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We present two cooling mechanisms that lead to temperatures well below the Doppler limit. These mechanisms are 
based on laser polarization gradients and work at low laser power when the optical-pumping time between different 
ground-state sublevels becomes long. There is then a large time lag between the internal atomic response and the 
atomic motion, which leads to a large cooling force. In the simple case of one-dimensional molasses, we identify two 
types of polarization gradient that occur when the two counterpropagating waves have either orthogonal linear 
polarizations or orthogonal circular polarizations. In the first case, the light shifts of the ground-state Zeeman 
sublevels are spatially modulated, and optical pumping among them leads to dipole forces and to a Sisyphus effect 
analogous to the one that occurs in stimulated molasses. IQ the second case (O+-a- configuration), the cooling 
mechanism is radically different. Even at  very low velocity, atomic motion produces a population difference among 
ground-state sublevels, which gives rise to unbalanced radiation pressures. From semiclassical optical Bloch 
equations, we derive for the two cases quantitative expressions for friction coefficients and velocity capture ranges. 
The friction coefficients are shown in both cases to be independent of the laser power, which produces an 
equilibrium temperature proportional to the laser power. The lowest achievable temperatures then approach the 
one-photon recoil energy. We briefly outline a full quantum treatment of such a limit. 

1. INTRODUCTION 

The physicai mechanism that underlies the first proposals 
for laser cooling of free atomsl or trapped ions2 is the Dopp- 
ler effect. Consider, for example, a free atom moving in a 
weak standing wave, slightly detuned to the red. Because of 
the Doppler effect, the counterpropagating wave gets closer 
to resonance and exerts a stronger radiation pressure on the 
atom than the copropagating wave. It  follows that the 
atomic velocity is damped, as if the atom were moving in a 
viscous medium (optical molasses). The velocity capture 
range Au of such a process is obviously determined by the 
natural width J? of the atomic excited state 

where M is the atomic mass, can be observed on laser-cooled 
sodium atoms at low laser powers. Such an important result 
was confirmed soon after by other experiments on sodium8 
and cesium? 

A possible explanation for these low temperatures based 
on new cooling mechanisms resulting from polarization gra- 
dients was presented independently by two groups at the 
last International Conference on Atomic Physics in  pari^.^,'^ 

We summarize below the broad outlines of the argument": 

kAu - r, (1.1) (i) The friction force experienced by an atom moving in a . . 

where k is the wave number of the laser wave. On the other 
laser wave is due to the fact that the atomic internal state 

hand, by studying the competition between laser cooling and does not follow adiabaticaily the variations of the laser field 

diffusion heating introduced by the random nature of spon- 
resulting from atomic motion.12J3 Such effects are charac- 

taneous emission, one finds that for two-level atoms the terized by a nonadiabaticity parameter c, defined as the ratio 

lowest temperature TD that can be achieved by such a meth- between the distance UT covered by the atom with a velocity 

od is given by394 u during its internal relaxation time T and the laser wave- 
length X = llk, which in a standing wave is the characteristic 

r 
kBTD = h ;. (1.2) 

lenkh for the spatial variations of the laser field 
Li 

UT 
c = - =  UT. 

TD is calied the Doppler limit. The first experimental dem- X 
(1.4) 

onstrations of opticai molasses seemed to agree with such a 
limit.5.6 (ii) For a two-level atam, there is a single interna1 time, 

ln 1988, it appeared that such a limit could be overcome. which is the radiative lifetime of the excited state 

More precise measurements by the National Institute of 1 
Standards and Technology Washington group7 showed that rR =-, Il (1.5) 

temperatures much, lower than TD, and even approaching 
the recoil limit TR given by so that 
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But for atoms, such as alkali atoms, that have several Zee- 
man sublevels g,, gmr, . . .in the ground state g, there is 
another internal time, which is the optical-pumping time T,, 
characterizing the mean time that it takes for an atom to be 
transferred by a fluorescence cycle from one sublevel g, to 
another gmr. We can write 

where Fr is the mean scattering rate of incident photons and 
also can be considered the width of the ground state. I t  
follows that for multilevel atoms we must introduce a second 
nonadiabaticity parameter 

At low laser power, i.e., when the Rabi frequency R is small 
compared with r ,  we have rp >> 7 R  and consequently rr << r: 

It  f6llows that nonadiabatic effects can appear at  velocities 
(ku - Fr) much smaller than those required by the usual 
Doppler-cooling scheme (ku - I'). This explains why large 
friction forces can be experienced by very slow atoms.14 

(iii) The last point concerns the importance of polariza- 
tion gradients. Long pumping times can give rise to large 
friction forces only if the internal atomic state in g strongly 
depends on the position of the atom in the laser wave, so that 
when the atom is moving there are large changes in its inter- 

na1 state and, consequently, large nonadiabatic effects. By 
internal atomic state ing, we mean actually the anisotropy in 
g (usually described in terms of orientation or alignment) 
that results from the existence of large population differ- 
ences among the Zeeman sublevels of g or from coherences 
among these sublevels. Polarization gradients are essential 
if there are to be important spatial variations of the ground- 
state anisotropy. For example, if the polarization changes 
from a+ to a-, the equilibrium internal state in g changes 
from a situation in which the atom is pumped in g, with m = 

J, to a situation in which it is pumped ing,, with m' = -J,; if 
the polarization t is linear and rotates, the atomic alignment 
in g is parallel to t and rotates with c. By contrast, in the 
low-power regime considered here [see expression (1.9)], a 
gradient of light intensity without gradient of polarization 
would produce only a slight change of the total population in 
g (which remains close to 1) without any change of the 
anisotropy in g.15 

Finaily, note that the laser field does not produce only 
optical pumping between the Zeeman sublevels of g; it also 
induces light shifts A,' that can vary from one sublevel to 
the other. Another consequence of polarization gradients is 
that the various Zeeman sublevels in g have not only a popu- 
lation but also a light-shifted energy and a wave function 
that can vary in space. 

The purpose of this paper is to analyze in detail the physi- 
cal mechanisms of these new cooling schemes by polarization 
gradients and to present a few simple theoretical models for 
one-dimensional (1-D) molasses, permitting a quantitative 

calculation of the new friction force and of the equilibrium 
temperature. Our treatment will be limited here to a J, to 
Je = J, + 1 transition, neglecting al1 other possible hyperfine 
levels of the optical transition. 

We first introduce, for a 1-D molasses, two types of polar- 
ization gradient (see Section 2). In the first case, which 
occurs with two counterpropagating waves with opposite (a+ 
and a-) circular polarizations, the polarization vector ro- 
tates when one moves along the standing wave, but it keeps 
the same ellipticity. In the second case, which occurs, for 
example, with two counterpropagating waves with orthogo- 
nal linear polarizations, the ellipticity of the laser polariza- 
tion varies in space, but the principal axis of polarization 
remain fixed. The basic difference between these two situa- 
tions is that the second configuration can give rise to dipole 
or gradient forces but the first one cannot. 

Section 3 is devoted to a physical discussion of the cooling 
mechanisms associated with these two types of polarization 
gradient; they are shown to be quite different. In the config- 
uration with orthogonal linear polarizations, hereafter de- 
noted as the lin 1 lin configuration, the light shifts of the 
various Zeeman sublevels of g oscillate in space, and optical 
pumping among these sublevels provides a cooling mecha- 
nism analogous to the Sisyphus effect occurring in high- 
intensity stimulated molasses16J7: The atom is always 
climbing potential hills. In the a+-a- configuration, the 
combined effect of the rotation of the polarization and of 
optical pumping and light shifts produces a highly sensitive 
motion-induced population difference among the Zeeman 
sublevels of g (defined with respect to the axis of the stand- 
ing wave) and, consequently, a large imbalance between the 
radiation pressures of the two counterpropagating waves. 

In Sections 4 and 5 some quantitative results for 1-D 
molasses and simple atomic transitions are presented. In 

Section 4 the case of a transition J, = 112 * Je = 312 is 
considered for an atom moving in the lin 1 lin configuration, 
whereas in Section 5 the case of a J, = 1 * J e  = 2 transition is 
considered for an atom moving in the a+-a- configuration. 
In Sections 4 and 5, atomic motion is treated semiclassically: 
the spatial extent of the atomic wave packet is neglected and 
the force at  a given point in the laser wave is calculated. 
Since the new cooling mechanisms work at  low power, the 
calculations are limited to the perturbative regime (0 << r ) ,  
where it is possible to derive from optical Bloch equations a 
subset of equations that involve only the populations and 
Zeeman coherences in the atomic ground state g. In both 
configurations, analytical or numerical solutions of Bloch 
equations are derived that are then used to analyze the 
velocity dependence of the mean radiative force. Quantita- 
tive results are derived for the friction coefficient, the veloci- 
ty capture range, and the equilibrium temperature, which is 
shown to be proportional to the laser power fi2. 

When the laser power is low enough, the equilibrium tem- 
perature approaches the recoil limit TR. It  is then clear that 
the semiclassical treatment breaks down, since the de Bro- 
glie wavelength of an atom with T = TR is equal to the laser 
wavelength. At the end of Section 5, a fui1 quantum treat- 
ment is presented of the cooling process in the a+-a- config- 
uration for a simplified atomic-level scheme. Such a treat- 
ment is similar to the one used in the analysis of other 
cooling schemes allowing temperatures of the order of or 
below TR to be reached.18~~9 We show that the velocity 
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distribution curves exhibit a very narrow structure around u 

= O, with a width of a few recoil velocities, in agreement with 
the semiclassical predictions. 

2. TWO TYPES OF POLARIZATION 
GRADIENT IN A ONE-DIMENSIONAL 
MOLASSES 

In this section, we consider two laser plane waves with the 
same frequency COL that propagate along opposite directions 
on the Oz axis and we study how the polarization vector of 
the total electric field varies when one moves along Oz. Let 

60 and Gof be the amplitudes of the two waves and c and cf be 
their polarizations. The total electric field E(z, t) in z at 
time t can be written as 

where the positive-frequency component 6%) is given by 

By a convenient choice of the origin on the Oz axis, we can 
aiways take go and Gof reai. 

A. The 6 - a -  Configuration-Pure Rotation of 
Polarization 
We consider first the simple case in which 

1 
d = e- = - (ex - ig). 

\iz 
The two waves have opposite circular polarizations, a- for 
the wave propagating toward z < O and a+ for the other wave. 

Inserting Eqs. (2.3) into Eq. (2.2), we get 

where 

ex = cx COS kz - 4 sin kz, (2.5a) 

cy = ex sin kz + g cos kz. (2.5b) 

The total electric field in z is the superposition of two fields 
in quadrature, with amplitudes (60' - &O)/@ and (60' + &O)/ 

and polarized dong two orthogonal directions ex and cy 

deduced from ex and cy by a rotation of angle <p = -kz around 
Oz. We conclude that the polarization of the total electric 
field is elliptical and keeps the same ellipticity, (60' - Go)/ 
(Gof + 60) for al1 z. When one moves along Oz, the axes of 
the ellipse just rotate around Oz by an angle (p = -kz. As 

expected, the periodicity along z is determined by the laser 
wavelength X = 2 ~ l k .  

Previous analysis shows that, for a a+-a- configuration, 
we have a pure rotation of polarization along Oz. By pure 
we mean that the polarization rotates but keeps the same 
ellipticity. One can show that the a+-a- configuration is the 
only one that gives such a result. 

In the simple case in which the two counterpropagating 
waves a+ and a- have the same amplitude 6 0  = &o', the total 

electric field is, according to expression (3.4) below, linearly 

polarized along ey. For z = 0, cy coincides with c,. When 
one moves along Oz, cy  rotates, and its extremity forms a 
helix with a pitch X [Fig. l(a)]. 

