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The interaction of a 3� 1019 W=cm2 laser pulse with a metallic wire has been investigated using

proton radiography. The pulse is observed to drive the propagation of a highly transient field along the

wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its

peak magnitude �104 A before decaying to below measurable levels. Supported by particle-in-cell

simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-

neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a

small fraction of the laser-accelerated hot electron population to vacuum.
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The processes by which the relativistic electrons gener-

ated in intense (I > 1018 W=cm2) laser-solid interactions

transfer their energy from the focal spot to the bulk target

remain elusive, yet further investigation into such transport

mechanisms is vital, not least of all, to the realization of

fast ignition [1]. The incidence of a high-intensity pulse

onto a cone-wire target has been used to study the mecha-

nisms by which ignition energy might be delivered to the

core [2]. The production of hot electron currents in solid

targets is also the basis for the growing field of laser-driven

ion acceleration [3]. It has been shown that the adaptation

of the divergent, broadband proton beams generated via

target normal sheath acceleration (TNSA) [3] to a range of

applications [3,4] might be facilitated by the development

of one of two schemes for the optimization of a laser-

driven proton beam to its minimal bandwidth and di-

vergence angle [5,6], both of which are related to the

laser-induced ultrafast (picosecond-time scale) charging

of a solid. The development of fast rise-time laser-driven

Z pinches, meanwhile, also demands a thorough knowl-

edge of the transient currents induced in laser-wire inter-

actions [7].

While the global charging of a solid irradiated at high

intensity has been reported previously [8,9], the propaga-

tion mechanism of the related charging fields remains

unclear, and local current flows have not yet been directly

observed.

In this Letter, we present the experimental observation

of the highly transient laser-driven current induced in the

interaction of an intense (3� 1019 W=cm2) pulse with a

metallic wire target. The velocity at which the charge pulse

moves along the wire is confidently measured by a novel

experimental arrangement to be �c. The measurements

are consistent with a current which rises to a peak magni-

tude of 8 kA before decaying to below measurable levels

over 20 ps. All measurements were performed by employ-

ing a TNSA proton beam as a charged particle probe of the

electromagnetic fields set up by the interaction pulse in the

region of the target. Some 3� 1011 electrons are calcu-

lated to have been drawn toward the interaction region past

the cross section of measurement, a figure consistent with a

simple model of the target charging.

The proton radiography or imaging technique [10] oper-

ates on the principle that the Lorentz deflections impinged

upon the constituent protons of the probe beam act as a

measure of the E and B fields set up in the interaction

region. Dosimetric radiochromic film (RCF) [11] is com-

monly employed transverse to the incident beam as a

proton detector, providing spatially and energetically re-

solved detection of the incident proton beam when used in

a layered configuration. Each RCF layer may then be

related to a proton energy Ep by calculating the distance

into the film pack at which the Bragg peak occurs as a

function of Ep. The probing time assigned to a given layer

is then given by tprobe ¼ dðmp=2EpÞ
1=2, where d is the

distance from the proton source to the point of interest at

the target and mp is the proton mass. The evolution of the

electric and magnetic fields set up as a result of the inter-

action pulse may hence be inferred with �mps spatiotem-

poral resolution by comparing the experimental proton

density behavior at the detector with the results of three-

dimensional (3D) particle-tracing simulations [10].

The experiment was conducted on the VULCAN

Petawatt laser system [12]. One-tenth of the cross section
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of the main 260 J, picosecond-duration, 60 cm beam enter-

ing the target chamber was diverted in situ via a 235 mm-

diameter pickup mirror to provide the interaction pulse

CPA2 [13], which was focused down to an 8� 4 �m2

spot to give an on-target intensity of 3� 1019 W=cm2.

The remainder of the main beam (CPA1) was focused

down to an area of 5� 4 �m2 by a 1 m off-axis parabola

onto a 20 �m Au foil to accelerate the proton beam for

probing of the interaction. A 50 ps optical delay was

applied to CPA2 so that the target was completely envel-

oped in the probe beam at the time of the interaction. The

cutoff energy of the proton beam accelerated by the 4�
1020 W=cm2 CPA1 pulse was roughly 25 MeV so that,

when combined with the RCF stack, observation of the

wire was provided over 40 ps.

We first studied the interaction of CPA2 with a

125 �m-diameter gold wire in a vertical orientation [shot

A; see Fig. 1(a)]. Measurements were performed at the zero

level of the probe beam (the level at which protons emitted

from the source have no vertical component of velocity).

As shown in Fig. 2, over a temporal window of some 20 ps,

the extent of the deflections imposed upon the probe pro-

tons as they pass the wire increases to its maximum before

decaying. This feature is interpreted as being caused by the

transient charging and subsequent discharging of the wire

as a result of the CPA2 interaction. That this electrical

charging is positive is revealed by the fact that proton

density ‘‘pileups’’ are visible on either side of the wire

image while the central region is depleted (protons have

been deflected away from the wire).

