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High-purity fused silica irradiated by third harmonic of the Nd:YAG laser in vacuum with di�erent laser pulse parameters was
studied experimentally. Laser-induced defects are investigated by UV spectroscopy, and uorescence spectra and correlated to the
structural modi�cations in the glass matrix through Raman spectroscopy. Results show that, for laser uence below laser-induced
damage threshold (LIDT), the absorbance and intensity of uorescence bands increase with laser energies and/or number of laser
pulses, which indicates that laser-induced defects are enhanced by laser energies and/or number of laser pulses in vacuum. �e
optical properties of these point defects were discussed in detail.

1. Introduction

Fused silica has excellent ultraviolet (UV, � ≦ 400 nm)
transparency, optical homogeneity, and high antidamage per-
formance inUVpulse laser [1, 2].�is optical property allows
this material to be used in optical materials for large high
power output systems such as Laser Megajoule and National
Ignition Facility [3, 4]. However, UV optical properties of
fused silica are o�en degraded by preexisting and laser-
induced point defects, since they induce optical absorption
and uctuation of the refractive index [5]. Moreover, the
concentration of laser-induced defects can be increased
by laser irradiation, and light absorption caused by laser-
induced defects may further produce laser-induced damage
[6–8]. Hence, elucidating the nature of light absorption and
uorescence of point defects in the laser modi�ed fused silica
is important for controlling the evolution of laser damage
and designing an e�ective damage mitigation procedure in
excimer laser applications and power solid laser facility [9].

Defects induced in fused silica in atmospheric air have
been widely investigated [10–12]. For many practical appli-
cations, a vacuum environment is necessary. In recent years,
laser-induced defects in fused silica under high power UV
irradiation have aroused considerable interest [13–16]. How-
ever, relatively low laser uence but large number of shots

is the most commonly used situation for fused silica optics.
Lowuence lasermay induce transmission loss, unacceptable
refractive index change, and surface roughing in fused silica
[17, 18]. Besides, characterization of material modi�cations
induced by low uence laser provides a physical basis for
understanding the laser damage mechanism. In this paper,
we attempted to characterize the point defects in fused
silica induced by low uence laser (355 nm Nd:YAG laser
pulses) with di�erent laser pulse parameters in vacuum.
Laser-induced point defects were characterized by UV-vis,
uorescence, and Raman spectra. �e formations of point
defects before and during the laser-induced material damage
were also discussed in detail.

2. Experiment Procedures

Optically polished high-purity fused silica specimens (Corn-
ing 7980) were specially monitored during preparation to
ensure no defects were introduced. In the experiment, fused
silica (25 × 25 × 3mm3) was mounted on an electromotion
manipulator in the vacuum chamber. Prior to laser irradia-
tion, all samples were thoroughly cleaned in order to prevent
external contamination on studied surfaces, which could
interact with the excitation radiation. �e vacuum chamber
was evacuated to a base pressure of 10−2 Pa. Fused silica was
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irradiated by 355 nm beam from a frequency tripled Nd-YAG
laser. �e pulse length (full width at half maximum) was
9.3 ns and laser repetition rate was 1Hz. Fluence uctuations
have a standard deviation of about ±4.5% at 355 nm. During
the test, the beam is focused on the sample surface in order
to achieve high uence. �e modulation of irradiated area is
a factor of 2.5. During damage threshold testing, laser beam

was focused on 7mm2 at the sample plane. Typical R-on-1
laser damage test was performed on untreated fused silica
surface in air and vacuum, and the uence gradually ramps
up to the damaging uence. �e damage of fused silica is
always ignited at themaximumof the beamuence. An image
of the irradiated zone is acquired by a digital microscope
before and a�er each shot in order to observe the surface
of fused silica. �e point defects were produced exclusively
on the exit surface of the optics using multiple pulses with

uence ranging from4 to 12 J/cm2, whichwas below the laser-
induced damage threshold.�e damage crater on fused silica

was irradiated by the uence (11.6 J/cm2) below laser-induced
damage threshold (LIDT) with multiple pulses.

Fluorescence spectra were measured by uorescence
spectrometer (FLS900, Edinburgh) furnished with a photo-
multiplier used as a detector and a Xe lamp used as an excita-
tion source (emitting in the wavelength range from 265 nm to
500 nm). Luminescence measurements were performed with
a single-grating spectrograph. UV-vis spectra were measured
by Lambda 950 (PerkinElmer) spectrophotometer, and the
absorbance of sample is relative value. Laser Raman spectra of
fused silica were obtained using a Horiba Jobin Yvon Xplora
confocal spectrometer. All these spectra were measured at
three di�erent positions on the sample and the scatter in the
intensity of bands due to position was less than 5%.