B. The lin 1 lin Configuration-Gradient of Ellipticity 
We suppose now that the two counterpropagating waves 
have orthogonal linear polarizations 

If we suppose, in addition, that the two waves have equai 
amplitudes, we get from Eqs. (2.2) and (2.6) 

The total electric field is the superposition of two fields in 
quadrature, with amplitudes &O@ cos kz and &O$ sin kz, 
and polarized along two fixed orthogonal vectors (e, f ex)/@ 
p.arailel to the two bisectrices of ex and e,. It  is clear that the 
ellipticity changes now when one moves along Oz. From Eq. 
(2.7) we see that the polarization is linear dong cl  = (ex + cy)/ 
@ in z = O, circular (a-) in z = Xl8, linear along cz = (ex - ey)/ 
@ in z = Xl4, circular (a+) in z = 3Xl8, is linear along -cl in z 
= A/2, and so on. . . [Fig. l(b)]. 

If the two amplitudes 60 and gof are not equal, we still 
have the superposition of two fields in quadrature; however, 
now they are polarized along two fixed but nonorthogonal 
directions. For 60  = Gof the nature of the polarization of the 
total field changes along Oz. Such a result generally holds; 
i.e., for al1 configurations other than the a+-a- one, there are 
gradients of ellipticity when one moves along Oz (excluding, 
of course, the case when both waves have the same polariza- 
tion). 

C. Connection with Dipole Forces and Redistribution 
The two laser configurations of Figs. l(a) and l(b) differ 
radicaily with regard to dipole forces. Suppose that we have 
in z an atom with several Zeeman sublevels in the ground 
state g. For example, we consider the simple case of a J, = 
112 - Je = 312 transition for which there are two Zeeman 
sublevels, g-l/z and g+l/z, in g and four Zeeman sublevels in e. 
It is easy to see that the z dependence of the light shifts of the 
two ground-state sublevels is quite different for the two laser 
configurations of Figs. l(a) and l(b). For the a+-a- configu- 
ration, the laser polarization is always linear, and the laser 
intensity is the same for ail z. It follows that the two light- 
shifted energies are equal and do not Vary with z [Fig. l(c)]. 
On the other hand, since the Clebsch-Gordan coefficients of 
the various transitions g, ++ e,, are not the same, and since 
the nature of the polarization changes with z, one can easily 
show (see Subsection 3.A.1) that the two light-shifted ener- 
gies oscillate with z for the lin 1 lin configuration [Fig. l(d)]: 
the gl/, sublevel has the largest shift for a a+ polarization the 
g-112 sublevel has the largest shift for a a- polarization, 
whereas both sublevels are equally shifted for a linear polar- 
ization. 

The striking difference between the z dependences of the 

light-shifted energies represented in Figs. l(c) and l(d) 
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( a )  

Fig. 1. The two types of polarization gradient in a 1-D molasses and the corresponding light-shifted ground-state sublevels for a J, = 112 -Je 
= 312 atomic transition. (a) a+-a- configuration: two counterpropagating waves, a+ and a- polarized, create a linear polarization that rotates 
in space. (b) lin I lin configuration: The two counterpropagating waves have orthogonal linear polarizations. The resulting polarization now 
has an ellipticity that varies in space: for z = O linear polarization along cl = (e, + cy)lfi  for z = Al8 a- polarization; for z = Al4 linear polariza- 
tion dong t z  = (c, - cy)l& for z = 3Al8 a+ circular polarization. . . . (c) Light-shifted ground-state sublevels for the a+-a- configuration: The 
light-shifted energies do not Vary with z. (d) Light-shifted ground-state sublevels for the lin I lin configuration: The light-shifted energies 
osciilate in space with a period Al2. 

means that there are dipole or gradient forces in the configu- 
ration of Fig. l(b), whereas such forces do not exist in the 
configuration of Fig. l(a). We use here the interpretation of 
dipole forces in terms of gradients of dressed-state enèr- 
gies.16 Another equivaient interpretation can be given in 
terms of redistribution of photons between the two counter- 
propagating waves, when the atom absorbs a photon from 
one wave and transfers it via stimulated emission into the 
opposite wave.12s20 It is obvious that conservation of angu- 
lar momentum prevents such a redistribution from occur- 
ring in the configuration of Fig. l(a).21 After it absorbs a a+ 
photon, the atom is put into e+l/2 or e+sn, and there are no a- 
transitions starting from these levels and that could be used 
for the stimulated emission of a a- photon. For more com- 
plex situations, such as for a Jg = 1 - J e  = 2 transition (see 
Fig. 5 below), redistribution is not completely forbidden but 
is limited to a finite number of processes. Suppose, for 
example, that the atom is initiaily ing-,. When it absorbs a 

polarizations t, and ty, and an infinite number of redistribu- 
tion processes between the two counterpropagating waves 
can take place via the same transition g, - e,+l or e,-1. 
This is why the light-shifted energies Vary with z in Fig. l(d). 

Finaily, let us note that, at first sight, one would expect 
dipole forces to be inefficient in the weak-intensity limit 
considered in this paper since, in general, they become large 
only at  high intensity, when the splitting among dressed 

States is large compared with the naturai width I'.16 Actual- 
ly, here we consider an atom that has several sublevels in the 

ground state. The light-shift splitting between the two os- 
cillating levels of Fig. l(d) can be large compared with the 
width I'' of these ground-state sublevels. Furthermore, we 
show in Subsection 3.A.2 that for a moving atom, even with 
weak dipole forces, the combination of long pumping times 
and dipole forces can produce a highly efficient new cooling 
mechanism. 

a+ photon, it jumps to eo. Then, by stimulated emission of a 
a- photon, it falls tog+l, from where it can be reexcited to e+2 

3. PHYSICAL ANALYSIS OF TWO NEW 

by absorption of a a+ photon. However, once in e+2, the 
COOLING MECHANISMS 

atom can no longer make a stimulated emission in the a- In this section, we consider a multilevel atom moving in a 
wave, since no a- transition starts from e+2. We thus have laser configuration exhibiting a polarization gradient. We 
in this case a limited redistribution, and one can show that, begin (Subsection 3.A) by anaiyzing the lin I lin configura- 
as in Fig. l(c), the light-shifted energies in the ground state tion of Fig. l(b), and we show how optical pumping between 
do not vary with z (see Subsection 3.B.1). The situation is the two oscillating levels of Fig. l(d) can give rise to a new 
completely different for the configuration of Fig. l(b). cooling mechanism anaiogous to the Sisyphus effect occur- 
Then, each a+ or a- transition can be excited by both linear ring in stimulated molasses.16,17 Such an effect cannot exist 
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for the configuration of Fig. l(a)  since the energy levels of 
Fig. l(c) are flat. We show in Subsection 3.B that there is a 
new cooling mechanism associated with the a+-a- configu- 
ration, but it has a completely different physical interpreta- 

tion. 
The emphasis in this section will be on physical ideas. A 

more quantitative analysis, based on optical Bloch equa- 
tions, is presented in the following sections. 

A. Multilevel Atom Moving in a Gradient of Ellipticity 
The laser configuration is the lin 1 lin configuration of Fig. 

l(b). As in Subsection 2.C, we take a J, = 112 - Je = 312 
transition. The Clebsch-Gordan coefficients of the various 
transitions g, - e,, are indicated in Fig. 2. The square of 
these coefficients give the transition probabilities of the 
corresponding transitions. 

1. Equilibrium Interna1 State for an Atom at Rest 
We first show that, for an atom at rest in z, the energies and 
the populations of the two ground-state sublevels depend on 
Z. 

Suppose, for example, that z = X/8 so that the polarization 
is a- [Fig. l(b)]. The atom is opticaily pumped in g-112 so 
that the steady-state populations of g-l12 and g1/2 are equal 
to 1 and 0, respectively. We must also note that, since the a- 
transition starting from g-112 is three times as intense as the 
a- transition starting from gl/2, the light shift A-' of g-112 is 
three times larger (in modulus) than the light-shift A+' of 

gl/2. We assume here that, as usual in Doppler-cooling ex- 
periments, the detuning 

between the laser frequency WL and the atomic frequency W A  

is negative so that both light shifts are negative. 
If the atom is at  z = 3X/8, where the polarization is a+ [Fig. 

l(b)], the previous conclusions are reversed. The popula- 
tions of g-112 and gl/2 are equal to O and 1, respectively, 
because the atom is now opticaily pumped into gl/2. Both 
light shifts are still negative, but we now have A+' = 3A-'. 

Finally, if the atom is in a place where the polarization is 
linear, for example, if z = 0, X/4, X/2. . . [Fig. l(b)], symmetry 
considerations show that both sublevels are equally populat- 
ed and undergo the same (negative) light shift equal to 213 
times the maximum light shift occurring for a a+ or a- 
polarization. 

Al1 these results are summarized in Fig. 3, which shows as 
a function of z the light-shifted energies of the two ground- 
state sublevels of an atom at rest in z. The sizes of the black 
circles represented on each sublevel are proportional to the 

Q-1/2 Qtv2 
Fig. 2. Atomic level scheme and Clebsh-Gordan coefficients for a 
J, = 112 -Je  = 312 transition. 

t Energy 

O U 8  h/4 34/8 1 hi2 S U 8 2  > 

Lin O - Lin O t Lin O - 

Fig. 3. Light-shifted energies and steady-state populations (repre- 
sented by filled circles) for a Jg = 112 ground state in the lin 1 lin 
configuration and for negative detuning. The lowest sublevel, hav- 
ing the largest negative light shift, is also the most populated one. 

steady-state population of this sublevel. I t  clearly appears 
in Fig. 3 that the energies of the ground-state sublevels 
oscillate in space with a spatial period X/2 and that the 
lowest-energy sublevel is also the most populated one. 

2. Sisyphus Effect for a Moving Atom 
We suppose now that the atom is moving along Oz, and we 
try to understand how its velocity can be damped. The key 
point is that opticai pumping between the two ground-state 
sublevels takes a finite time 7,. Suppose that the atom 
starts from the bottom of a potential vailey, for example, a t  z 
= XI8 (see Fig. 4), and that it moves to the right. If the 
velocity u is such that the atom travels over a distance of the 
order of XI4 during T,, the atom will on average remain on 
the same sublevel, climb the potential hill, and reach the top 
of this hi11 before being opticaily pumped to the other sub- 
level, i.e., to the bottom of the next potential valley at  z = 3A/ 
8. From there, the same sequence can be repeated (see the 
solid lines in Fig. 4). I t  thus appears that, because of the 
time lag T,, the atom is always climbing potential hills, trans- 
forming part of its kinetic energy into potential energy. 
Here we have an atomic example of the Sisyphus myth that 
is quite analogous to the cooling effect that occurs in stimu- 
lated molasses and discussed in Ref. 16. Note, however, 
that the effect discussed in this paper appears a t  much lower 

intensities than in Ref. 16 since it involves two ground-state 
sublevels with spatiaily modulated light shifts A' much 

smaller than r; on the contrary, in Ref. 16 the modulation of 
the dressed-state energies is much larger than r. 

