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Summary 
 
 An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace 
metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged 
from 10 ppb to 10 ppm for 15 metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested. 
 
 

Introduction 
 
 The detection and quantification of light elements and heavy metals within liquid samples and those 
produced by acid dissolution of solids are pertinent to industrial processing, environmental monitoring 
and waste treatment (refs. 1 to 5). To-date, laser-induced breakdown spectroscopy (LIBS) has been tested 
with limited success. Dissolved gases, particulate material and nucleation-induced bubbles produced by 
prior laser pulses can lead to misfocusing of the laser beam and can also serve as breakdown sites prior to 
the laser beam focus (refs. 1 to 3, 6, and 7). Additionally, the high local density within the liquid leads to 
rapid quenching which prohibits temporally selective detection, high collision rates which broaden 
spectral transitions and confines the plasma emission spatially rendering spatially selective detection 
problematic. Given these inherent difficulties, in situ LIBS analysis of liquids has not been widely 
successful with detection limits in the range of 1 to 100 ppm for light metals (refs. 1, 3 to 6, and 8 to 11).  
As a result, even fewer studies have investigated detection of heavy metals (refs. 1 to 3 and 6) with Hg 
being reported undetectable at 1000 ppm (ref. 3). 
 In contrast, solid surface analysis via LIBS exploits the strengths of the technique without the 
problems inherent to liquid analysis. Solid surfaces provide a uniform, well-defined sample surface. 
Additionally, the ambient background gas and pressure can be tailored to govern the plasma spatial and 
temporal evolution thereby optimizing detection conditions (refs. 12 to 16). Finally, surface analysis of a 
reproducible uniform material avoids the inherent difficulties associated with varying sample matrices, 
particle grain size effects, analyte dispersion uniformity and varying moisture content (refs. 17 and 18). 
In the work presented here, trace elemental identification within solutions is transformed into a solid 
surface analysis. Measurements for 15 metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) 
are presented. 
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Experimental Approach 
 
 Our approach consisted of evaporation of the analyte solution upon an amorphous graphite substrate 
followed by LIBS analysis of the substrate surface. Using calibrated pipets, aliquots of environmental 
standard solutions (commercially available solutions of the metal as a nitrate or chloride salt in roughly 
2 percent HNO3 or HCl, respectively) or diluted solutions prepared from these certified standards were 
deposited upon the carbon disks and then evaporated to dryness. 
 A pulsed Nd:YAG laser provided light at 1064 nm for the LIBS analysis with the same single laser 
pulse serving to both atomize and electronically excite the elements. Using a 300 mm focal length fused 
silica lens, the beam focus was placed approximately 1 cm behind the sample surface. The beam diameter 
on the graphite planchet was determined to be roughly 750 µm, resulting in a laser fluence of roughly 
35 J/cm2 and an intensity of 4.4 GW/cm2 for a nominal 8 nsec pulse width. 
 LIBS emission from the expanding plasma plume was directed into a 1-meter fused silica optical 
fiber using a collimating beam probe. A 1/4 meter spectrograph fitted with a cooled intensified array 
camera generated the spectra for subsequent analysis. For low resolution survey spectra, a 
147 groove/mm grating blazed at 300 nm was used while a 1200 groove/mm grating blazed at 300 nm 
provided sufficient spectral resolution for detailed analysis of the atomic and ionic emission. 
 Results from previous LIBS investigations exploring the effects of focussing. Laser excitation 
wavelength and laser repetition rate were used to select the conditions used here. Extensive testing of 
LIBS detection in different buffer gases and pressures confirmed results of prior LIBS investigations 
(refs. 12 to 16) and led to the choice of 75 Torr Ar. 
 
 

Results 
 

Substrate Characterization 
 
 Figure 1 shows low resolution LIBS spectra from an undoped carbon disk. With the exception of the 
carbon atomic emission lines at 193.3 and 247.8 corresponding to C atom transitions from the 1P0 level to 
the 1D and 1S levels, respectively, the ultraviolet region is free of substrate spectral emissions. 
 