The fields set up as a result of the laser-wire interaction

were modeled in the particle tracer. If Es is the strength of

the outwards-pointing radial electric field at the wire sur-

face and rw the wire radius, then by assuming that

(i) positive charge is contained exclusively within the

wire and (ii) the negative charge density outside the wire

is low compared to the positive charge density inside, the

electric field strength at a given radial distance r from the

axis may be approximated by Esðrw=rÞ for r � rw. The
electric field is largely absent for r < rw, meanwhile,

falling to 1=e of its maximum strength within a skin depth

of the wire surface. The azimuthal magnetic field associ-

ated with current propagation along the wire is in turn

computed via application of Ampère’s law, although

particle-tracing simulations demonstrated that deflections

to the probe protons could be attributed exclusively to the

E field as long as the maximum B-field strength did not

exceed 100 T.

For each RCF layer, the value of Es was repeatedly

varied in the particle tracer until a match was obtained

between the simulated proton density behavior at the de-

tector and that recorded experimentally. The maximum

value of Es was hence determined to be 8� 109 V=m.

Because of the fact that the wire is oriented vertically, d
does not vary significantly within the field of view of the

probe beam, and each RCF layer in the data set for shot A
corresponds effectively to a discrete probing time. Hence,

although there is some indication in Fig. 2 that a charging

front might be propagating along the wire, such a front is

not clearly resolved.

Relativity dictates that, for the whole target to have

become positively charged, such a front must have trav-

ersed the wire at some finite velocity vf � c. On shot B, a

small but crucial change was made to the experimental

setup to enable the resolution of such a charging front [see

Fig. 1(b)]. The experiment was repeated under identical

FIG. 1 (color online). (a) Schematic describing the experimen-

tal setup used on shot A. (b) The corresponding setup used on

shot B. In both cases, CPA2 strikes into the page.

FIG. 2 (color online). Samples of RCF data from shot A de-

scribing the CPA2 interaction on a vertical 125 �mAu wire. The

dashed red line marks the zero level of the probe proton beam.

Corresponding proton density lineouts taken across the zero

level are shown below each RCF image. Relative to the time

of arrival of the CPA2 interaction pulse, the probing times

depicted by each layer are (i) 0, (ii) 10, and (iii) 25 ps.
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conditions in terms of CPA2 intensity and pulse duration

and wire material and diameter. The wire itself, however,

was modified so as to lie an angle � ¼ 30� 0:5� to the

vertical. As a result, the protons forming the bulk of the

signal on a given RCF layer, all traveling at the same

velocity, will have probed different points along the wire

at different times based on their initial elevation angle

relative to the zero level �. In this way, continuous obser-

vation of the target is provided.

As shown in Fig. 3, the motion of such an electric field

front up the wire is easily resolved on shot B. It moves

away from the CPA2 interaction point at vf ¼

ð0:95� 0:05Þc. The data presented here, hence, represent

the first experimental measurement of the velocity at which

field spreads over a target in an intense laser-solid interac-

tion. With its single-shot, multiframe capabilities, proton

radiography is arguably the only diagnostic currently avail-

able with which this measurement could have been made.

The observation of the propagation of this field front

away from the CPA2 interaction point at �c enables the

result of shot A, in describing the evolution of the magni-

tude of the radial electric field at the wire surface EsðtÞ, to
be interpreted as being caused by the flow of a transient

current past the zero level, the magnitude of which may be

shown by application of Gauss’s law and the continuity

equation to be given by IðtÞ ¼ 2��0rwvfEsðtÞ. This cur-

rent, then, is calculated to rise to its peak value of 8.1 kA

before falling to below measurable levels (�1 kA) over a

temporal window of some 20 ps. At later times, IðtÞ will
relax further as laser-driven hot electrons recombine with

the wire plasma; ultimately, though, global neutralization

of the target is facilitated by the flow of negative charge

from the effectively infinite electron reservoir of the target

mount [6].

Integration of IðtÞ over time reveals the net total number

of electrons moving downwards past the zero level to be

N0 ’ 3� 1011. This contrasts starkly with the total number

of hot electrons predicted to have been accelerated by

CPA2 at the beam focus. The total number of hot electrons

accelerated can be estimated by the energy balance relation

Ntotal ¼ fEðkBThÞ
�1 [14], where f is the fraction of laser

energy absorbed by hot electrons, E the pulse energy, and

kBTh the hot electron temperature which is predicted by

I�2 scaling to be 1.4 MeV [15]. By assuming 20% ab-

sorption of laser energy into hot electrons, then [16], the

30 J CPA2 pulse is estimated to accelerate some 3� 1013

hot electrons at its focus. A large positive electrostatic

potential, however, will develop in the region of the inter-

action as the laser-accelerated hot electron population

streams to vacuum. Only the most energetic electrons

will escape the developing potential well of the target,

with the remainder returning to the wire under space-

charge separation.

