𝑏) and 𝛽𝛽(𝑎𝑎,𝑏𝑏) are the group-velocities and group velocity dispersions of the two cavities, 

respectively and δi,j is the Kronecker delta. Every 𝑎𝑎𝑚𝑚or 𝑏𝑏𝑛𝑛 mode oscillates at the frequencies 

 𝑓𝑓𝑚𝑚(𝑎𝑎)
=  𝑚𝑚 𝐹𝐹𝑎𝑎 , (S6) 

 𝑓𝑓𝑛𝑛(𝑏𝑏)
= (𝑛𝑛 −Δ)𝐹𝐹𝑏𝑏 , (S7) 

respectively. With this definition, we fix the central mode of the micro-cavity 𝑎𝑎0 to a frequency 𝑓𝑓0(𝑎𝑎)
= 0, while the frequency 𝑓𝑓0(𝑏𝑏)

= −𝐹𝐹𝑏𝑏 Δ of the central laser cavity mode b0(t) is detuned via 

the parameter Δ, which is the normalised frequency offset with respect to the central micro-cavity 

frequency 𝑓𝑓0(𝑎𝑎)
= 0 . Such offset is considered as a small value, in agreement with Eq. (1) in the 

main text.  

We consider the waveguide dispersions 𝛽𝛽(𝑎𝑎,𝑏𝑏), in [s2m−1], the gain of the amplifying loop G, in 

[m−1], the bandwidth Δ𝐹𝐹𝐹𝐹  of a band-pass filter in [Hz] and the Kerr waveguide coefficient γ, in 

W−1m−1 [2]. The parameter 𝛥𝛥𝐹𝐹𝐴𝐴 ,in [Hz], is the -3 dB linewidth of the micro-cavity resonance [1].  

We can now discuss the source terms 𝑆𝑆𝑎𝑎  and 𝑆𝑆𝑏𝑏, here expressed in [√W]. The cavities are coupled 

by means of the dimensionless coefficient √𝜃𝜃 that we consider to be the same for the two ports, 

where 𝜃𝜃 is the ratio between the input and transmitted power in the coupler. Because the 

coupling losses are dominant in the micro-resonator, such a coefficient is related to the micro-

cavity linewidth by 𝜃𝜃 =  𝜋𝜋 𝛥𝛥𝐹𝐹𝐴𝐴𝑇𝑇𝑎𝑎 [1].  

The field coupled in the micro Kerr cavity, which is added to its intra-cavity field at the point 

 𝑋𝑋𝑎𝑎 = 0, is the output field of the main-cavity in 𝑋𝑋𝑏𝑏 = 𝐿𝐿𝑏𝑏(1)
, resulting in [1]: 

 

𝑆𝑆𝑎𝑎 = √𝜃𝜃𝐵𝐵 �𝑇𝑇, 𝐿𝐿𝑏𝑏(1)� = √𝜃𝜃 � 𝑏𝑏𝑛𝑛 (𝑇𝑇)�𝑇𝑇𝑏𝑏∞
𝑛𝑛=−∞ exp �2𝜋𝜋𝑖𝑖𝑛𝑛 𝐿𝐿𝑏𝑏 − 𝐿𝐿𝑏𝑏(2)𝐿𝐿𝑏𝑏  �

= √𝜃𝜃 � 𝑏𝑏𝑛𝑛 (𝑇𝑇)�𝑇𝑇𝑏𝑏∞
𝑛𝑛=−∞ exp �−2𝜋𝜋𝑖𝑖𝑛𝑛 𝐿𝐿𝑎𝑎(1)𝑀𝑀𝐿𝐿𝑎𝑎  � , 

(S8) 

where we have set 𝐿𝐿𝑏𝑏(2)
/𝐿𝐿𝑏𝑏 = 𝐿𝐿𝑎𝑎(1)

/(𝑀𝑀 𝐿𝐿𝑎𝑎). Such an equation will simplify the calculation later. 

The definition of the source term 𝑆𝑆𝑏𝑏 for the main-cavity needs to take into account that the main 

amplifying cavity is modelled as an effective open loop because in our experimental model there 

is no physical connection between the points 𝑋𝑋𝑏𝑏 = 𝐿𝐿𝑏𝑏(1)
 and 𝑋𝑋𝑏𝑏 = 𝐿𝐿𝑏𝑏 (black dashed line in Fig. 

S1a), as discussed at the beginning of this section. Such a modelling can be done imposing that 

the input field in the amplifying loop at 𝑋𝑋𝑏𝑏 = 0 is only dependent on the micro-cavity coupled 

field, i.e. 𝐵𝐵(𝑇𝑇, 0) = √𝜃𝜃𝐴𝐴(𝑇𝑇, 𝐿𝐿𝑎𝑎(1)
). From a practical point of view, this requires subtracting the field 𝐵𝐵(𝑇𝑇, 𝐿𝐿𝑏𝑏) propagating in the main-cavity just before the coupling point 𝑋𝑋𝑏𝑏 = 0 in the source term, 
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 𝑆𝑆𝑏𝑏 = √𝜃𝜃𝐴𝐴 �𝑇𝑇, 𝐿𝐿𝑎𝑎(1)� − 𝐵𝐵(𝑇𝑇, 𝐿𝐿𝑏𝑏) = � √𝜃𝜃𝑎𝑎𝑚𝑚 (𝑇𝑇)�𝑇𝑇𝑎𝑎∞
𝑚𝑚=−∞ exp �2𝜋𝜋𝑖𝑖𝑚𝑚𝐿𝐿𝑎𝑎(1)𝐿𝐿𝑎𝑎  � − 𝑏𝑏𝑚𝑚 (𝑇𝑇)�𝑇𝑇𝑏𝑏 . (S9) 

Eqs. (S1)-(S9) define the full model which can be used to simulate the complete dynamic of the 

system and it is equivalent to the model described in Ref. [3]. Mean-field models, however, usually 

allow for better understanding of the physical dynamics and, for this reason, we will reduce Eqs. 

(S1)-(S9) with standard phase-matching considerations [2] to a set of partial differential 

equations. 