3. Mechanism of Energy Dissipation and Order of 
Magnitude of the Friction Coefficient 
The previous physical picture clearly shows how the atomic 
kinetic energy is converted into potential energy: The atom 
climbs a potential hill. In the same way as for the usual 
dipole forces, one can also understand how the atomic mo- 
mentum changes during the climbing. There is a corre- 
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On the other hand, we can also calculate d Wldt from R 

l I l I I 

O h/8 h/4 3h/8 A/2 5hA 2) 

Fig. 4. Atomic Sisyphus effect in the lin I lin configuration. Be- 
cause of the time lag r, due to opticai pumping, the atom sees on the 
average more uphill parts than downhill ones. The velocity of the 
atom represented here is such that us,, - X, in which case the atom 
travels overs X in a relaxation time r,,. The cooling force is then 
close to its maximal value. 

sponding change of momentum of the laser field because of a 
coherent redistribution of photons between the two counter- 
propagating waves. Photons are absorbed from one wave 
and transferred by stimulated emission to the other wave. 
Al1 these processes are consemative and could occur in both 
ways. The atom could slide d o m  a potential hi11 and trans- 
form its potential energy into kinetic energy. Optical 
pumping is the mechanism of energy dissipation essential 
for introducing irreversibility into the process and for pro- 
ducing cooling. We see from Fig. 4 that when the atom 
reaches the top of the hill, there is a great probability that it 
will absorb a laser photon hwL and emit a fluorescence pho- 
ton, blue-shifted by an amount corresponding to the light- 
shift splitting between the two ground-state sublevels. The 
gain of potential energy at  the expense of kinetic energy is 
dissipated by spontaneous Raman anti-Stokes photons that 
carry away the excess of energy. Here also we find a mecha- 
nism quite analogous to the one occurring in stimulated 
molasses.16 Note, however, that the energy dissipated here 
is much smaller, since it corresponds to the light shift of the 
ground state at low laser power. 

From the previous discussion, we can derive an order of 
magnitude of the friction coefficient a appearing in the low- 
velocity expression 

of the friction force. It is clear in Fig. 4 that the maximum 
value of the friction force occurs when U T ,  - X/4, Le., when 

where I" = l/rp. For this value of u, the energy dissipated 
during 7 ,  is of the order of -hAr (since A' < O), so the energy 
dissipated per unit time is 

Since we evaluate only orders of magnitude, we can keep the 
linear expression (3.2) of F, even when u is given by expres- 
sion (3.3), so that 

Equating expressions (3.4) and (3.6) and using expression 
(3.3) of u, we finally obtain 

Since al1 the previous considerations are restricted to the 
low-intensity limit (we want to have F r ,  I A ' ~  << I'), A' and I" 
are both proportional to the laser intensity. It then follows 
from expression (3.7) that the friction coefficient of this new 
cooling mechanism is independent of the laser power at low 
power. This clearly distinguishes this new friction force 
from the usual one occurring in Doppler cooling, which is 
linear in laser power. We can still transform expression 
(3.7) by using the expressions of I" and A' at  low power (fi << 
I'). Assuming, in addition, a large detuning (161 >> I') in 
order to have in the ground-state light shifts larger than the 
level widths, we get 

so that 

Note, finally, that the friction coefficient [expression (3.7) 
or (3.9)] is large, and even larger (since 161 >> I') than the 
optimal friction coefficient for the usual Doppler eooling, 
which is of the order of hk2.314 One must not forget, howev- 
er, that the velocity capture range of this new friction force, 
which is given by expression (3.3), is much smaller than the 
velocity capture range for Doppler cooling (given by ku - I'). 
One can also understand why a is so large, despite the fact 
that the size h l ~ ' l  of the potential hills of Fig. 4 is so small. 
We see in expression (3.7) that h l ~ ' l  is divided by I", which is 
also very small since the optical-pumping time is very long. 
In other words, the weakness of dipole forces is compensated 
for by the length of the optical-pumping times. 

B. Multilevel Atom Moving in a Rotating Laser 
Polarization 
The laser configuration is now the a+-a- laser configuration 
of Fig. l(a) for which the laser polarization remains linear 
and rotates around Oz, forming an helix with a pitch A. As 
shown in Fig. l(c), the light shifts of the ground-state sublev- 
els remain constant when the atom moves dong Oz, and 
there is no possibility of a Sisyphus effect. Such a result is 
easily extended ta al1 values of J,. If J, were larger than 112, 
we would have in Fig. l(c) several horizontal lines instead of 
a single one, since sublevels g, with different values of Iml 

have different light shifts and since there are several possible 
values for Iml when J, > 1/2. 
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9-1 9  O 9 + i  
Fig. 5. Atomic level scheme and Clebsh-Gordan coefficients for a 
J, = 1 - J e  = 2 transition. 

In this subsection we describe a new cooling mechanism 
that works in the O+-O- laser configuration for atoms with Jg 
> 1 and is quite different from the one discussed in Subsec- 
tion 3.A. We show that, even at very low velocity, there is an 
atomic orientation along Oz that appears in the ground state 
as a result of atomic motion. Because of this highly sensi- 
tive motion-induced atomic orientation, the two counterpro- 
pagating waves are absorbed with different efficiencies, 
which gives rise to unbalanced radiation pressures and con- 
sequefitly to a net friction force. We consider here the 
simplest possible atomic transition for such a scheme, the 
transition Jg = 1 *Je = 2 (see Fig. 5). 

1. Equilibrium Interna1 State for an Atom at Rest 
We suppose first that the atom is at rest in z = O. If we take 
the quantization axis along the local polarization, which is cy 

at z = O [see Fig. l(a)], and if we note that Ig-l),, I ~ o ) ~ ,  l g ~ ) ~ ,  
the eigenstates of Jy (J:  angular momentum), we see that 
optical pumping, with a ?r polarization along Oy, will concen- 
trate atoms in Igo),, since the optical-pumping rate Ig-l), + 

Igo), proportional to (1/fi)2(1/fi)2 = 114 is greater than the 
rate Igo), - Ig-l), proportional to (m)2(1/J6)2 = 119. The 
steady-state populations of Igo),, Ig-l),, and Ig+l), are equal 
to 9117,4117, and 4/17, respectively. 

We must also note that, since the ?r transition starting 
from [go), is 413 as more intense as the two ?r transitions 
starting from Ig,,),, both sublevels Ig*l), undergo the same 
light shift Alr, smaller (in modulus) than the light-shift Aor of 

Ibo) y 

As in the previous subsection, we take a red detuning so that 
& and Alr are both negative. Figure 6 represents the light- 
shifted ground-state sublevels in z = O with their steady- 
state populations. 

For subsequent discussions, it will be useful to analyze 
briefly the spectrum of the fluorescence light emitted by an 
atom at rest in z = O. We suppose that the laser power is 
very weak ( 0  << I') and that the detuning is large (161 >> I'). 
To the lowest order in R2/62, we find first a Rayleigh line at 
W L  corresponding to fluorescence cycles where the atom 
starts and ends in the same ground-state sublevel. We also 
have a Raman-Stokes line at or. + (AOr/4) (remember that 
Ao' < O), corresponding to cycles where the atom starts from 
Igo), and ends in Ig+l), or Ig-l),, and a Raman-anti-Stokes 
line at a - (AOr/4), corresponding to the inverse processes 
where the atom starts from Ig+l), or lg-l)y and ends in Igo),,. 
In steady state, the populations of the various ground-state 

sublevels adjust themselves to values such that the mean 
number of Stokes processes from Igo), to Ig-l), balances the 
mean number of anti-Stokes processes from Ig-l), to (go)y. 
It  is thus clear that in steady state, the mean number of 
photons emitted per unit time at  WL + (&/4) and W L  - (Aorl 
4) will be equal, giving rise to a symmetrical fluorescence 
spectrum. 

So far, we have considered only an atom at rest in z = O. If 
the atom is in a different location but still at rest, the same 
calculations can be repeated, giving rise to the same values 
for the light shifts (since the laser intensity does not change 
with z) and to the same steady-state populations. We must 
note, however, that the wave functions Vary in space, since 
the light-shifted Zeeman sublevels are the eigenstates of the 
component of J along the rotating laser polarization cy. It 
follows that, when the atom moves dong Oz, nonadiabatic 
couplings can appear among the various Zeeman sublevels 
undergoing different light shifts. 

2. Moving Atom-Transformation to a Moving Rotating 
Frame 
The atom is now moving with a velocity u along Oz: 

z = ut .  (3.11) 

In its rest frame, which moves with the same velocity u, the 
atom sees a linear polarization cy, which rotates around Oz in 
the plane xOy, making an angle with Oy [see Fig. l(a) and 
Eq. (2.5b)l 

It is then convenient to introduce, in the atomic rest 
frame, a rotating frame such that in this moving rotating 
frame the laser polarization keeps a fixed direction. Of 
course, Larmor's theorem tells us that, in this moving rotat- 
ing frame, an inertial field will appear as a result of the 
rotation. This inertial field looks like a (fictitious) magnetic 
field parallel to the rotation axis Oz and has an amplitude 
such that the corresponding Larmor frequency is equal to 
the rotation speed ku. More precisely, one can show (see 
Appendix A) that the new Hamiltonian, which governs the 

Fig. 6. Light-shifted ground-state sublevels of a J, = 1 - Je = 2 
transition in the a+-o- configuration. The quantization axis Oy is 
chosen dong the resulting linear laser polarization. The steady- 
state populations of these states (4117,9117, 4117) are represented 
by the fiiled circles. The double arrows represent couplings be- 
tween Zeeman sublevels owing to the transformation to the moving 
rotating frame. 
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atomic evolution after the unitary transformation to the 
moving rotating frame, contains, in addition to a coupling 
term with a fixed-polarization laser field, an extra inertial 
term resulting from the rotation and equal to 

If we compare the new Hamiltonian in the moving rotating 
frame with the Hamiltonian for an atom at rest in z = O 
considered in Subsection 3.B.1 we see that al1 the new effects 
that are due to atomic motion in a rotating laser polarization 
must come from the inertial term [Eq. (3.13)]. Since J, has 

nonzero matrix elements among the eigenstates of J,, this 
inertial term introduces couplings proportional to ku be- 
tween Igo), and Ig*l), (double arrows in Fig. 6). These 
couplings are sometimes called nonadiabatic since they van- 
ish when u tends to O. We show in the next subsection how 
they can give rise to an atomic orientation in the ground 
state that is parallel to Oz and sensitive to ku. 

3. Motion-lnduced Orientation in the Atornic Ground 
State 
In order to get a clear insight into the modifications intro- 
duced by the inertial term [Eq. (3.13)] and also to under- 
stana the energy exchmges between the atom and the laser 
field, it is important to determine first what the new energy 
levels are in the ground state as well as the new steady-state 
density matrix in such an energy basis. To simplify the 
calculations, we assume here that the light shift I A ' ~  is much 
larger than I", so that the energy splitting between the 
ground-state energy levels is much larger than their widths: 

We aiso suppose that 

which permits a perturbative treatment of the effect of VIot. 
Quantitative caiculations, not restricted by conditions such 
as Eqs. (3.14) and therefore valid for any velocity, are pre- 
sented in Section 5. 

First, consider the level Igo), in Fig. 6. The perturbation 
kuJ, that has no diagonal element in Igo), shifts this level 
only to second order in ku/A'. More important is the modifi- 
cation of the wave function. The state Igo), is contaminated 

by Igl), and Ig-&to first order in ku/A', becoming the 
perturbed state [go),. Since we know the matrix elements of 
J, in the basis (Ig,),) of eigenstates of J, (see Appendix A), 
we get from first-order perturbation theory 

Since the matrix elements of J, in the manifold (Ig+l),, 
Ig-l)y) are zero, the energies of b,l)y are not changed to first 
order in ku/A', while their wave functions become 

We now study the steady-state density matrix in the ener- 

- 

gy basis (Ig,),). Since we know the effect of optical pumping 
in the (Ig,),) basis and since Eqs. (3.15) and (3.16) give the 
new states in terms of the old ones, it is possible to show (see 
Appendix A) that, if we neglect terms of order (k~lA ' )~ ,  (kul 
A')(I"/A') or higher, the steady-state density matrix pst is 
diagonal in the ([g,),) basis and has the same diagonal ele- 
ments as those calculated in Subsection 3.C.1: 

To sum up, provided that we change from the (Ig,),] basis to 
the (lg,),] basis, the energies and populations of the ground- 
state sublevels are the sarne as in Subsection 3.B.1. To first 
order in ku/A' and to zeroth order in F'/A', the mdifications 
introduced by atomic motion concern only the wave func- 
tions. 