 

Analyte Spectral Transition Selection and Identification 
 
 Table I lists the spectral transitions associated with LIBS in this study for all 15 metals tested under 
higher resolution. In some cases, such as for Hg, multiple spectral regions were investigated. At higher 
resolution. The spectral transitions chosen for analysis possess a strong oscillator strength, a moderately 
low excited-state energy level, and a minimal of overlap with spectral emissions from other elements. 
Figure 2 illustrates some representative spectra for selected elements. 
 
 

Linearity and Limits of Detection 
 
 To assess the analytical capability of our technique, we explored the linearity with analyte 
concentration and determined limits of detection. Analytical working curves were developed over a range 
of concentrations for As, Cd, Hg, Pb, and Cr. Figure 3 shows the results for As, Cr, and Pb. Identical 
results were obtained using either the peak or spectrally-integrated intensities of elemental emissions. 
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 Given limited success with developing analytical working curves, an empirical approach was 
undertaken to determine limits of detection (LOD). In our approach, the LOD was assigned to the 
concentration that resulted in recognizable elemental emission (S/N > 3) in greater than 75 percent of the 
spectra of a series of single laser pulse LIBS spectra. Table 1 also lists the detection limits of the 
elements determined in this manner. 
 Although the limit of detection is revealing, it does not convey the minute aliquots that could be 
analyzed by the technique in screening for trace elements. The laser pulse, with a spot size of 0.075 cm, 
samples 0.13 percent of the analyte in the 1.0 ml liquid volume initially deposited. This calculation 
assumes that the deposited liquid uniformly covers an area 3.5 cm2 and that the evaporation resulted in 
uniform deposition over the carbon planchet. The liquid was not deposited to the edge of the planchet to 
avoid loss of material by runoff. For an initial liquid concentration of 0.1 ppm, this corresponds to 130 pg 
of trace metal sampled. For iron, this corresponds to approximately 2 picomoles of material. This 
calculated amount is competitive with those routinely reported using laser-induced fluorescence and 
graphite furnace atomic absorption spectroscopy. Another unique feature of the technique is the small 
volumes required. Taking the volume of the liquid cylinder with base equal to the laser spot size and 
height equal to the initially deposited liquid height, a single laser pulse samples a volume of 
1.3 microliters. This calculated value is competitive with those routinely reported using laser-induced 
fluorescence and graphite furnace atomic absorption spectroscopy. Clearly, LIBS applied using our 
approach has potential for trace-element detection. 
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TABLE I.—LIMITS OF DETECTION FOR THIS STUDY AND COMPARISON 
WITH OTHER RESULTS. 

Element This study Other work 
 LOD, 

ppm 
Spectral transitions,a,b nm LOD, 

ppm 
Mg  0.01 279.55, 280.27 a3, b9, c100, d1.9 
Al  0.01 394.4, 396.15 a3, c20, d5.2 
Si  0.01 288.16, 251-253  
Ca  0.01 393.37, 396.85 c8, g0.3, h0.13, d25, e0.8, f0.4 
Ti  0.1 323.4, 334–339  
Cr  0.1 266–268, 274–279, 283–288 d0.1 
Fe  0.01 238–241, 260–263 273–276 g7.5 
Co  >0.1 238–242, 340–348, 349–353   
Ni  0.01 221–223, 229–231 i36.4 
Cu  0.01 324.75, 327.4  
Zn  1.0 330.26, 330.29, 334.5, 334.56  
As  5 274.5, 278.02, 286.04  
Cd  1.0 214.44 h500 

  0.1 226.5, 228.5  
Hg  10 253.65 hundetectable at 1000 ppm 
Pb  2 261.37, 261.42, 280.2, 283.31 h12.5 

  10 405.78, 406.21  
aMultiple wavelengths correspond to transitions of similar intensity in the LIBS 
spectra which proved equally useful in determining detection limits. 
bWhere wavelength ranges are listed, multiple transitions are present and were not 
fully resolved with our spectral resolution. 
cNg et al., ref. 6 (liquid aerosol). 
dArca et al., ref. 4 (liquid surface). 
eCremers et al., ref. 1 (solution). 
fArchontaki et al., ref. 9 (droplet). 
gYu et al., ref. 8 (liquid surface). 
hKnopp et al., ref. 3 (solution). 
iBerman et al., ref. 5 (liquid surface). 
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