In principle, Eqs. (S8) and (S9) couple all the 𝑏𝑏𝑛𝑛  modes, both together and to every 𝑎𝑎𝑚𝑚  mode. 

Practically, however, only modes with similar frequencies will interact [1]: the strongest 

interaction with the Kerr cavity frequency 𝑓𝑓𝑚𝑚(𝑎𝑎)
 will occur for the main-cavity frequencies 𝑓𝑓𝑛𝑛(𝑏𝑏)

 

falling within the micro-cavity linewidth 𝛥𝛥𝐹𝐹𝐴𝐴: 

 �𝑓𝑓𝑛𝑛(𝑏𝑏) − 𝑓𝑓𝑚𝑚(𝑎𝑎)� < 𝛥𝛥𝐹𝐹𝐴𝐴. (S10) 

It is therefore important to express the main-cavity frequencies 𝑓𝑓𝑛𝑛(𝑏𝑏)
 in terms of the Kerr cavity 

frequencies 𝑓𝑓𝑚𝑚(𝑎𝑎)
 to allow a better comparison between the interacting frequencies. Considering 

that every FSR of the micro-cavity contains almost 𝑀𝑀 𝑓𝑓𝑛𝑛(𝑏𝑏)
 frequencies (see Eq. (S1) and Fig. S1b), 

we express the index n of the 𝑏𝑏𝑛𝑛 set as  

 𝑛𝑛 = 𝑚𝑚 𝑀𝑀 + 𝑞𝑞, (S11) 

where m spans all the integer spectrum while |q| < M. Using the definition of the integer M given 

in Eq. (S1), we get 

 𝑓𝑓𝑛𝑛(𝑏𝑏)
= (𝑚𝑚 𝑀𝑀 + 𝑞𝑞 − Δ)𝐹𝐹𝑏𝑏 = 𝑚𝑚 𝐹𝐹𝑎𝑎 + (𝑞𝑞 − 𝛥𝛥 + 𝑚𝑚 𝛿𝛿)𝐹𝐹𝑏𝑏 = 𝑓𝑓𝑚𝑚(𝑎𝑎) − (𝛥𝛥 − 𝑞𝑞 −𝑚𝑚 𝛿𝛿)𝐹𝐹𝑏𝑏 . (S12) 

The index m can now be used to refer the main-cavity mode directly to the frequency 𝑓𝑓𝑚𝑚(𝑎𝑎)
 of the 

micro-cavity. The parameter q is, conversely, a relative index referring to the frequency of the am 

mode. Following our discussion in the main text, it defines the order of the super-mode: in 

particular, q = 0 is associated to the leading-order mode. In general, q selects a set of main-cavity, 

equally-spaced modes . When the FSR of the two cavities is commensurate, i.e. 𝛿𝛿 = 0, such modes 

are exactly set apart by the micro-cavity FSR 𝐹𝐹𝑎𝑎. The super-modes and, practically, the index q are 

very useful to select the interacting frequencies, although the number of modes necessary for 

correctly describing the interaction is difficult to determine a priori. We can, however, define an 

integer N and keep only the super-modes with |q| < N. We expect that the number 2N + 1 of main-

cavity modes per micro-cavity resonance will be around the order of magnitude of the main-

cavity mode number per micro-cavity lines Δ𝐹𝐹𝐴𝐴/𝐹𝐹𝑏𝑏 and, in any case, much smaller than the ratio 

M between the two cavities’ FSRs (Eq. (S1)). The validity of the solution can be simply checked a 

posteriori by testing the model for increasing N, as we will do in the following. 

We can now look into a field expression for a single super-mode and, to this aim, we group 

together all the modes 𝑏𝑏𝑛𝑛 = 𝑏𝑏 𝑚𝑚𝑚𝑚+𝑞𝑞 with the same q and Fourier transform them in the space 𝑋𝑋𝑎𝑎 

of the micro-cavity 
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 𝐵𝐵𝑞𝑞(𝑇𝑇,𝑋𝑋𝑎𝑎) = � 𝑏𝑏𝑚𝑚 𝑚𝑚+𝑞𝑞 (𝑇𝑇)�𝑇𝑇𝑏𝑏∞
𝑚𝑚=−∞ exp �2𝜋𝜋𝑖𝑖𝑚𝑚 

�𝑋𝑋𝑎𝑎 − 𝐿𝐿𝑎𝑎(1)
 �𝐿𝐿𝑎𝑎  �. (S13) 

Without loss of generality, we have centred the mode in 𝐿𝐿𝑎𝑎(1)
 because it is convenient in the 

following substitutions. 

Now that both the micro- and main-cavity fields are defined in the same space, we derive a mean-

field system via multiplying Eqs. (S4) and (S5) by the terms exp[2𝜋𝜋𝑖𝑖𝑚𝑚 𝑋𝑋𝑎𝑎𝐿𝐿𝑎𝑎−1] and 

exp �2𝜋𝜋𝑖𝑖𝑚𝑚 �𝑋𝑋𝑎𝑎 − 𝐿𝐿𝑎𝑎(1)
 � 𝐿𝐿𝑎𝑎−1� , respectively. We will then keep only a small number 2N + 1 << M of 

main-cavity modes per micro-cavity resonance: the mode 𝑏𝑏𝑚𝑚 𝑚𝑚+𝑞𝑞  will interact with the mode am 

only if |q| < N. Summing up for every m and, by using Eqs. (S2) and (S13), we get 

 𝑇𝑇𝑎𝑎 𝜕𝜕𝐴𝐴𝜕𝜕𝑇𝑇 + 𝐿𝐿𝑎𝑎 𝜕𝜕𝐴𝐴𝜕𝜕𝑋𝑋𝑎𝑎 − 𝐿𝐿𝑎𝑎 𝑖𝑖𝛽𝛽𝑎𝑎𝑣𝑣𝑎𝑎22

𝜕𝜕2𝐴𝐴𝜕𝜕𝑋𝑋𝑎𝑎2 + 𝑖𝑖𝑖𝑖 𝐿𝐿𝑎𝑎|𝐴𝐴|2𝐴𝐴 =  −𝜃𝜃𝐴𝐴+ √𝜃𝜃 � 𝐵𝐵𝑞𝑞𝑁𝑁
𝑞𝑞=−𝑁𝑁 , (S14) 