Now, the important point is that in the perturbed states 

((g,),) the populations of the two eigenstates Ig+l), and 
(g-l), of J, are not equal, as they are in Ig,),. To demon- 
strate this result, we calculate the average value of J, in - 
km),, which is proportional to this population difference. 
From Eqs (3.15) and (3.16), we get 

-- -- hku 
y(g+llJzk+l)y = y(g-l~Jz~g-l)~ = ~~t - (3.18b) 

Weighting these values by the populations [Eqs. (3.17:)] of 
the corresponding levels and summing over m, one finds for 
the steady-state value of J, that 

where we have used Eqs. (3.10). (J,),t is a motion-induced 
atomic orientation in the ground state. Thus we have shown 
that, when the atom moves along Oz in a rotating laser 
polarization, the two eigenstates lg*l), of J, have different 
steady-state populations. Noting II+, and II-1 for these 
populations and using (J,)st = h(Ii+, - K i ) ,  we get from 

Eq. (3.19) 

Such a result is in quantitative agreement with the more 
detailed caiculations in Section 5. 

Suppose that the atom moves toward z > O, i.e., that u > 0. 
Since we have chosen a red detuning (6 < O), A' is negative. 
It  follows from Eq. (3.20) that lg-l), is more populated than 

Ig+1)2: 

We show in the next subsection how this motion-induced 
population difference can give rise to a new much more 
efficient friction mechanism than the one used in Doppler 
cooling. 

4. Rernarks 
(i) We saw in Subsection 3.C.2 that the problem studied 
here is formaily equivaient to the problem of an atom at rest, 
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interacting with a laser field linearly polarized along Oy and 
submitted to a static magnetic field Bo along Oz, with an 
amplitude such that the Larmor frequency in Bo is equal to 
ku. Changing u is equivalent to changing 1~01; such a formu- 
lation of the problem allows us to establish a connection 
between the effects studied in this paper and other well- 
known effects that were previously observed in optical- 
pumping experiments. It  is well known, for example, that 
the application of a static field Bo in a direction different 
from the symmetry axis of the laser polarization can give rise 
to very narrow structures in the variations with  IBO^ of the 

light absorbed or emitted. Examples of such structures are 
zero-field level-crossing resonances and Hanle resonances in 
atomic ground s t a t e ~ . ~ ~ , ~ ~  These resonances have a narrow 
width ABo such that the Larmor frequency in ABo is equal to 
the width I" of the ground state, which can be very small at 
low Dower. 

Actuaily, the problem studied here is a little more compli- 
cated than a pure Hanle effect in the ground state since the 
laser beam not only introduces an atomic alignment dong 
Oy ( ( 3 Jy 2 J2 )  differs from zero) but also produces light 
shifts of the Ig,), States, which have the same symmetry as 
the Stark shifts that would be produced by a fictitious static 
electiic field Eo parailel to Oy. In the absence of Bo, the 
alignment (3Jy2-J2) produced by opticai pumping does 
not precess around Eo, which has the same symmetry axis. 
When Bo is applied this alignment starts to precess around 
Bo, giving rise to a new nonzero component of the alignment 

(J,Jy + J,Jz). It  is the interaction of this alignment with Eo 
~ ~ 

that gives rise to the orientation (J,) along Oz. In a certain 
sense, there is an anaiogy between the motion-induced 
atomic orientation studied here and the effects described in 
Refs. 24 and 25 and dealing with the orientation produced by 
the interaction of an atomic aiignment with a real or ficti- 
tious electric field. 

(ii) One can easily understand why the new cooling 
mechanism studied in this section does not work for a 
ground state J, = 112. In a J = 112 state no alignment can 
exist ( ~ i ~ n e r i ~ c k a r t  theorem). Optical pumping with a 
linearly polarized light cannot therefore introduce any an- 
isotropy in a J, = 112 ground state, at least when u, i.e., 1 ~ ~ 1 ,  
is very smail. I t  is only when 1 ~ 0 1  is large enough to produce 
Zeeman detuning comparable with r that the two counter- 
propagating laser beams begin to be scattered with different 
efficiencies, leading to usual Doppler cooling. Another way 
of interpreting this result is to note that the two sublevels 
lg,1,2), cannot be connected to the same excited state by the 
two laser ~olarizations a+ and a-. so that no coherence can 
build up between these two sublevels. 

5. Getting Unbalanced Radiation Pressures with a 

Motion-lnduced Atomic Orientation 
Looking at  Figs. l(a) and 5, one sees there is a six times 
greater probability that an atom in lg-l), will absorb a a- 
photon propagating toward z < O than that it will absorb a a+ 
photon propagating toward z > O. The reverse conclusions 
can be drawn for an atom in Igl),. 

If the atom moves toward z > O and if the detuning 6 is 
negative, we saw above in expression (3.21) that the sublevel 
Ig-l), is more populated than Ig+l),. I t  follows that the 
radiation pressures exerted by the two a- and a+ waves will 

be unbalanced. The atom will scatter more counterpropa- 

gating a- photons than copropagating a+ ones, and its veloc- 
ity will be damped. Note that here we ignore the Zeeman 

coherence between Ig-l), and Ig+l),. We will see in Section 
5 that the contribution of such a Zeeman coherence does not 
change the previous conclusion. 

We must emphasize here that the fact that the two radia- 
tion pressures become unbalanced when the atom moves is 
due not to the Doppler effect, as in Doppler cooling, but to a 
difference of populations in the ground state that is induced 
by the inertial term [Eq. (3.13)]. It appears clearly in Eq. 

(3.20) that the dimensionless parameter characterizing this 
new cooling mechanism is kvl(Afl. At low laser power I A ' ~  << 
r ,  ku/lAfl is much larger than the corresponding parameter 
kulr characterizing Doppler cooling. Consequently, the 

new cooling mechanism works at velocities much lower than 
for Doppler cooling. 

We can now give the order of magnitude of the new fric- 
tion force. The difference between the number of a+ and a- 

photons scattered per unit time is, according to Eq. (3.20) 
and neglecting numerical factors, of the order of 

where r' is of the order of the mean scattering rate of pho- 
tons by an atom in the ground state. Since each a+ (a-) 
scattered photon transfers to the atom a mean momentum + 
hk (-hk), we conclude that the mean momentum trans- 
ferred to the atom per unit time, i.e., the mean force F acting 
upon the atom, is of the order of 

F i s  proportional to u and opposite u since the light shift A' is 
negative for 6 < O; therefore F is a friction force. As in 

Subsection 3.A we find that F is independent of the laser 
power at  low power since rf and A' are both proportional to 
the laser power. Note, however, that the friction coefficient 
associated with expression (3.23), 

is much smaller than expression (3.7), since it varies as r'lA' 
instead of Af/I" and since we suppose here that I" << I A ' ~  [see 
expression (3.14a)l. We will see, however, in Sections 4 and 
5 that the diffusion coefficient associated with expression 
(3.24) is smaller than the one associated with expression 
(3.7), so that both configurations lead to equilibrium tem- 
peratures of the same order. 

6. Mechanism of Energy Dissipation 
The physical picture presented in the previous subsection 

clearly shows how the atomic momentum decreases in this 
new cooling scheme. This is due not, as in the Sisyphus 
effect of Subsection 3.A.2, to a coherent redistribution of 
photons between the two counterpropagating waves but to 
the fact that the atom scatters more photons from one wave 
than from the other. The two radiation pressures get unbal- 
anced when the atom moves. 

We can now try to understand how the atomic kinetic 
energy is dissipated. In order to have a - precise energy bai- 
ance, we must work in the energy basis (Ig,),] introduced in 

Subsection 3.B.3, and we have to wait long enough that we 
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can reach a steady state and get an energy resolution better 
than hlafl for the scattered photons. (Of course, this time 
should not be too long so that we can neglect any velocity 
change resulting from the friction force.) It is then clear 
that the steady-state populations of Ig,), and Ig,l), adjust 
themselves to values such that the rate of Stokes processes - -  
from Igo), to Ig+l), balances the rate of anti-Stokes processes 
from Ig+l), to (go),. As in Subsection 3.B.1, we find a fluo- 
rescence spectrum that remains symmetric even when the 
atom moves, since there are always as many Raman Stokes 
as Raman anti-Stokes photons emitted per unit time. Con- 
sequently, it does not seem appropriate, as was done in the 
first explanations of this cooling mechanism, to invoke di- 
rect nonadiabatic transitions between Jgo), and con- 
verting kinetic energy into potential energy, this potential 
energy then being dissipated by Raman anti-Stokes process- 
es. 

Actually, for this second cooling scheme the dissipation is, 
as in Doppler cooling, due to the fact that in the laboratory 
frame the fluorescence photons have on average a blue 
Doppler shift on the Rayleigh line as well as on the two 
Raman lines. Consider, for example, the fluorescence pho- 
ton following the absorption of a a- photon. If it is reemit- 
ted toward z < O, it has no Doppler shift in the laboratory 
frame, whereas it has a Doppler shift 2ku when it is reemit- 
ted toward z > O. On average, the Doppler energy dissipat- 
ed by a fluorescence cycle involving a a- photon is hku. For 
a a+ photon a similar argument gives -hku. The total 
Doppler energy dissipated per unit time is therefore equal to 

which coincides with the power -Fu dissipated by the fric- 
tion force [expression (3.23)]. 

4. THEORY OF LASER COOLING IN THE 
lin I lin CONFIGURATION 

This section is devoted to a quantitative study of the cooling 
mechanism presented in Subsection 3.A. Let us recall that 
this mechanism is based on a Sisyphus effect induced by a 
spatial modulation of the light shifts of the atomic Zeeman 
ground sublevels. As in Subsection 3.A, we study here a Jg 
= 112 * Je = 312 atomic transition and use a semiclassical 
approach to evaluate the friction force and the equilibrium 
temperature reached by the atom. 

Our treatment is limited to the low-power domain (Q << 
I'). As explained in the Introduction, this ensures that 
pumping times T, much longer than the radiative lifetime TR 

can appear, which in turn may lead to temperatures well 
below hI'. This low-power hypothesis leads, in addition, to 
much simpler calculations since it permits a perturbative 
treatment of the problem. 

We also restrict Our calculation of the radiative force to 
the low-velocity domain (Doppler shift ku << I'). This also 
introduces an important simplification. Indeed, in this low- 
velocity domain, optical coherences (density-matrix ele- 
ments between ground and excited States) and excited-state 
populations are almost unaffected by atomic motion: The 
effect 8f the Doppler shift ku during the relaxation time TR 

(or 2TR) of these quantities is negligible. Let us, however, 

emphasize that we do not impose any condition on ku and 
the inverse I" of the pumping time 7,. Atomic motion can 
therefore greatly affect the atomic ground-state dynamics 
and then induce a large velocity-dependent force. 

First, we study the interna1 atomic evolution. Starting 

from the optical Bloch equations that describe the evolution 
of the atomic density o p e r a t ~ r , ~ ~  we obtain two equations 
giving the evolution of the ground-state populations. We 
then calculate the average radiative force as a function of the 
atomic velocity, which gives the friction coefficient and the 
velocity capture range for this cooling mechanism. Finally, 

we evaluate the momentum diffusion coefficient and derive 
the equilibrium temperature of atoms cooled in the lin 1 lin 
configuration. 