3. Results and Discussion

3.1. Damage �reshold. In order to understand the e�ect of
vacuum on the damage threshold, the damage performance

of fused silica in air and vacuum (10−2 Pa) was measured
by R:1 test method. �e result showed that damage thresh-

olds were 19.3 J/cm2 (in air) and 16.4 J/cm2 (in vacuum),
respectively. Compared with the damage threshold of fused
silica optics measured in vacuum and air, laser-induced
damage threshold of fused silica was slightly decreased in
vacuum, which implies that vacuum can degrade the damage
performance of fused silica. We presume that vacuum may
accelerate the generation process of laser-induced point
defects on fused silica.

3.2. Absorption Spectra. �e absorption spectrum is fre-
quently used to analyze the internal structure of fused silica
[19]. In order to characterize the point defects induced by

355 nm laser pulses in vacuum (10−2Pa), we measured the
absorption spectra of original and preirradiated fused silica.
As shown in Figure 1, there are no obvious absorptions
between 190 nm and 800 nm on the original fused silica.
We can conclude that the preexisting defects are negligible
to be the precursors inducing the absorption. A�er laser
irradiation, a weak absorption band around 610 nm (2.0 eV)
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Figure 1: Absorption spectra of fused silica preirradiated in vacuum
with 100 pulses at di�erent laser pulse energies (0 J/cm2, 4.3 J/cm2,
8.17 J/cm2, 9.40 J/cm2, and 10.5 J/cm2). �e sample exhibits absorp-
tion between 500 nm and 700 nm.
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Figure 2: Absorption spectra of fused silica preirradiated in vacuum
by di�erent laser pulses numbers (10, 50, 100, 200, and 1000); the
pulse uence is 8.16 J/cm2. �e sample exhibits a broad absorption
between 500 nm and 700 nm.

is observed [20], and the absorbance centered at 610 nm
increases with the increasing pulse uences. UV-vis spectra

of sample irradiated in vacuum (10−2 Pa) at the modest laser
pulse uence (8.17 J/cm2) with di�erent pulse numbers were
also detected. From Figure 2, we can see that the observed
absorbance (610 nm) is increasing with pulse numbers (0–
200 pulses). �e saturation behavior of the absorbance a�er
200 pulses reveals that pulse numbers only can break the
strained bonds or dangling bonds of fused silica (Figure 3).
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Figure 3: Various absorbances of the sample around 610 nm (2.0 eV)
irradiated by di�erent pulse numbers in vacuum; the pulse energy is
8.16 J/cm2.
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Figure 4: Fluorescence excitation spectrumof fused silica irradiated
in vacuum; the pulse uence is 8.16 J/cm2.

�e 2.0 eV (610 nm) band has been established to be
nonbridging oxygen hole centers (NBOHC). In our exper-
iment, the strained Si–O–Si bond and SiOH are the main
precursors of NBOHC center [21, 22]. �e oxygen-de�cient
defect (ODC) can give rise to absorption band centered at
250 nm (5.0 eV), which cannot be observed in the absorption
spectra. A probable reason is that the absorbance of ODC is
weak, and it cannot be detected by UV spectrophotometer.

Compared with these two absorption spectra (Figures
1 and 2), we can see that laser power has more e�ect
on the formation and increasing of point defects than the
numbers of laser pulses. In fused silica, the stability of total
glass network cannot be considered only with the change of
single bond energy. A strain of one bond will inuence the
structural stability of glass network in a certain area. �e
irradiation energy should be larger than the bond energy
and then can accelerate the drastic bond breaking and defect
formation. Low laser uence with large number of shorts
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Figure 5: Fluorescence emission spectra of fused silica preirradiated
in vacuum with 100 pulses at di�erent laser pulse energies (0 J/cm2,
6.36 J/cm2, 7.16 J/cm2, 8.17 J/cm2, and 9.40 J/cm2); �ex = 256 nm.

only can break the dangle bonds or some strained bonds.
However, the larger laser uence can break the normal
silica oxygen bonds to generate point defects. Increases in
laser power and/or number of laser pulses enhance the
absorbance of the sample, which is consistent with increases
in the concentration of associated defects, and it was further
con�rmed by uorescence spectra.