 

𝑇𝑇𝑏𝑏 𝜕𝜕𝐵𝐵𝑞𝑞𝜕𝜕𝑇𝑇 + 𝑀𝑀 𝐿𝐿𝑎𝑎 𝜕𝜕𝐵𝐵𝑞𝑞𝜕𝜕𝑋𝑋𝑎𝑎 − 𝐿𝐿𝑏𝑏 𝑖𝑖𝛽𝛽𝑏𝑏𝑣𝑣𝑎𝑎22

𝜕𝜕2𝐵𝐵𝑞𝑞𝜕𝜕𝑋𝑋𝑎𝑎2 − 2𝜋𝜋𝑖𝑖(Δ − q )𝐵𝐵𝑞𝑞
=

𝑣𝑣𝑎𝑎2
(2π Δ𝐹𝐹𝐹𝐹)2 𝜕𝜕2𝐵𝐵𝑞𝑞𝜕𝜕𝑋𝑋𝑎𝑎2 + 𝐺𝐺𝐿𝐿𝑏𝑏 𝐵𝐵𝑞𝑞 − � 𝐵𝐵𝑝𝑝𝑁𝑁

𝑝𝑝=−𝑁𝑁  + √𝜃𝜃𝐴𝐴, 

(S15) 

where we have neglected the contribution of the small detuning 𝑞𝑞 + 𝛥𝛥 +𝑚𝑚 𝛿𝛿 in the dispersion 

and of the small-phase terms q/M. The equations reported in the main text are found with the 

following normalisation. The propagating time is normalised against the main-cavity period in 

the frame moving with the pulses, 𝑡𝑡 = 𝑇𝑇 𝑇𝑇𝑏𝑏−1, while the fast cavity-time, 𝑥𝑥 = 𝑋𝑋𝑎𝑎𝐿𝐿𝑎𝑎−1  − 𝑇𝑇 𝑇𝑇𝑎𝑎−1, is 

normalised against the micro-cavity roundtrip. We have 𝑎𝑎 = 𝐴𝐴�𝑖𝑖𝑣𝑣𝑎𝑎𝑇𝑇𝑏𝑏, 𝑏𝑏𝑞𝑞 = 𝐵𝐵𝑞𝑞 𝑇𝑇𝑏𝑏�𝑖𝑖𝑣𝑣𝑎𝑎  𝑇𝑇𝑎𝑎−1, 𝑔𝑔 =𝐺𝐺 𝐿𝐿𝑏𝑏, 𝜁𝜁(𝑎𝑎,𝑏𝑏) = −𝛽𝛽(𝑎𝑎,𝑏𝑏)𝑣𝑣(𝑎𝑎,𝑏𝑏)𝑇𝑇𝑏𝑏𝑇𝑇𝑎𝑎−2, 𝜎𝜎 = (2π Δ𝐹𝐹𝐹𝐹𝑇𝑇𝑎𝑎)−2. Note that the coupling parameter 𝜅𝜅 =𝜃𝜃𝑇𝑇𝑏𝑏𝐹𝐹𝑎𝑎 = 𝜋𝜋 Δ𝐹𝐹𝐴𝐴 𝑇𝑇𝑏𝑏 provides directly the number 𝜅𝜅𝜋𝜋−1 of main-cavity modes per micro-ring 

resonance. Tables 1 and 2 in the Appendix summarise all the quantities used in the simulations. 

Finally, we note that such a reduction could be also performed starting from a set of propagation 

equations, as modelled in Ref. [3], by applying a similar method to Ref. [4]. 

Section SM2: Soliton Search and Analysis 

We start from the general system used in the main text involving the coupled interaction of 2N+1 

super-modes 

 𝜕𝜕𝑡𝑡𝑎𝑎 +
𝑖𝑖𝜁𝜁𝑎𝑎
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑎𝑎 + 𝑖𝑖 |𝑎𝑎|2𝑎𝑎 =  −𝜅𝜅𝑎𝑎 + √𝜅𝜅 � 𝑏𝑏𝑞𝑞𝑁𝑁

𝑞𝑞=−𝑁𝑁 , (S16) 

 𝜕𝜕𝑡𝑡𝑏𝑏𝑞𝑞 + 𝛿𝛿𝜕𝜕𝑥𝑥𝑏𝑏𝑞𝑞 +
𝑖𝑖𝜁𝜁𝑏𝑏
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏𝑞𝑞 − 2𝜋𝜋 𝑖𝑖 (𝛥𝛥 − 𝑞𝑞)𝑏𝑏𝑞𝑞 =  𝜎𝜎𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏𝑞𝑞 + 𝑔𝑔 𝑏𝑏𝑞𝑞 − � 𝑏𝑏𝑝𝑝𝑁𝑁

𝑝𝑝=−𝑁𝑁 + √𝜅𝜅𝑎𝑎. (S17) 

The aim of this section is to find localised solutions of the kind 𝑎𝑎(𝑡𝑡, 𝑥𝑥) = 𝑎𝑎𝑆𝑆(𝑥𝑥 − 𝑣𝑣𝑡𝑡) exp[2𝜋𝜋𝑖𝑖𝜙𝜙𝑡𝑡], 𝑏𝑏𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 𝑏𝑏𝑞𝑞,𝑆𝑆(𝑥𝑥 − 𝑣𝑣𝑡𝑡) exp[2𝜋𝜋𝑖𝑖𝜙𝜙𝑡𝑡], where the variable 𝜙𝜙 is the normalised frequency of the pulse 

and 𝑣𝑣 the normalised velocity, as defined in the main text. We will do such a search via numerical 
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integration. Before starting with the integration, it is convenient to do some analytical 

considerations that will help us in defining the range of parameters where stable solitons exist. 