A. Interna1 Atomic Evolution 
Al1 the calculations of this paper are done in the electric- 
dipole and rotating-wave approximations so that the atom- 
laser field coupling can be written as 

D+ and D- are the raising and lowering parts of the atomic 
electric-dipole operator, and 6+ and 6- = (6+)* are the 
positive- and negative-frequency components of the laser 
electric field. The laser field for the lin 1 lin configuration 
was given in Eq. (2.7). Inserting its value into the atom- 
field coupling and using the Clebsh-Gordan coefficients in- 
dicated in Fig. 2, we get 

Note that, in order to simplify the mathematical expression 
of V, we shifted the origin on the z axis by an amount X/8.27 
In Eq. (4.2), Q represents the Rabi frequency for each of the 
two running waves calculated for an atomic transition with a 
Clebsh-Gordan coefficient equal to 1 and with a reduced 
dipole moment for the transition equal to d: 

Expression (4.2) also can be interpreted as describing the 
interaction of the atom with two standing waves, o+ and a- 
polarized, and shifted with respect to each other by Xl4. 

The average force acting on the atom can now be derived 
from the spatial gradient of V: 
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with 

where p is the steady-state density operator. 
We now need to caiculate the steady-state value of the 

optical coherences 5(gi, ej), using optical Bloch equations. 
For example, we have for 5(gl12, eaI2) 

This equation is vaiid for any power and for any atomic 
velocity i ( t ) .  It  can be simplified in the low-power and low- 
velocity domains in the following ways: 

(i) The low-intensity hypothesis (R << I') implies that 
the populations and coherences of the excited state remain 
very smail compared with the populations of the ground 
state. Consequently, we can neglect (eilplej) in Eq. (4.6) 
and calculate 5(g1/2, e3/2) to first order in R. 

(ii) Since the velocity is low (ku << 1'), the relaxation time 
2r-l'of opticai coherences is much shorter than the typical 
evolution time of sin(kz) (of the order of llku) or of the 
ground-state populations (7,). This means that the optical 
coherence 5(g1/2, e3/2) follows adiabaticaily the ground-state 
population so that we can write 

"' I I ~ ~ ~  sin kz, 5@1/27 e3/2) = - r (4.7) 
6 - i- 

2 

with 

Consequently, we now need to caiculate the ground-state 
populations II*l/z in order to evaluate the force [Eq. (4.4)]. 
Note that the coherence between the two ground states 

(gll2lplg-1/2) does not contribute to the calculation and actu- 
ally has a zero steady-state value for this laser configuration, 
since it is not coupled to the ground-state populations. This 
would no longer be true for a more complicated atomic tran- 
sition for which nonzero steady-state coherences can appear 
among ground-state sublevels. 

In order to caiculate II*l/z, we now write the opticai Bloch 
equations for excited-state populations; for example, for 

(e3/zlple3/2): 

In this equation we replace the opticai coherences by their 
expressions in terms of ground-state populations. Now, 
since the relaxation time of the excited-state populations is 
r-', we can again note that they follow adiabatically the 
variations of the ground-state populations so that 

Finally, we mite the optical Bloch equations for the ground- 
state populations. For exarnple, we have for nll2 

We insert the expressions of optical coherences and excited- 
state populations in terms of Ii*1/2 to get 

where the pumping time 7, and the stationary populations 
IIist(z) are given by 

n1/28~(~) = sin2 kz, 

n-,/,Bt(z) = cos2 kz. 

For an atom at  rest in z the populations ni(z) reach their 
stationary value in a time 7, inversely proportional to the 
laser power, as mentioned in the Introduction. We also note 

that these stationary populations are strongly modulated in 
space (see Fig. 3). 

B. Force in the lin 1 lin Configuration 
In order to calculate the radiative force f [Eq. (4.4)], we first 
replace the optical coherences contributing to f by their 
expressions in terms of the ground-state populations. This 

leads to 

This expression has a clear physical meaning in terms of 
light shifts: The two levels g1f2 and g-l/, are light-shifted by 
a quantity that corresponds to the sum of the two light shifts 
created by the two a+ and a- standing waves appearing in 
expression (4.2) of the laser-atom coupling V. We can in- 
deed add these two terms independently in the low-intensity 
domain since the two states g1/2 and g-112 are not connected 
to the same excited sublevel. Using the Clebsh-Gordan 
coefficients given in Fig. 2, we obtain 

where so is the detuning-dependent saturation parameter 
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As sketched in Fig. 3, the two light-shifted ground-state 
sublevels oscillate in space with a period X/2. This spatial 
dependence then causes a state-dependent force; taking the 
gradient of AE+l12, we get 

d 2 
ff112 = - z hEfl12 = 7 - hk6so sin 2kz, 

3 
(4.18) 

so that the average force [Eq. (4.15)] can be written as 

This force f is then just the average of the two state-depen- 
dent forces ffln weighted by the populations of these states. 
Such an expression is similar to the one obtained for a two- 
level atom in intense laser light, provided that the levelsgfi12 
are replaced by the two dressed levels.16 However, an im- 
portant difference arises here since each of the two levels 
involved in Eq. (4.19) is essentially a ground-state sublevel 
with a long residence time 7,. By contrast, in the two-level 
problem the two dressed states were strongly contaminated 
by the excited state, so that their lifetime was =r-l. 

We now caiculate the populations Iifll2 in order to evalu- 
ate the force from Eq. (4.19). First, we take an atom a t  rest. 
These two populations are then equai to their steady-state 
value [Eq. (4.14b)], so that we obtain 

2 
f(z, u = 0) = - hk6so sin 2kz cos 2kz 

3 

where the potentiai U is given by 

The fact that f(z, u = O) derives from a potential is again 
similar to the corresponding result for the dipole force acting 
on a two-level atom in a standing wave. 

We now consider a very slow atom for which the Doppler 
shift ku is smaller than 1/TP. Note that this condition is 
much more stringent than the condition ku << ï' required for 
writing Eq. (4.7) or (4.10). For such very slow atoms, the 
effect of atomic motion on the populations Iif112 can be 
treated pertubatively by an expansion in terms of the small 

parameter  UT^: 

We insert these expressions into the result [Eq. (4.19)] for 
the force, and we get 

drIist 
f(z, u) = f(z, U = 0) - UTp C fi, 

i=f 112 

We now average this result over a wavelength. The average 
of f(z, b = O) is zero, so that we get 

where the friction coefficient a is equal to 

or, using Eq. (4.14a1, 

6 
a = -3hk2 - (6 < O). (4.26) 

r 

We therefore get a friction coefficient independent of the 
laser power [see relation (3.9)]. On the other hand, the 
range of validity of the result [Eq. (4.24)] is proportional to 

laser power. Indeed, the expansion (4.22) requires ku << 11 
rp, where 117, is proportional to laser power. 

Finaily, we come to the calculation of the force on the 
whole range ku << r with no restriction on the relative values 
of ku and l/Tp. The evolution equations (4.13) are still valid, 
but they can no longer be solved by a perturbative expansion 
such as Eq. (4.22). Fortunately, it is possible to get an exact 
solution for the forced regime of Eq. (4.13): 

cos 2kz + 2kwP sin 2kz 
(4.27) 

1 + 4 ~ ~ 7 , ~  

Inserting this result into expression (4.19) for the force and 
averaging over a wavelength, we obtain 

where the criticai velocity u, is 

As predided in Subsection 3.A.3, the force is maximal in 
this configuration when u = u,, that is, when the distance 
covered during a pumping time is of the order of the spatial 
period of the modulated light shifts. In Fig. 7 we have 
plotted this force versus u (solid curve). Note that expres- 
sion (4.28) of the force is valid only for ku << r. Outside this 

range, the polarization gradient cooling becomes inefficient, 
and the dominant process is Doppler cooling. For this lin 1 

lin configuration, we did not calculate the full velocity de- 
pendence of the force, which would allow one to study the 
transition between the two cooling regimes. In Fig. 7 we 

plotted just (dotted curve) the force that one would get by 
independently summing the two radiation pressure forces 
exerted by each Doppler-shifted wave. The differences be- 

tween the slopes at u = O (friction coefficients) and between 
the capture ranges appear clearly. 

To sum up, we obtained an analytical expression for the 
velocity-dependent force [Eq. (4.2811 that gives both the 
friction coefficient a (slope at origin) and the velocity cap- 
ture range u,. 

C. Equilibrium Temperature in the lin 1 lin 
Configuration 
We now turn to the problem of evaluating the equilibrium 
temperature in this new cooling scheme. We first evaluate 

the momentum diffusion coefficient Dp and then calculate 
the equilibrium temperature resulting from the competition 
between the cooling described above and the heating from 
diffusion 
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0. 2 T FORCE (Unit h k  r/2) 

Fig. 7. Variations with velocity u of the force due to polarization gradients in the lin 1 lin configuration for a Jg = 112 - J e  = 312 transition 
(solid curve). The values of the parameters are Q = 0.3r, b = -r. The dotted curve shows sum of the two radiation pressure forces exerted in- 
dependently by the two Doppler-shifted counterpropagating waves. The force due to polarization gradients leads to a much higher friction 
coefficient (slope a t  u = 0) but acts on a much narrower velocity range. 

Finally, we discuss the validity of the semiclassical approxi- 
mation used throughout this calculation. 

In order to calculate the exact value of D,, one could 
compute the correlation function of the force operator.12J3 
For a multilevel atom, such a calculation would be rather 
tedious, so that we prefer to use a heuristic calculation here. 

There are three main contributions to Dp; the two first 
ones are already present for a Jg = O - Je = 1 t r a n~ i t i o n ,~~  
and the third one is specific of an atom with several ground- 
state sublevels: 

(i) There are fluctuations of the momentum carried 
away by fluorescence photons. 

(ii) There are fluctuations in the difference among the 
number of photons absorbed in each of the two laser waves. 

(iii) There are fluctuations of the instantaneous dipole 
force osciliating back and forth between fl12(z) and f-112(z) a t  

nitude for these two contributions in the case of a Jg = 112 - 
Je = 312 transition. To evaluate the third contribution 
(coefficient D,"), we start from 

d ~ [ f ( m - f 2 ] ,  (4.32) 

which must be calculated for an atom at rest in z (the label z 
was omitted for simplification). The force f(t)  oscillates 
between fl12(z) and f-112(~), and its correlation function can 
be written as 

where P(i, t; j, t + T) represents the probability of being in 
state i at time t and in state j at time t + T. The calculation 
is then similar to the one done to evaluate the fluctuations of 
the dipole force for a two-level atom (Ref. 16, Subsection 
4B), and it leads to 

a rate 1 1 ~ ~ .  D," = ~ V l 1 2 ( ~ ) i 2 ~ 1 1 ~ t ( ~ ) ~ n 1 , 2 s t ( ~ ) ~ p  

For a Jg = O - Je = 1 t r a n~ i t i on , ~ ~  the two first contribu- = 2h2k2 - 62 s,, sin4(2kz). r (4.34) 
tions give for a dipole radiation pattern 

(4.31) 
Once this is averaged over a wavelength, it gives 

-9 

We assume that Eq. (4.31) still gives the good order of mag- 

6 0- v=q h2k2 - S,,. r 
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This second coefficient exceeds the first one as soon as 161 is 
larger than I'. Therefore, neglecting Dpf ,  we get 

or, using definition (4.11) for so, 

It appears in these expressions that the residual kinetic 
energy is of the order of the light shift hAf of the ground 
state. This simple result must be compared with the one 
obtained for a two-level system [Eq. (1.2)]. It may lead to a 
much lower temperature, and it is consistent with two ex- 
perimental obse~ations,7-~ as long as the other hyperfine 
levels of the transition can be ignored: 

(i) At a given power (52 fixed), the temperature decreases 
when the detuning increases. . %  -i ,+ 4 

(ii) At a given detuning, reducing the power decreases 
the temperature. 