An estimation of the number of electrons escaping to

vacuum may be made by developing a simple model of the

electrostatic forces at work in this system. If a Maxwellian

electron population is released from an initially neutral

sphere of radius r0, the sphere will develop a progressively
larger electrostatic potential as more electrons stream to

vacuum. By equating the minimum electron energy re-

quired for permanent escape to the depth of the electro-

static potential energy well at the sphere surface, the

fraction �1 of the Ntotal laser-accelerated electrons lost to

vacuum may be estimated by

ln�1

�1

¼ �
rc
r0

mec
2

kBTh

Ntotal;

where rc ¼ 2:82� 10�15 m is the classical electron radius

[17,18]. The main source of error in the calculation of �1

comes from the choice for r0. With this in mind, by setting

the value of r0 to the average of its maximum and mini-

mum possible values (the 62:5 �m wire radius and 5 �m

CPA2 spot radius, respectively), the total number of elec-

trons escaping to vacuum is estimated to be �1011. In

agreement with measurements performed under similar

experimental conditions [19], the model predicts that

�1% of the hot electrons accelerated at the CPA2 focus

are subsequently lost to vacuum. At 3� 1011, then, the

total number of electrons measured to have flowed past the

zero level toward the interaction point is consistent with

FIG. 3 (color online). (a) Selection of experimental (top) and

simulated (bottom) RCF data detailing the propagation of the

charging front away from interaction point on shot B. The front
position is indicated by the red arrows. The CPA2 interaction

plasma is visible to the bottom right of each experimental image

as a circular area of proton depletion. (b) Measurement of

distance from interaction point (d2) as a function of absolute

probing time (relative to the acceleration of the proton beam at

the source). The velocity at which the charging front moves

along the wire is measured to be ð0:95� 0:05Þc.
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the degree of global charge neutralization required follow-

ing the permanent escape of a small fraction of the laser-

accelerated hot electron population to vacuum.

The simulation of a scaled-down model experiment

can prove fruitful in investigating the ultrafast electromag-

netic dynamics of such a system. A 2D-Cartesian particle-

in-cell (PIC) code [20] was hence used to simulate the

interaction of a laser pulse of � ¼ 1 �m wavelength,

1:2� 1019 W=cm2 peak intensity, 100 fs duration, and

4 �m spot diameter normally incident with a plane plasma

slab of electron density 1022 cm�3. The target plasma

extends over 0< x< 5 �m, while the pulse strikes from

the left-hand side at x ¼ 0, y ¼ 0.

Figure 4 shows the contour levels of Ex and Jy (the

components of the electric field and current density per-

pendicular and parallel to the target surface, respectively)

at the rear side of the target. Only the y > 0 region is shown

since Ex (Jy) is symmetrical (antisymmetrical) about y ¼

0. A propagation of both Ex and Jy along the target surface,

i.e., along y, is observed. Two fronts are visible: an inner

front propagating at 0:4c over the time interval investigated

and an outer one propagating at ’c. The inner front en-

compasses a region of strong charge separation and current

recirculation, features interpreted as being caused by the

refluxing of hot electrons in and around the target. In the

outer region, however, Jy is positive and is localized to a

thin target surface layer. A similar feature is observed on

the front side, i.e., near x ¼ 0 (not shown). In our inter-

pretation, this current, corresponding to the flow of nega-

tive charge toward the interaction region, is driven by the

antennalike electromagnetic disturbance generated by

transient charge separation in the region of the interaction.

The disturbance propagates freely in vacuum but pene-

trates only the skin layer of the target. Its observed propa-

gation velocity (’c) and the related vacuum features of Ey

and Bz (omitted for brevity) are wholly consistent with this

description.

In summary, our measurements quantitatively support

previously made postulations that the positive charging of

solid targets irradiated at relativistic laser intensities might

be attributed to hot electron escape [6–8]. Furthermore, the

spread of charge in intense laser-solid interactions, a sig-

nificant phenomenon for many applications in this inten-

sity regime [1,5–7], has now been resolved directly.

Importantly, supported by the results of PIC simulations,

a mechanism by which such ultrafast target charging might

occur has been identified.
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FIG. 4 (color online). PIC simulation results detailing Ex and

Jy contours near the target rear surface for two different times (in

femtoseconds) relative to the arrival of the pulse peak at the

target front surface. The rear surface is located at x ¼ 5. Ex is in

units of 3:05� 108 V=cm and Jy in units of 4:8� 1013 A=cm2.
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