For this reason, we focus first on the case N = 0, involving only the mode 𝑏𝑏0(𝑡𝑡, 𝑥𝑥): the study of the 

soliton behaviours in such a system is then associated directly with the leading cavity super-mode 

(experiencing the lowest coupling losses) responsible for driving the predominant dynamics and, 

thus, providing a general understanding of the full system. Eqs (S16) and (S17) simplify in a two-

equations system 

 𝜕𝜕𝑡𝑡𝑎𝑎 +
𝑖𝑖𝜁𝜁𝑎𝑎
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑎𝑎 + 𝑖𝑖 |𝑎𝑎|2𝑎𝑎 =  −𝜅𝜅𝑎𝑎 + √𝜅𝜅𝑏𝑏0, (S18) 

 𝜕𝜕𝑡𝑡𝑏𝑏0 + 𝛿𝛿𝜕𝜕𝑥𝑥𝑏𝑏0 +
𝑖𝑖𝜁𝜁𝑏𝑏
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏0 − 2 𝜋𝜋𝑖𝑖Δ 𝑏𝑏0 =  𝜎𝜎𝜕𝜕𝑥𝑥𝑥𝑥𝑏𝑏0 + (𝑔𝑔 − 1) 𝑏𝑏0 + √𝜅𝜅𝑎𝑎, (S19) 

where we will assume 𝜁𝜁𝑎𝑎 > 0 to study bright localised states [5]. The system possesses strong 

similarities with the model for semiconductor solitons in frequency-selective feedback cavities 

and with dual-core fibre laser systems [6, 7], although it has the fundamental peculiarity of 

showing nonlinearity and gain in two different equations which, different from previous studies, 

allows the formation of broadband solutions in the Kerr cavity. 

The existence of cavity-solitons generally requires bistability, i.e. the contemporary presence of 

two stationary states, a high-energy and a low-energy state (or background) upon which the 

soliton is formed. In the field of micro-combs, this has been largely discussed for Lugiato-Lefever 

temporal cavity solitons usually forming over a continuous-wave (CW) background; the Lugiato-

Lefever equation, with the conventions used in this paper, reads as 

 𝜕𝜕𝑡𝑡𝑎𝑎 +
𝑖𝑖𝜁𝜁𝑎𝑎
2
𝜕𝜕𝑥𝑥𝑥𝑥𝑎𝑎 + 𝑖𝑖 |𝑎𝑎|2𝑎𝑎 − 2 𝜋𝜋𝑖𝑖Δ 𝑎𝑎 =  −𝜅𝜅𝑎𝑎 + √𝜅𝜅 𝑆𝑆, (S20) 

for the same dispersion 𝜁𝜁𝑎𝑎 , coupling constant 𝜅𝜅 and field a of the micro-cavity in (S18) and with S 

as the external driving field, detuned from the coupled resonance by the frequency offset Δ. The 

threshold for bistability of Eq. (S20) requires Δ < 𝜅𝜅√3 and |𝑆𝑆|2 > 8/(3 √3) 𝜅𝜅2 [8], which provides 

a minimum threshold excitation for soliton formation. 

Conversely, in the system given by Eqs. (S18)-(S19), the two bistable stationary states are a CW 

state and a zero background. This is typical of homogeneous systems with gain, like in Refs. [6,7], 

where the null solution is admitted and usually exists in the full range of parameters, different 

from inhomogeneous, externally-driven systems, like in Eq. (S20). Eqs. (S18) and (S19) admit the 

two CW solution |𝑎𝑎𝑆𝑆|2  =  ±�𝑔𝑔 (1− 𝑔𝑔)−1 (1− 𝑔𝑔 + κ) with 𝜙𝜙 = −Δ± (2𝜋𝜋)−1�𝑔𝑔(1− 𝑔𝑔): their 

existence implies 0< g < 1. It is very important to stress that, different from Eq. (S20), the 

threshold for bistability is simply g = 0: any excitation above the zero level can, in principle, 

provide a localised state. The frequency offset should however be properly set as Δmin >−(2𝜋𝜋)−1�𝑔𝑔 (1 − 𝑔𝑔)−1|1− 𝑔𝑔 + 𝜅𝜅|, which provides the existence of at least one CW state for Eqs 

(S18)-(S19).  

The stability of the solitary states requires the stability of the low-energy stationary state, which 

here is the null solution. Note, however, that solitons are not the only stable solutions of a bistable 

system. Stable rolls and patterns, which originate from the modulation instability of the 

background, can be found in the instability region of the background itself. This is well-known for 

the Lugiato-Lefever system. The systematic study of these solutions is beyond the scope of this 
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paper, although such states are expected to exist also for our system in the region where the null 

background is unstable. 

It is then very important to study the stability region of the zero state. Such a state is always 

unstable for frequency offsets |𝛥𝛥| < (2𝜋𝜋)−1�𝑔𝑔 (1− 𝑔𝑔)−1|1− 𝑔𝑔 + 𝜅𝜅|. Although this formula is, in 

principle, valid only for Eqs. (S18)-(S19), the instability regions of Eqs. (S16)-(S17) are well 

approximated by |𝛥𝛥 + 𝑞𝑞| < (2𝜋𝜋)−1�𝑔𝑔 (1 − 𝑔𝑔)−1|1− 𝑔𝑔 + 𝜅𝜅| for 𝑁𝑁 >  0. Figure S2 summarises 

the stability region of the zero state. 

 

Figure S2. Region of existence and stability of solitary waves. These existence maps refer 

to the solutions of Eq. (S18)-(S19). The stability map of these solutions, however, are discussed 

for the whole system, Eq. (S16)-(S17). a. Map for 𝜅𝜅 = 2𝜋𝜋, as in the experiments. Solitons of Eq. 