~ n 8 t h e r  important remark concerns the comparison be- 
tween the residual kinetic energy kBT/2 and the potential 
U(z) derived in Eq. (4.21). We actually find that these two 
quantities are of the same order, which indicates that in the 
stationary state atoms are bunched around the points z = 

nA/4 rather than uniformly distributed. In this regime, one 
should then correct expression (4.24) for the force, which 
was obtained by assuming a constant velocity. A Monte 
Car10 simulation, similar to the one in Ref. 28, is probably 
the best way to derive precise results concerning the station- 
ary state in this configuration. 

Finally, let us look for the lowest temperatures achievable 
in this configuration. Expression (4.37) suggests that an 
arbitrarily low temperature could be reached, for instance, 
by decreasing the laser power. Actually, this is not true. 
Indeed one must check that the rms velocity deduced from 
expression (4.37) is well below the critical velocity uc [Eq. 
(4.29)], so that the cooling force is indeed linear for al1 veloci- 
ty classes contributing to the stationary state. We therefore 

which puts a lower bound on the laser power required for Our 
treatment to be valid. This in turn gives a lower bound on 
the achievable rms velocity: 

hk 161 
Ur,, >> - - . 

M I '  

Consequently, the lowest achievable rms velocity in this 
mode1 remains larger than the recoil velocity. Let us recall 
that the recoil velocity was, in any event, a limit for the 
validity of Our semiclassical treatment. 

We are currently working on a full quantum treatment of 
cooling in the lin 1 lin configuration, analogous to the one 
presented at the end of Subsection 5.D for the a+-a- config- 
uration. Note that such a treatment in the present configu- 
ration is more complicated than for the a+-a- one, owing to 

the possibility that photons are coherently redistributed 
between the two waves. 

5. THEORY OF LASER COOLING IN THE a+- 
a- CONFIGURATION 

Now we come to this final section of this paper, which is 
devoted to the quantitative study of laser cooling in a a+-a- 
configuration for a Jg = 1 - Je  = 2 atomic transition. 

As shown in Section 2, the polarization gradient is then 
quite different from the one studied in Section 4: The 
polarization is linear in any place and rotates along the 
propagation axis Oz on the length scale A. 

Cooling in this configuration originates from two quite 
distinct processes. The first is the usual Doppler cooling 
that results from differential absorption of the a+ and a- 
waves when the Doppler shift ku is a nonnegligible part of 
the natural width I'. The second mechanism, qualitatively 
studied in Subsection 3.B, originates from the enhancement 
of radiation pressure imbalance that is due to a sensitive 
motion-induced atomic orientation. We study here the case 
of a Jg = 1 -Je = 2 transition (Fig. 5), which, as explained in 
Subsection 3.B, is the simplest atomic transition exhibiting 
this sensitive velocity-induced orientation. For simplifica- 
tion, we also use at the end of this section a fictitious W 
atom, which can be formally obtained from the real 1-2 
transition by removing the V system formed by Igo), le-l), 

le+l). 

A. Various Velocity Domains 
As in Section 4, we restrict Our treatment to the low-intensi- 
ty domain (52 << I', leading to T, >> T,  or equivalently to I" << 
I'). This also allows for a perturbative treatment of the 
problem: One needs to consider only the density matrix in 
the ground state (3 X 3 elements) instead of the total atomic 
density matrix (8 X 8 elements). In this low-intensity re- 
gime, we can distinguish three velocity domains: 

(i) For very low velocities (ku << 1"), we expect the force 
to be linear with velocity. In order to calculate this force, we 
need to take into account al1 coherences among the various 
ground-state sublevels, since the coupling between popula- 
tions and coherences is responsible for the motion-induced 
orientation. 

(ii) In the intermediate regime (1" << ku << I'), the pr.e- 
cession frequency ku of the coherences among ground-state 
sublevels [owing to the inertial term in Eq. (3.13:)] is large 
compared with their damping time T,, and these coherences 
cannot build up. Consequently, the new cooling force de- 
creases. On the other hand, the Doppler shift ku is still 
small compared with I', so that the usual Doppler-cooling 
force remains small. 

(iii) For higher velocities (ku > I'), the coherences among 
the ground-state sublevels are completely negligible, and the 
Doppler shift is now comparable to the natural width. In 
this domain, the force is then practically equal to the usual 
Doppler cooling force. 

B. Calculation of the Cooling Force 
In order to calculate the steady-state radiative force, we 
start with the atom-laser coupling [Eq. (4.1)], which we 
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write in the atomic reference frame. Using expressions (2.2) 
and (2.3) for the laser electric field, we get 

X exp[i(w-t - kz)] + h.c. 

X exp[i(w+t - kz)] + h.c., (5.1) 

where we have put 

Q = -2d&,lh [identicai to Eq. (4.3:)], 

w, = WL • kv. (5.2) 

The first (third) line of Eq. (5.1) describes the coupling with 
the a+ (a-) laser wave propagating toward z > O (z < O). As 
in Section 4, the semiclassicai force is obtained from the 
average value of the gradient of the coupling V. Assuming 
that the atom is a t  the point z = O in its reference frame, we 

get 

where the coefficients $ are defined by 

Actuaily, these coefficients are nothing but the matrix ele- 
ments of p in the moving rotating frame defined in Subsec- 
tion 3.C.2. 

We now need to evaiuate the steady-state value of the 
optical coherences $(ei, gj). This is done using optical Bloch 
equations, which give the evolution of the atomic density 
operator p.26 Let us, for example, mite down the equation 

for $(el, go): 

In this equation, (ellplel) and (ellple-1) can be neglected 
compared with (golpko) because of the low-power hypothe- 
sis. We then get in steady state 

where 

We caq, in this way, calculate al1 optical coherences in terms 
of the ground-stati populations J I i  and coherences among 
these states. Note that, because of the structure of the laser 

excitation, the only nonzero Zeeman coherence in steady 
state is the coherence between gl and g-1. We put in the 
following: 

Once ail opticai coherences have been caiculated, it is possi- 
ble to get a new expression for the force [Eq. (5.3)]. The 
detailed caiculation is rather long and tedious and is pre- 
sented in Appendix B. Here, we give only the main results. 
First we get for the force 

where 

represents the saturation parameter of each of the two waves 
a* for the strongest corresponding transition (gil + ei2). 
Each term has a clear meaning in expression (5.9) for the 
force. Take, for instance, an atom in the stategl. In a time 
intervai dt, it scatters on the average îs+dt/2 photons from 
the a+ wave and I's-dtll2 photons from the a- wave (see the 
Clebsh-Gordan coefficients of Fig. 5). The resulting radia- 
tion pressure force, weighted by the population Hl of gl, is 
therefore equai to the first term of Eq. (5.9). The second 
and third terms of Eq. (5.9) describe in the same way the 
radiation pressure force when the atom is in the statesgo and 

g-1. Finaily, the last two terms, which involve the laser- 
induced coherence between gl and g-1, describe the force 
induced by the limited photon redistribution that takes 
place when the atom jumps between gl and g-1 by absorp- 
tion-stimulated emission cycles (see Subsection 2.C). 

Now we must calculate the five ground-state variables no, 
ni,, Cr, Ci. This is done again by using optical Bloch equa- 
tions, through elimination of the excited-state populations 
and coherences. One is then left with a closed system of five 
equations involving only these five required ground-state 
variables. This elimination is done in Appendix B of this 
paper. In the very low-velocity domain (kmp << 1) these 
equations lead to the following solutions, to first order in 
kmp = kvlr' = kv/sOr: 

where we have put, as in Section 4 [cf. Eq. (4.11)], 
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We can note that these results are in agreement with the 
ones obtained in Section 3. First, for an atom at rest, it is 
easy to show that the nondiagonal density matrix obtained 
here in the Ig,), basis indeed leads to the diagonal density 
matrix obtained in Subsection 3.B in the Ig,), basis. Sec- 
ond, the population difference Iil - ILl calculated from 
Eqs. (5.11) is equal to the one predicted in Eq. (3.20) in the 
limit (61 >> T'. (In this limit, one indeed gets for the light shift 

&'of Igo), the value &' = Q2/36.) 
We are now able to calculate the force in this low-velocity 

domain. First we note that Eq. (5.9) can be greatly simpli- 
fied; by neglecting al1 terms in ku/r and keeping only terms 
in kvlr', we get 

The first term of Eq. (5.13) has already been estimated in 
Subsection 3.B, whereas the second one describes the effect 
of limited photon redistribution. 

Now by inserting the result [Eqs. (5.11)] for the atomic 
density matrix into the force, we obtain 

The contribution of the population term 5/6(Ii1 - Ii-1) 
represents 415 of the total result for the friction coefficient a, 

the remaining 115 part being due to 26C1/3. 
As expected, we get in this low-velocity domain a force 

linear with velocity, with a damping coefficient (for negative 
detunings) independent of power. This damping coefficient 
is maximal for a detuning 6 = - r W ,  where the force is of 
the order of -0.8hk2u. We find here a result that was al- 
ready mentioned in Subsection 3.B: For 161 >> r ,  the friction 
coefficient in the a+-a- configuration, which varies as r/6, is 
much smaller than the friction coefficient for the lin I lin 
configuration, which is proportional to 6/r [Eq. (4.26)]. 
Furthermore, we see here that, even for the optimum detun- 
ing, the a+-a- damping coefficient is four times smaller than 
the lin I lin one. 

We now come to the complete calculation of the force for 
any atomic velocity in the low-power approximation. This 
is done by keeping al1 the velocity-dependent terms in ex- 
pressions like (5.6) and by using Eq. (5.9) for the force in- 
stead of the simplified expression (5.13). The result of such 
a calculation (which is detailed in Appendix B) is represent- 
ed in Fig. 8. In the low-velocity domain, we again find the 
friction force just calculated above (see, in particular, the 
inset of Fig. 8). Outside this domain, the force appears to be 
close to the usual Doppler force, represented by dotted 
curves. This Doppler force is calculated by neglecting al1 
coherences among ground-state sublevels, so that ground- 
state populations are obtained only from rate equations: 

0. 15 T FORCE (Unit h k  r/2) 

L 

Fig. 8. Variations &th velocity of the steady-state radiative force for a J, = 1 -Je  = 2 transition in the a+-a- configuration (a = 0.25 r ;  6 = 
-0.5 r). The slope of the force near u = O is very high (see also inset), showing that there is polarization gradient cooling. This new cooling 
force acta in the velocity range ku - A'. Outaide this range, the force is nearly equal to the Doppler force (shown by the dotted cuwe) calculated 
by neglecting all coherences between ground-state sublevels 
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We therefore confirm quantitatively that the new cooling 
force mainly acts in the kv < r' domain. 

C. Equilibrium Temperature in the a+-a- Configuration 
In order to evaluate the equilibrium temperature in this 
configuration, we first need to evaluate the momentum dif- 
fusion coefficient D,. The exact calculation of D, is 
sketched at the end of Appendix B. It  uses a method sug- 
gested to us by Castin and MolmerZ9 and leads to 

Such 'an expression can be understood by simple momen- 

tum-conservation arguments. Since there are no dipole 
forces in the a+-a- configuration, the momentum diffusion 
is due only to the first two mechanisms mentioned at  the 
beginning of Subsection 4.C. 