(S18)-(S19) can be found for values larger than 𝛥𝛥𝑚𝑚𝑚𝑚𝑛𝑛 > −(2𝜋𝜋)−1�𝑔𝑔 (1 − 𝑔𝑔)−1|1− 𝑔𝑔 + 𝜅𝜅|,  

(black dashed line), where at least one CW state exists. The existence map, for simplicity, refers 

to Eq. (S18)-(S19). This threshold defines the region of existence of the soliton (non-existent 

in the light red region). The zero state of Eq. (S18)-(S19)  is unstable for |𝛥𝛥| <

(2𝜋𝜋)−1�𝑔𝑔 (1− 𝑔𝑔)−1|1− 𝑔𝑔 + 𝜅𝜅|, (red solid line); note thst here solitons are also unstable. The 

general stability of the system needs to be evaluated on the system with N > 0. The stability of 

the zero solution for the case N = 5 is reported in the dark grey section. Stable solitons can be 

found in the white region. b. Map for 𝜅𝜅 = 𝜋𝜋. A smaller 𝜅𝜅, which can be obtained with a shorter 

fibre cavity or a narrower micro-cavity linewidth, provides a larger stability region. 

These preliminary considerations help to restrict the range of parameters where interesting 

solitary solutions are expected. We now look numerically for localised states using the general 

system described by Eqs. (S16)-(S17). Starting from an appropriate guess solution, we use a 

numerical method (arc-length continuation [9]) for finding the soliton families of Eqs. (S16) and 

(S17). As discussed in the main text and reported in the Appendix, we use the parameters 𝜁𝜁𝑎𝑎 =

1.25 × 10−4, 𝜁𝜁𝑏𝑏 = 3.5 × 10−4, 𝜎𝜎 = 1.5 × 10−4 and 𝜅𝜅 = 2𝜋𝜋, consistent with our experimental 

system. 
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Figure S3. Solitary profile for different approximations of the number of super-modes 

N. Here the cases for N = 0 (blue), N = 5 (orange), N = 20 (yellow), N = 30 (purple) and N = 40 

(green) are reported. a. Time profiles of the field in the micro-cavity. b. Time profiles of the 

field in the main-cavity. c. Spectral intensity of the field in the micro-cavity. d. Spectral 

intensity of the field in the main-cavity. The spectral distribution of the first-order super-mode 

(q = 1) for the different cases is plotted with dashed lines in d. Here we have 𝜁𝜁𝑎𝑎 =

1.25 × 10−4, 𝜁𝜁𝑏𝑏 = 3.5 × 10−4, 𝜎𝜎 = 1.5 × 10−4, 𝜅𝜅 = 2𝜋𝜋, 𝑔𝑔 = 0.14,𝛿𝛿 = 0 and 𝛥𝛥 = 0.4763. It 

results in the following values: 𝜙𝜙 =  −0.4735 and 𝑣𝑣 = 0. 

Figure S3 reports a comparison of the solitary profiles obtained with N = 0, N = 5, N = 20, N = 30 

and N = 40 for 𝑔𝑔 = 0.14,𝛿𝛿 = 0 and Δ = 0.4763. This first test aims to set the number of modes N 

necessary for the numerical analysis. The difference from the case N = 0 is mostly visible in the 

spectral intensity plot1 of the field, showing that the dominant dynamic is related to the leading 

modes. The cases N = 20, N = 30 and N = 40 are indiscernible over the entire spectral range. The 

case N = 5 provides a good approximation in this range of parameters. Higher-order modes in the 

micro-resonator (Fig. S2d), which are all locked to the soliton frequency 𝜙𝜙 =  −0.4735, here only 

appear -30 dB below the leading order: this analysis shows, however, that they contribute to 

provide a better spectral description of the comb.  

                                                             
1 Fourier transform of the solution is defined as 𝑎𝑎�𝑆𝑆(𝑚𝑚) = ∫ 𝑎𝑎𝑠𝑠(𝑥𝑥)𝑒𝑒−2𝑚𝑚𝑖𝑖𝑚𝑚𝑥𝑥𝑑𝑑𝑥𝑥 where m is the mode number. 
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Figure S4. Map of Soliton States. Stationary solutions for 𝜁𝜁𝑎𝑎 = 1.25 × 10−4, 𝜁𝜁𝑏𝑏 =

3.5 × 10−4, 𝜎𝜎 = 1.5 × 10−4,𝜅𝜅 = 2𝜋𝜋, 𝛿𝛿 = 0 for 𝑔𝑔 = 0.05, 0.08, 0.10, 0.11, 0.12, 0.13, 0.14 (plot 

colour scale ranging from purple to green, respectively). Thick lines mark stable solutions. a. 

Peak intensity of the solitary field in the micro-cavity vs frequency cavity offset ∆ (full lines) 
with the corresponding two CW solutions (dashed lines) for 𝛿𝛿 = 0. b. Pulse width of the micro-

cavity intensity profile, defined as its standard deviation. c. Frequency of the soliton and of the 

CW solutions (solid and dashed lines respectively). d. Residual frequency 𝜙𝜙 + 𝛥𝛥.  

A general understanding of the behaviour for such solitary solutions can be obtained by analysing the fundamental soliton family as a function of the normalised frequency offset ∆, FSR detuning 𝛿𝛿 

and gain g. First, we find the families by continuation for N = 5 and use standard linear 

perturbation analysis for defining their range of stability. Then, the stable solutions are 

propagated in a system with N = 30 to test their stability with a more accurate approximation. 

The results obtained for 𝛿𝛿 = 0 by varying ∆ are reported in Fig. S4a for g ranging from 0.5 to 1.4. 

The peak intensity of 𝑎𝑎𝑆𝑆(𝑥𝑥) (i.e. for the micro-cavity field) is reported in Fig. S4a (full lines from 

purple to green), along with the peak intensity of the CW solutions, dashed lines. Stable solutions 

are marked with a thick line. Figure S4b depicts the solution pulse width 𝑤𝑤𝑎𝑎 defined as the 

standard deviation of the intensity. Note also that the pulse gets narrower for increasing gain g, 

i.e. the spectrum broadens.  Stable solutions correspond to the narrowest pulses. The frequency 𝜙𝜙 for the soliton (solid lines) along with the one for the CW stationary states (dashed lines) are 

reported in Fig. S4c. The frequency is better visualised by 𝜙𝜙 + Δ in Fig. S4d, which shows that the 

oscillating frequency 𝜙𝜙 of the localised states is distinct from the CW case. It is very important to 

notice that stable states are obtained only for negative values of the oscillating frequency 𝜙𝜙, which 
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means that the oscillating frequencies of a soliton state within the micro-cavity lines are red-

detuned. 

 

Figure S5. Map of Walking Soliton States. Walking stationary solutions for 𝜁𝜁𝑎𝑎 =

1.25 × 10−4, 𝜁𝜁𝑏𝑏 = 3.5 × 10−4, 𝜎𝜎 = 1.5 × 10−4,𝜅𝜅 = 2𝜋𝜋, for 𝑔𝑔 = 0.05, 0.08, 0.10, 0.11, 0.12, 

0.13, 0.14 (plot colour scale ranging from purple to green). Here ∆= 0.2867, 0.4145, 0.4472, 
0.4774, 0.4934, 0.4939, 0.4763. a. Peak intensity of the solitary field in the micro-cavity vs 

velocity mismatch 𝛿𝛿. b. Pulse width. c. Velocity. d. Residual velocity 𝑣𝑣 + 𝛿𝛿. 

After the analysis for stationary solitons, we look for so-called walking solitary solutions [8] (with 

a velocity 𝑣𝑣 that is not zero) versus 𝛿𝛿 for the same range of gain used in the previous case. The 

offset Δ is chosen at the lowest border of the stability region. The peak intensity, pulse width and 

velocity of the micro-cavity field 𝑎𝑎𝑆𝑆(𝑥𝑥) are reported in Fig. S5. Remarkably, the state remains 

stable in the explored range. 

Section SM3: Experimental Setup and Further Measurement Analysis 

SM3.1: Experimental setup and intracavity laser-scanning spectroscopy.  

Figure S6 reports the experimental setup. To characterise the micro-comb, we use its optical 

spectrum, the temporal autocorrelation obtained with a second harmonic non-collinear 

autocorrelator and the radio-frequency spectrum of the intensity, that allow us to evaluate the 

quality of the laser amplitude. In the results presented in Figs. 2 and 3 in the main text, the comb 

frequency lines have been also finely characterised by intra-cavity laser-scanning spectroscopy 

[10] (Fig. S5), which also revealed the position of the comb lines with respect to the micro-cavity 

resonances.  
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This is a very powerful approach which allowed us to experimentally extract the variables 𝜙𝜙 and 𝑣𝑣 of the solitons, allowing a proper comparison with theory. 

The laser-scanning spectroscopy measurement enables us to extract highly accurate information 

on the position of the micro-comb lines, which is obtained by beating the micro-comb with a 

scanning CW laser. Such a CW laser is swept in time and its beating with the micro-comb is read 

on an oscilloscope, providing the position of the comb lines. The axis of the oscilloscope is 

calibrated by beating the scanning CW laser itself against a reference comb [10]. The scanning 

laser is then propagated in a Mach-Zender interferometer to provide accuracy on the frequency 

below the MHz scale. This approach allows extracting, with high accuracy, the frequency 

distances between the micro-comb lines.  

 

Figure S6. Experimental set-up for micro-comb cavity-solitons’ generation and laser-

scanning spectroscopy detection of a hot resonator. The set-up is composed of a nonlinear 

micro-resonator, an erbium-ytterbium co-doped fibre amplifier (EYDFA), an optical isolator, 

an optical bandpass filter (BPF), a tuneable delay line, a half-wave plate (λ/2), a polarising 
beam splitter (PBS) and two optical collimators (OCs). The output signals from the rejection 

port of the polarising beam splitter were detected with an optical spectrum analyser (OSA), 

an autocorrelator and a fast photodetector (PD) connected to an oscilloscope. For the laser 

spectroscopy, a scanning CW laser was split into three signals, S1, S2 and S3. S1 was used to 

probe the resonances’ profile and oscillating micro-comb lines in the hot micro-resonator, 

while S2 and S3 were simultaneously used to perform frequency calibration of the scanning 

laser. This was achieved by beating the external CW source with a reference comb (Menlo 

System, ~ 250 MHz repetition rate). The resulting signal was passed through a radio frequency 

bandpass filter (RF-BPF) before detection. In this way, it was possible to generate a set of 

calibration markers with a spacing of ~250 MHz. We created an additional set of finer markers 

by coupling the signal S3 to an unbalanced Mach-Zender interferometer (MZI) with an FSR of 

~7 MHz. 
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To gain information on their relative position with respect to the micro-resonator resonances, 

the CW scanning laser can be coupled directly into the micro-resonator, as in Ref. [10], where this 

approach was used to get information on the detuning of the micro-comb lines in a standard 

external pumping configuration. In our case, the scanning CW laser cannot be propagated 

together with the micro-comb, because it would be also injected in the amplifier, destabilising the 

system. For this reason, we choose to characterise the small signal backscattered into the micro-

resonator, which is expected to be equivalent to the micro-comb oscillation. To achieve this, the 

CW scanning laser is coupled counterpropagating within the micro-cavity. Figure S6 summarises 

the setup. 

SM 3.2: Role of the detuning of the oscillating lines with respect to the micro-cavity resonance 

The intra-cavity laser-scanning spectroscopy measurement allows one to clearly visualise the 

position of the oscillating lines within the micro-cavity resonance.  To get a better understanding 

of the different system regimes, we performed this measurement also on non-localised states.  

Figure S7 reports a set of stable, coherent states with a narrower spectral bandwidth. This kind 

of states can also be obtained in the same setup used for generating solitons. To reproduce the 

experimental conditions of Refs [3,11], which employed a narrower passband filter in the setup, 

we used a passband filter with a 6 nm bandwidth. Similar to Ref [11], we observe states at 

multiples of the repetition rate, with comb lines from one to four free-spectral ranges apart. Such 

states have been obtained for different main-cavity lengths, with a similar procedure to Ref. [11]. 

The autocorrelation shows a very low background which, together with the clean radio-frequency 

spectrum, indicates the coherence of the state. The intracavity laser spectroscopy of the most 

powerful, central lines shows that they oscillate in a blue-detuned position with respect to the 

micro-cavity resonance.   