The first term of Eq. (5.16) (Dl) corresponds to the fluctu- 
ations of the momentum carried away by fluorescence pho- 
tons. The second term (Dz) corresponds to the fluctuations 
of the difference between the number of photons absorbed in 
each wave. For large detunings (161 >> I'), Dl and D2 are of 
the same order, as for a J, = O + Je = 1 t r a n s i t i ~ n . ~ ~  By 
contrast, for small6, D2 becomes much larger than Dl. As 
pointed out tous by Molmer and C a ~ t i n , ~ ~  this enhancement 
of D2 is a consequence of correlations introduced by optical 
pumping between the directions of two successively ab- 
sorbed photons. Immediately after a cycle involving the 
absorption of a a+ photon, the atom is more likely to be in the 
Igl), state and is therefore more likely to absorb another a+ 
photon rather than a a- one. As a consequence, the steps of 
the random walk in momentum space (due to absorption) 
can be several hk instead of hk, and this can increase D2 for a 
given saturation parameter by a factor as large as 10. Of 
course, such an argument holds only if the atom remains in 
Igl), for a time 7, = l/I", which is the mean time between two 
successive fluorescence cycles. If this is not the case, i.e., if 
the populations are redistributed among the three Zeeman 
sublevels in g in a time shorter than T,, the previous memory 
effect and, consequently, the large-step random walk, disap- 
pear, leading to a small value of D2 and thus to low tempera- 
tures. At low velocities (ku << IA'~), such a fast redistribu- 
tion of populations in g occurs at large detuning, as we show 
now. Since the true stationary states of the systems are the - 
([g,),] states, separated by a splitting of the order of hA', 
Rabi oscillations between Ig+l), and Ig-l), occur at the fre- 
quency I A ' ~ .  If I A ' ~  << i", i.e., if 161 << r ,  Ig+l), can be consid- 
ered nearly stationary on a time scale 7,. By contrast, if I A ' ~  
>> I", Le., if (61 >> I',"the Rabi oscillations ing are fast enough 
to redistribute completely the populations in g in a time 7,. 
This explains why the enhancement of D2 disappears at 
large 6 [see Eqs. (5.17)]. 

The result [Eq. (5.16)] can now be used to get the equilibri- 
um temperature 

For large 161, this result is quite similar to the one obtained in 
the lin lin configuration [expression (4.37)]. In particu- 
lar, it is proportional to laser power and decreases a s  116 when 

161 increases. Note that for intermediate detunings (FI2 6 161 
d 3r),  D2 remains larger than Dl, so that ksT varies approxi- 
mately as 1/a3. 

The validity of the result [Eq. (5.18)] is obtained as in 
Section 4. The only change concerns the condition that the 
velocities must satisfy in order to get a linear force. Such a 
condition is now ku << I A ' ~  (see Section 3). An argument 
analogous to the one given at  the end of Section 4 then leads 
to (for 161 > r )  

This limit is smaller than the one found in the lin I lin case 
[expression (4.39)] when the detuning 6 is large compared 
with r 

D. Principle of a Full Quantum Treatment 
It  is clear from the result obtained above that, for sufficient- 
ly low power, the cooling limit becomes of the order of the 
one-photon recoil energy. As emphasized in the Introduc- 
tion, a semiclassical treatment then is no longer possible. 

We present here the principle of a treatment in which 
atomic motion is treated in a full quantum way. For sim- 
plicity, we considered a W transition, sketched in Fig. 9(a), 
instead of the real J = 1 + J = 2 transition. We use the 
concept of closed families of states introduced in Refs. 18 
and 19: In the a+-a- configuration, the set of states 

5%) = (Ie-,,p - 2hk), Ig-l,p - hk), 

is closed with respect to absorption and stimulated-emission 
processes, and transfers between families occur only via 
spontaneous-emission processes. Then it is possible to 
show that the total atomic density operator in steady state 
has nonzero matrix elements only among states belonging to 

the same farnily. This greatly simplifies the study of the 
evolution of this densitv matrix: If one wants to take, for 
instance, 1000 points in momentum space, one has to consid- 
er only a N p  X 1000 vector instead of a N p  X [100012 square 
matrix; Np is the size [(2Jg + 1) + (2Je + 1)12 of the interna1 
atomic density matrix. 

Using the generalized optical Bloch equations including 
recoil,l8Jg we studied the evolution of the atomic momentum 
distribution for a W atom with a linewidth h r  equal to 400 
times the recoil energy h2k2/2M (analogous to sodium). A 
typical result is presented in Fig. 9(b). The initial distribu- 
tion is Gaussian with a rms width of 16hklM. (The standard 
Doppler limit kBT = hr/3 for an isotropic radiation pattern 
leads to a rms velocity of 12hklM.) One clearly sees that 
during the evolution a narrower peak appears around the 
zero velocity with a width of -2hklM. This peak is super- 
imposed upon a much broader background. The reason 
that such a background remains present is because the con- 
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-50Zik O 5rnk 
Fig. 9. (a) Fictitious W atom: This atom is the simplest atomic-level scheme leading to extra cooling in the a+-a- configuration. (b) Time 
evolutipn of the atomic velocity distribution for a W transition (6 = -r, Q = 0.2 r, hr = 200h2k2/M as for a sodium atom). The initial velocity 
distribution is chosen to be Gaussian with a rms width of 16 recoil velocities. The evolution is calculated via the generalized optical Bloch equa- 
tions including recoil, which permit a full quantum treatment of atomic motion. During the evolution, the velocity distribution becomes non- 
Gaussian, with a very narrow peak (HWHM = 2 recoil velocities) superimposed upon a much broader background. 

dition ku << A' for a linear force is not fulfilled for al1 velocity 
classes contributing to the equilibrium state. There are 
therefore still warmer atoms remaining in this equilibrium 
state. Note that such a non-Gaussian momentum distribu- 
tion could be at  the origin of the recent double-components 
velocity profiles measured in sodium molasses8 (see aiso Ref. 
30). We are currently working to improve this quantum 
treatment to take into account reai atomic transitions (Jg +- 

Je = Jg + l ) ,  and we are studying the variations of the 
characteristics of the stationary state with laser power and 
detuning (see, for example, Ref. 31). 

6. CONCLUSION 

In conclusion, we have studied in this paper two new laser- 
cooling mechanisms that are based on laser polarization 
gradients and work at low laser power (fl << I'). These two 
schemes are much more efficient than usual Doppler cooling, 
and they could be responsible for the anomalously low tem- 
peratures recently observed in 3-D molasses, where polariza- 
tion gradients are certainly always present. 

For simplicity, we limited Our treatment to 1-D molasses 
and to transitions Jg - Je = Jg + 1. We clearly identified 
two types of polarization gradient; the first one corresponds 
to a gradient of ellipticity with fixed polarization axis (lin 1 
lin configuration) and the second to a pure rotation of the 
polarization axis with a fixed ellipticity (a+-a- configura- 
tion). We showed that the cooling mechanisms are quite 
different in these two cases. In the first case, which works 
for Jg 3 112, the light shifts of the ground-state sublevels are 
spatially modulated, and optical pumping between these 
states gives rise to a Sisyphus effect analogous to the one 
occurring in stimulated molasses but that works here at low 
intensity. In the second case, which works for Jg 3 1, the 

cooling is due to an imbaiance between the radiation pres- 
sures exerted by the two counterpropagating laser waves. 
This imbaiance results from an ultrasensitive motion-in- 
duced population difference appearing among the ground- 
state sublevels. 

These two new cooling mechanisms have a common char- 
acteristic: The friction coefficient a, i.e., the coefficient of 
proportionality between the friction force and the velocity II 
near II = O, is independent of the laser power at low Rabi 
frequency. This must be contrasted with the result for 
usuai Doppler cooling for which a is proportional to the laser 
power. On the contrary, the capture range of the cooling, 
i.e., the range of velocities over which the force is approxi- 
mately linear, is now proportionai to the laser power, where- 
as it is independent of this power for Doppler cooling. This 
can be summarized a follows: 

friction proportional to power 
Doppler cooling 

capture range independent of power ' 

Polarization gradient friction independent of power 

cooling capture range proportionai to power 

On the other hand, the momentum diffusion coefficient is in 
both cases proportional to the laser power, so that the 
steady-state temperature is proportional to the laser power 
for polarization gradient cooling, whereas, it is independent 

of this power for Doppler cooling. Note here that, although 
the two new mechanisms lead to a different variation with 
detuning for both the friction and the diffusion coefficients 
[compare Eqs. (4.26) and (4.35) with Eqs. (5.14) and (5.16)], 
the steady-state temperatures are actuaily found to be the 
same (in f12/6 for large 1611, within a numericai factor [com- 
pare expression (4.37) with Eq. (5.18)]. 

The best way to check the theoreticai predictions of this 
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paper experimentally is to investigate the velocity depen- 
dence of the friction force in 1-D molasses, for example, by 
studying the transverse collimation of an atomic beam cross- 
ing two counterpropagating laser waves with controllable 
polarizations. Actually, preliminary results have already 
been obtained on the 23S1 - 23P2 transition of h e l i ~ m . ~ ~  
They clearly show that cooling with orthogonal linear polar- 
izations (i.e., with a polarization gradient) is more efficient 
than with parallel linear polarizations (no polarization gra- 
dient). Transverse temperatures below the Doppler limit 
TD were measured in the lin 1 lin configuration. For o+-o-, 
the residual kinetic energy remains of the order of the Dopp- 
ler limit, but the velocity profiles are far from Gaussian. A 
full quantum treatment is certainly required in order to 
analyze them (see Subsection 5.D) because of the vicinity of 
the Doppler (TD = 23pK) and recoil (TR = 4pK) limits. 

To extend Our results to real3-D molasses, one should first 
note that Doppler cooling is still present in these results (see, 
for example, Figs. 7 and 8). Therefore one takes advantage 
of both coolings: atoms with velocities of up to r lk  are first 
Doppler-cooled and then reach lower temperatures by polar- 
ization gradient cooling. On the other hand, it does not 
seem easy to single out one of the two new cooling mecha- 
nisms since both types of polarization gradient are usually 
simultaneously present in a real3-D experiment. 

Finally, let us emphasize that the steady-state rms veloci- 
ties that can be achieved in these new cooling schemes are 
very low, since they can approach the recoil velocity [see 
expressions (4.39) and (5.19)]. For such low velocities, a full 
quantum approach of both interna1 and external atomic 
degrees of freedom is required. The basis of such an ap- 
proach and preliminary results are presented a t  the end of 
Section 5. We are currently extending this approach to 
more realistic situations, but these preliminary results al- 
ready appear to be quite promising (see, for example, Ref. 
31). 

APPENDIX A: INTERNAL ATOMIC STATE IN 
THE MOVING ROTATING FRAME FOR THE 
a+-a- CONFIGURATION 

In this appendix, we establish the expression of the new 
Hamiltonian that governs the atomic evolution in the mov- 
ing rotating frame introduced in Subsection 3.B.2. We then 
determine the new ground-state energy sublevels in such a 
moving rotating frame (for a J, = 1 ground state) and the 
expression of the steady-state density matrix in this energy 
basis. 

Hamiltonian in the Moving Rotating Frame 
In the laboratory frame and in the o+-o- laser configuration 
with 40 = 40' [see Eq. (2.4)], the laser-atom coupling V is 
proportional to the component dong cy [given by Eq. (2.5b)j 
of the dipole moment operator D. In the atomic-rest frame, 
we just replace z with ut, and we get from Eq. (2.5b) 

The transformation to the moving rotating frame is then 
achieved by applying a unitary transformation 

The only term of the initial Hamiltonian H that changes in 
such a transformation is V. Now, since D is a vector opera- 
tor, its components satisfy the well-known commutation 
relations with J, 

[J,, D,] = ihD,, [J,, Dy] = -ihD,, (-43) 

from which it is easy to show that 

T(t)[D, sin kut + Dy cos kut]T+(t) = Dy. (-44) 

Thus it is clear that the transform of V by T(t) describes the 
coupling of D with a laser field keeping a fixed polarization 
c,, which proves that T(t) is the unitary operator associated 
with the transformation to the moving rotating frame. 