The solitons reported in Fig. 3 of the main text indicates, conversely, a red-detuned oscillation.  

As discussed in the theoretical section, the stability analysis of the low-energy state provides 

important information on the type of solutions of the system. Localised states like solitons can be 

found only in the region in which the background is stable. Solutions originating by the 

modulational instability of the background, like patterns, are conversely found in the instability 

region of the background.  

The analysis of the zero solution shows that the background is stable only for positive values of 

the frequency offset Δ, as reported in Fig. S2.  Such values correspond to red-detuned frequencies 𝜙𝜙. This is consistent with the soliton stability region in Fig. S4c and the measurement in Fig. 3.  

Blue-detuned oscillating lines in general correspond to negative values of the offset frequency Δ. 
Here, the low-energy state is in general unstable. Type I comb states in Figure S7 and Type II 

combs (as in Ref. [12], also showing blue-detuned modes) are compatible with the region of 

existence of patterns originating from the modulational instability of the low-energy state.  It is 

interesting to notice that rolls and Turing patterns are blue-detuned also in the Lugiato-Lefever 

system for cavities with a positive Kerr coefficient. 
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Figure S7. Stable non-localised states. Coherent state obtained with a setup similar to that 

of Refs [3, 11] in the main text. States with different FSR are obtained adjusting the cavity 

length with a similar procedure to that used in Ref. [11]. a. Optical spectrum, autocorrelation 

(left inset) and radio-frequency spectrum (right inset) of a coherent state at a single micro-

ring FSR (approximately 50 GHz) repetition rate. b. Laser scanning spectroscopy 

measurement for the most powerful spectral line, marked by a green line in panel a. The 

measurement clearly shows a blue-detuned oscillation. c.  and d. Same measurement as in a 

and b, for a coherent state at the micro-ring FSR twice the repetition rate (approximately 100 

GHz). e.  and f. Same measurement as a and b, for a coherent state at the micro-ring FSR three-

times the repetition rate (approximately 150 GHz). g.  and h. Same measurement as a and b, 

for a coherent state at a four-times the micro-ring FSR (approximately 200 GHz) repetition 

rate. 

SM3.3: Frequency of perturbation and solitary solutions 

Laser scanning spectroscopy allows us to highlight another difference of our system supporting 

laser cavity solitons with respect to the Lugiato-Lefever system. As observed before, the Lugiato-

Lefever equation is a driven system. All the waveforms in the micro-cavity are necessarily locked 

to the frequency of the input laser, both for solitons and perturbations. Because our system is 
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homogeneous, conversely, the oscillating frequency is a characteristic of the solution. Solitons 

and their perturbations have, for this reason, different frequencies. 

To better explain this point, here we report a numerical example where we inject into the system 

a waveform consisting of two or three solitons, as observed for the experiments in Fig. 3 of the 

main text. We tested the propagation of the calculated solution which matches the experiments, 

for Δ = 0.49, g = 0.1; for Δ = 0.47, g = 0.14; and finally, for Δ = 0.49, g = 0.11 corresponding to the 

cases of Fig. 3a, c and e, respectively. The propagations are reported in Fig. S8a, d and g (depicted 

by false colours in log scale), to better visualise the low energy component of the solution.  

 

Figure S8. Experimental propagation of soliton pulses. Here 𝜁𝜁𝑎𝑎 = 1.25 × 10−4, 𝜁𝜁𝑏𝑏 =

3.5 × 10−4, 𝜎𝜎 = 1.5 × 10−4,𝜅𝜅 = 2𝜋𝜋. We have ∆=0.49, 𝑔𝑔 = 0.1; ∆=0.47, 𝑔𝑔 = 0.14; and ∆=0.47, 𝑔𝑔 = 0.11 for a, b, c; d, e, f and g, h, i, respectively. a. Propagation of two soliton pulses, the 

intensity is displayed in false colours and logarithmic scale to better visualise the spectrum 

low energy components. b. Slow temporal scale (radio frequency) spectra obtained as the 

Fourier transform 𝑎𝑎�(𝜉𝜉, 𝑥𝑥0) = ∫ 𝑎𝑎(𝑡𝑡, 𝑥𝑥0)𝑒𝑒−2𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡 of the propagating solution at the peak 

(blue, 𝑥𝑥0 = 0.25) and at the tail (orange, 𝑥𝑥0 = 0) of the pulse along the propagating time axis. 

Note that the spectra are normalised to obtain a maximum at 0 dB. The frequency axis is 

normalised with respect to the main-cavity FSR. c. Comparison of the experimental RF 

spectrum (blue) with the background RF spectrum calculated in the simulations as ∫ |𝑎𝑎(𝑡𝑡, 𝑥𝑥0)|2𝑒𝑒−2𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡 . 
Figure S8b, e and h, report an evaluation of the effective propagating frequency (normalised, as the detuning ∆, against the main-cavity FSR) at the peak (𝑥𝑥 = −0.25, blue line) and at the 

minimum (𝑥𝑥 = −0.5, orange line) of the propagating intensity. Such a spectrum is calculated as 

the Fourier transform2 along the propagating slow axis t at those specific values of 𝑥𝑥. The 

frequency axis 𝜉𝜉 is centred along the soliton frequency 𝜙𝜙. This approach reveals the radio 

                                                             
2 Formally, 𝑎𝑎�(𝜉𝜉, 𝑥𝑥) = ∫ 𝑎𝑎(𝑡𝑡, 𝑥𝑥)𝑒𝑒−2𝑚𝑚𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡 where 𝜉𝜉 is the propagation (slow) axis frequency. 
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frequency spectrum of the solution and it is also used for the examples of Fig. 1 in the main text, 

allowing to visualize the presence of unlocked higher-order super-modes. 

Here the numerical analysis shows that, in both cases, injecting the stationary states into the 

system also excites a very small background. The unlocked high-order super-modes are found in 

such a background, while are absent on the peak of the solitons. Although such a background 

fades away in propagation because the solitons are stable in such a range of parameters, this 

analysis shows that the perturbations of the background can coexist with solitary propagation. 

Very interestingly, this calculation also highlights that the solitary states are very robust to 

perturbations on their tails. 