The fact that T(t) is time dependent introduces a new 
term, ih[dT(t)ldt]T+(t), in addition to T(t)H(t)T+(t) in the 
Hamiltonian H' governing the time evolution in the new 
representation. According to Eq. (A2), we have 

which is nothing but Eqs. (3.13). To sum up, in the moving 
rotating frame, the atomic dynamics is due to coupling with 
a laser field with fixed polarization ty and to the inertial term 

[Eq. (As)]. 

Ground-State Energy Sublevels in the Moving Rotating 
Frame 
If, in a first step, we neglect the inertial term [Eq. (A5)], the 
energy sublevels in the ground state are the eigenstates Ig,), 

of J, (see Subsection 3.B.1). These states can be easily 
expanded on the basis (Ig,),) of eigenstates of J,. One gets 

From Eqs. (A6), one can then calculate the matrix ele- 
ments of the inertial term [Eq. (A5)] between the (Ig,),] 
states that are necessary for a perturbative treatment of the 
effect of the term given by Eq. (A5) [see expression (3.14b)I. 
One finds that the only nonzero matrix elements of Vrot = 

kuJ, are 

Since Vrot has no diagonal elements in Igo), and in the 
manifold ((g*l),], the energy diagram in the ground state (see 
Fig. 6) is not changed to order 1 in Vrot. On the other hand, 
the wave functions are changed to order 1 and become 
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In Eq. (A8b), we used ,(g+ll V,,~~g-l), = O. Inserting Eqs. 
(A7) into (AB) gives Eqs. (3.15) and (3.16). 

Steady-State Density Matrix in the Energy Basis (Wy) 
The terms describing optical pumping in the master equa- 
tion are diagonal in the IIgm),) basis. This is no longer the, 
case in the (km),) basis. From Eqs. (3.15) and (3.16), one 
sees that there will be source terms of order 1 in kulAf in the 
equation of motion of ,(KlplZ), and of order 2 in ku/Af in 
the equations of motion of the populations  e p pl^), and 
of the coherence ,(g,iIplg_i),. The only nonzero matrix 
elements of p, to order 1 in kulAf, are thus ,(%lplZ),. On 
the other hand. since the evolution freauencies of these 
coherences are f (A"' - Alf), with a dampini rate of the order 
of r f ,  and since the optical-pumping source term is static (at 
frequency O), the steady-state value of ,(ElplZ), will be 
reduced by an extra nonsecular term ofthe order of I"/Af. 
Consequently, if we neglect al1 terms of order (k~lA ' )~ ,  (kul 
Af)(I"/Af) or higher, - the steady-state density matrix pst is 
diagonal in the {km),) basis and has the same diagonal ele- 
ments as those calculated in Subsection 3.B.1, which proves 
Eqs. (3.17). 

APPENDIX B: J, = 1 -. Je = 2 TRANSITION IN 
THE u+-u- CONFIGURATION 

The purpose of this appendix is to outline the calculations of 
the radiative force and of the momentum diffusion coeffi- 
cient in the a+-a- configuration for the case of a J,  = 1 - J e  
= 2 transition. The calculation is done in the low-power 
limit (Q << I'), so that excited-state populations remain small 
compared with ground-state populations. As explained at  
the beginning of Subsection 5.B, we calculate the force in the 
atomic reference frame, in which the atom-laser coupling is 
given by Eq. (5.1) and the radiative force by Eq. (5.3). 

The first part of the calculation consists of calculating the 
optical coherences and the excited-state populations and 
coherences in terms of the ground-state populations and 
coherences. This gives first the expression of the force only 
in terms of ground-state variables (density-matrix elements 
in g), and second a closed system of five equations dealing 
only with ground-state variables. This system is finally 
solved numerically to get the value of the steady-state force. 

Calculation of Optical Coherences 
For simplicity, we introduce the following notation: 

The coherences P(el,go) [Eq. (5.6:)] and i>(e-,,go) can then be 
written as 

In a similar way, one calculates the other optical coherences 

n n 
;(ez, g,) = 7 II,, F(~-z, g-1) = n-19 

26- 26, 

n 
F(eo, gi) = - (II, + Cr - ici), 

2fid+ 

and the ones that can be deduced from Eqs. (B3) by complex 
conjugation. Note that several optical coherences, such as 
F(eo,go), have a zero steady-state value in this a+-a- configu- 
ration. 

Putting the results [Eqs. (B2) and (B3)] into expression 
(5.3) for the force, one immediately gets Eq. (5.9), in which 
the force is expressed only in terms of IIo, II,,, Cr, and Ci. 

Calculation of Excited-State Populations and Coherences 
We now calculate the expressions of excited-state popula- 
tions and coherences in terms of ground-state variables. 
Take, for example, the evolution of p(ez, eg), which is the 
population of the state ez. The corresponding optical Bloch 
equation is 

We take the steady-state value [p(ez, ez) = O], and we replace 
the optical coherences F(eg, gl) and F(gl, ep) by their expres- 
sion in terms of ground-state variables [cf. Eqs. (B.3)]. This 
gives 

where s+ is defined in Eq. (5.10). 
We proceed in the same way for the other excited-state 

populations 

s + S- 
~ ( e , ,  e,) = -II0 ~(e - , ,  e-,) = - IIo, 

4 4 

where we have put 

The same procedure aiiows one to calculate excited-state 
coherences. We first define 

(coherence between el and e-1 in the moving rotating frame), 
which has the following equation of motion: 
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The steady-state value for F(e1, e-1) is then, using Eqs. (B2), 

;(el, e-II = G2 + iv2)n0, (BI01 

where we have put 

We also need for the foiiowing the quantity 

F(e2, eo) + P(eo, e-J = ((e2lple0) + (eo~~le-2))ex~(-2ikut), 

(BI21 

which is found to be 

with 

and 

p3 = [(a + 3ku)s3- - (6  - 3ku)s3+]/6r, 

Calculation of Ground-State Populations and Coherences 
We now write the equations of motion of the ground-state 
populations. For example, we have for ill 

The first line describes how the state gl is fed by spontane- 
ous emission from the three excited states ez, el, eo, and the 
second line describes absorption and stimulated-emission 
processes. In steady state, we can put f i l  = O and replace 
excited populations and optical coherences by their value in 
terms of ground-state variables. We obtain in this way 

In a similar way, we obtain from f i - 1  = O 

For the population no, we just use 

since excited-state populations are negligible at this order in 
52. We now write down the evolution equation of the 
ground-state coherence in the moving rotating frame: 

We again replace the excited-state coherences and the opti- 
cal coherences by their steady-state values. Taking the real 
part and the imaginary part of the equation j (gl, g-1) = O, we 

get 

where 

The set formed by the five equations [Eqs. (B15)-(BI911 
allows one to calculate numerically the five quantities II*,, 
no, Cr, and Ci for any value of the atomic velocity. Inserting 
the result into Eq. (5.9), one then gets the value of the 
radiative force for any atomic velocity in the low-power 
regime (see, e.g., Fig. 8). 

In the very low-velocity domain (kv << l/Tp = h o ) ,  the 
five previous equations can be simplified by neglecting al1 
terms in kulr and keeping only terms in kulI'so. We then 

Put 

so that the previous set becomes 
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Then it is straightforward to check that the quantities given 
in Section 5 [Eqs. (5.11)] are indeed solutions of this simpli- 
fied set. 

On the other hand, for velocities such that ku >> 1 / ~ , ,  the 
coherence between the two ground States gl and g-1 becomes 
negligible. One can then neglect Cr and Ci in the three 
equations [Eqs. (B16)-(B17)], which gives the simplified set 

The solution of this set is given in Eqs. (5.15). Inserting the 
corresponding values into expression (5.9) for the force, we 
recover the usual Doppler force, which has been plotted in 
dotted curves in Fig. 8. 

Calculation of the Atomic Momentum Diffusion 
Coefficient 
In order to calculate the momentum diffusion coefficient, we 
use a method introduced by Castin and M#lmer.29 This 
method is well adapted to the present a+-a- laser configura- 
tion with a low laser power. It  consists of writing down the 
generalized optical Bloch equations including recoil. Since 
we are interested here in the momentum diffusion coeffi- 
cient, we take the limit of infinite atomic mass. This 
amounts to considering an atom with zero velocity but still 
exchanging momentum with the laser field, so that ( p z )  

increases linearly with time as 2Dt. In order to get d ( p 2 ) l d t ,  

we multiply the generalized optical Bloch equations (with u 

= plM = O )  by pz, and we integrate over p.  

We start with the equation of motion for the population of 

ho, p ) ,  Le., the atom in the ground state go with momentum 

P: 

r 2 r  
<go, pl&, p )  = - ( e l ,   PIPI^^. P )  + 3 (eo, P I P I ~ o ,  P )  

2 

r 
+ - (el, p l ~ l e - ~ ,  P )  

2 

The first two lines describe feeding by spontaneous emis- 
sion, a d  the last two lines describe departure due to absorp- 
tion. The single or double bar over (ei, plplei, p )  means an 

average over the momentum carried away by the fluores- 
cence photon, either a* polarized or ?r polarized: 

We can in the same way rewrite al1 the other optical Bloch 
equations. This is done in detail in Refs. 18 and 19 for a Jg 
= O -Je = 1 transition or J, = 1 -Je = O transition, so that 
we just give the main results here. First, owing to the con- 
servation of angular momentum, the following family: 

(le,, P + mhk ); k,, P + nhk) 1, 

m = O , f l , f 2 ,  n = O , f l  

remains globally invariant in absorption and stimulated- 
emission processes. Transfers among families occur only 
via spontaneous-emission processes. Taking now the fol- 
lowing notation: 

IIm@) = (g,, P + mhklplg,, P + mhk),  m = O, f 1, 

(Cr + ic i )@)  = (g , ,  P + hklplg-,, P - hk) ,  (B25) 

we can get a closed set of equations for these variables by 
elimination of the optical coherences and the excited-state 
populations and coherences. Here we just give the result of 
this elimination: 

f i l @ )  = - 
1 7 

H l @  - hk) + - II,@ + hk) - - n 1 @ )  36 6 

If one integrates these equations over p,  one just recovers the 
stationary values deduced from Eqs. (5.11) for zero velocity. 
Now, multiplying these equations by p and integrating over 

P ,  we get 
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whereas for symmetry reasons one has 

We now multiply Eqs. (B26) by p2 and integrate over p  in 
order to get the rate of variation of ( p z ) :  

Owing to symmetry around p = 0, one has (p2fi-1)  = 

( p 2 f i 1 ) .  After some caiculations, we obtain from Eqs. (B26) 
and (B27) 

which represents twice the total momentum diffusion coeffi- 
cient D. The two contributions Dl and D2 appearing in Eq. 
(5.16) can easily be deduced from this calculation. For ex- 
ample, Dl represents the fluctuations of the momentum 
carried away by the fluorescence photons. If we replace in 
Eq. (B23) the kernel describing the spontaneous-emission 
pattern by just a b(p') function, we cancel out this cause of 
diffusion. Then, repeating the same calculation again, we 
get an expression similar to Eq. (B30), where 58/85 is re- 
placed by 8/17. This represents the contribution of the 
fluctuations of the difference among the numbers of photons 
absorbed in each wave (Dz  term). We then get Dl by differ- 
ence between D and D2. 
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