Because such unlocked components are excited around the cold cavity frequency of the leading 

order mode (𝜉𝜉 = −0.05) and first-order (𝜉𝜉 = −1) mode, which are the two dominating super-

modes of the interaction, we could find a direct frequency match with the experimentally-

observed radio frequency spectrum and laser scanning spectroscopy measurement.  Considering 

that the frequency axis 𝜉𝜉 is normalised against the main-cavity FSR 𝐹𝐹𝑏𝑏 = 77 MHz, the cold cavity 

frequency of the leading order mode (𝜉𝜉 = −0.05) and first-order (𝜉𝜉 = −1) mode correspond to 

approximately 4 and 77 MHz respectively. 

The weak beat-notes in the radio-frequency spectrum can be then attributed to a perturbation of 

the background. Such a perturbation has frequency components well distinct by the soliton 

frequency. Specifically, in our experimental cases, we found a perturbation on the first order 

super-mode (-20dB component at 77 MHz in Fig S8c, f and i). This perturbation is also visible in 

the laser scanning spectroscopy measurement which reveals a small, blue-detuned frequency 

found in the central resonances, yet absent in the comb wings of Fig. 3 b, d and f.  Fig. S8 f also 

shows the presence of a perturbation on the leading order super-mode (-20dB component at 6 

MHz).  

SM3.4: Multiple soliton propagation and input power 

Finally, the input average power to the micro-resonator, calculated as ∑ ∫ |𝑏𝑏𝑞𝑞(𝑥𝑥)|2𝑑𝑑𝑥𝑥 𝑁𝑁𝑞𝑞=−𝑁𝑁  from 

the numerical fitting in Fig. 3a and b is 3.1 and 3.8 for the two cases, respectively. Compared to 

the formation threshold of Lugiato-Lefever bright solitons 8/(3 √3) 𝜅𝜅2 = 60.8, they represent a 

fractional power of 5.1% and 6.3%, respectively. 
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Appendix 

Table 1: Quantities Used in the Full Model 

Name Symbol Units or Values 

Coordinates 𝑇𝑇,𝑋𝑋 [s], [m] 

Fields 𝐴𝐴,𝐵𝐵 �√W� 
Periods, FSRs, Length 

and velocities 

𝑇𝑇𝑎𝑎 = 𝐹𝐹𝑎𝑎−1 = 𝐿𝐿𝑎𝑎𝑣𝑣𝑎𝑎−1, 𝑇𝑇𝑏𝑏 = 𝐹𝐹𝑏𝑏−1 = 𝑣𝑣𝑏𝑏𝐿𝐿𝑏𝑏−1 𝐹𝐹𝑎𝑎 = (𝑀𝑀 − 𝛿𝛿)𝐹𝐹𝑏𝑏 . 

𝐹𝐹𝑎𝑎 = 48.9GHz,𝐹𝐹𝑏𝑏 = 77MHz, 𝑀𝑀 ≈ 𝐹𝐹𝑎𝑎𝐹𝐹𝑏𝑏 = 635 

Dispersions 𝛽𝛽𝑎𝑎 ,𝛽𝛽𝑏𝑏 
𝛽𝛽𝑎𝑎 = −20ps2km−1, 𝛽𝛽𝑏𝑏 = −60ps2km−1 

Coupling constant 𝜃𝜃 =  𝜋𝜋 𝛥𝛥𝐹𝐹𝐴𝐴𝑇𝑇𝑎𝑎  𝛥𝛥𝐹𝐹𝐴𝐴 = 150MHz, linewidth 

Gain Bandwidth 𝛥𝛥𝐹𝐹𝐹𝐹 𝛥𝛥𝐹𝐹𝐹𝐹 = 650 GHz 

Gain 𝐺𝐺 [m−1] 

Kerr Waveguide 

Coefficient 
𝑖𝑖 [m−1W−2] 

 

Table 2: Conversions between the Full Model and Normalised Model 

Name Symbol Value 

Time Coordinate 𝑡𝑡 =
𝑇𝑇𝑇𝑇𝑏𝑏 - 

Space Coordinate 𝑥𝑥 =
𝑋𝑋𝐿𝐿𝑎𝑎 − 𝑇𝑇𝑇𝑇𝑏𝑏 - 

Micro-Cavity Field 𝑎𝑎 (𝑡𝑡, 𝑥𝑥) = 𝐴𝐴(𝑇𝑇,𝑋𝑋)�𝑖𝑖𝑇𝑇𝑏𝑏𝑣𝑣𝑎𝑎 - 

Gain-Cavity Field 𝑏𝑏𝑞𝑞 (𝑡𝑡, 𝑥𝑥) = 𝐵𝐵𝑞𝑞(𝑇𝑇,𝑋𝑋)𝑇𝑇𝑏𝑏�𝑖𝑖𝑣𝑣𝑎𝑎𝑇𝑇𝑎𝑎  - 

Gain 𝑔𝑔 = 𝐺𝐺𝐿𝐿𝑏𝑏 0 < 𝑔𝑔 < 1 

Dispersion ring 𝜁𝜁𝑎𝑎 = −𝑇𝑇𝑏𝑏𝑣𝑣𝑎𝑎𝛽𝛽𝑎𝑎𝑇𝑇𝑎𝑎2  0.000124 

Dispersion fibre 𝜁𝜁𝑏𝑏 = −𝑇𝑇𝑏𝑏𝑣𝑣𝑏𝑏𝛽𝛽𝑏𝑏𝑇𝑇𝑎𝑎2  0.000372 

Gain dispersion 𝜎𝜎 = (2𝜋𝜋𝑇𝑇𝑎𝑎𝛥𝛥𝐹𝐹𝐹𝐹)−2 0.000143 

Coupling Constant 𝜅𝜅 = 𝜃𝜃𝐹𝐹𝑎𝑎𝑇𝑇𝑏𝑏 =  𝜋𝜋 𝛥𝛥𝐹𝐹𝐴𝐴𝑇𝑇𝑏𝑏 2𝜋𝜋 ≈ 6.12 
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