3.3. Fluorescence Spectra. Laser-induced uorescence of
fused silica following UV laser pulses is examined. In our
experiment, the emission spectra were excited, centered
at 256 nm (4.8 eV), as it is the case for ODC [23]. �e
excitation spectrum of fused silica can be seen from Figure 4,
which is modulated by emission band around 335 nm. �e
uorescence emission spectra of fused silica irradiated in
vacuum (10−2 Pa) at di�erent laser pulse uence (100 pulses)
are shown in Figure 5. �e intensities of these emission
bands increase a�er laser irradiation below LIDT. Moreover,
uorescence spectra of sample irradiated by laser pulses

energy (8.17 J/cm2) with di�erent pulse numbers are shown in
Figure 6. �e observed intensity at 335 nm increases with the
pulse number from 10 to 200. �e saturation behavior of the
uorescence intensity a�er 200 pulses is consistent with the
absorption spectra (Figure 6, inset). �ese results con�rmed
that increase in laser power and/or number of laser pulses
could accelerate the formation process of associated defects
in vacuum.

�e uorescence emission bands are related to a variety
of known fundamental defects [24]. 459 nm (2.7 eV) and
282 nm (4.4 eV) emissions are attributed to oxygen-de�cient
defects (ODC), which have a corresponding absorption band
around 5.0 eV [25]. UV irradiation has a chance to break
apparently strained or normal silicon-oxygen bonds. �us,
the formation of ODC (Figures 5 and 6) is attributed to the
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Figure 6: Fluorescence emission spectra of fused silica preirradiated
in vacuumby di�erent UV laser pulse numbers (30, 75, 100, 200, and
500); the pulse uence is 8.16 J/cm2. Various uorescence intensity
at 335 nm irradiated by di�erent pulse numbers in vacuum.

oxygen di�use out of silicon-oxygen bonds.�e band around
335 nm (3.7 eV) could not be clearly identi�ed to date. Only
a few publications have reported such an emission band in
Si–SiO2 nanoclusters and in porous silica, which were related
to the singlet-singlet luminescence (S0 → S1) of di�erent
kinds of ODCs [26]. In uorescence spectra, we did not
observe the typical emission band ofNBOHCcenter centered
at 650 nm (1.90 eV), which was restricted by the uorescence
spectrometer we used.

�e emission spectra of the damage crater (beside and
inside) were also detected. �e damage crater on fused

silica was irradiated by the uence (11.6 J/cm2) with pulses
numbers of about 200. Laser-induced defects can lead to
excessive absorption of the propagation laser light, which
generates localized high energy deposition. Rapid material
heating and associated thermal expansion result in stress
�elds, generating shock waves which may cause cracks or
microexplosions. In addition, it should be noted here that
the laser-induced damage is not observed at low power
densities because the laser-induced defects concentration and
energy deposition in the irradiated sample are low. In the
damage crater of fused silica, three regions including damage
edge, damage area, and damage core were measured by

uorescence spectra; the uorescence beam is about 2mm2.
�e damage core is centered in the damage crater. As can
be seen from Figure 7, there is a new emission band around
395 nm (3.1 eV) in the laser-induced damage crater; the
intensity of 395 nm band increases when the detect region is
close to laser-induced damage core. However, there are some
interesting phenomena; the intensity of 335 nm decreases in
company with intensity of 395 nm increasing. In the damage
core, the intensities of these two emission bands (335 and
395 nm) are both the highest. It implies that point defects
which are induced by laser below the damage threshold were
inuenced by the origin of laser-induced compaction, and
they are enhanced by UV laser irradiation. �e formation of
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Figure 7: Fluorescence emission spectra of laser damage crater
for di�erent areas (undamaged, damaged edge, damage area, and
damage core); �ex = 256 nm.

point defects during the laser-induced damage was mainly
responsible for physical processes.

�e 395 nm (3.1 eV) band, subject to controversy, may
have several distinct origins. It has �rst been proposed to be
ODC defect built upon a Ge rather than a Si atom, yielding
a 3.1 eV band [27]. In our experiments, the involvement
of germanium can be dismissed because no Ge has been
detected in Corning 7980. Other hypotheses have been
reported elsewhere, such as the presence of Al2O3 near the
surface due to the polishing process [21, 22, 28]. However, it
is believed that the involvement of Al2O3 polishing residues
should be ruled out, mainly due to the very strong di�erence
in luminescence intensity between aws and pristine areas.
However, there are few reports of the FL band near 3.1 eV in
undoped oxygen-de�cient silica glass [29]. If the observed
3.1 eV PL bands are not associated with impurities, it is
possible that they are associated with unknown oxygen-
de�cient-associated defect centers. Overall, the experimental
data suggest that the luminescence bands at 3.1 eV in the
spectra of sample can be attributed to the oxygen-de�cient
centers [30], which are found to be higher in ablation spot
than in original sample [31].

3.4. Raman Spectroscopy. Raman spectroscopy has proven to
be an e�cient method to characterize the structural modi�-
cation in fused silica [32–36]. According to previous studies,
with laser energy increasing, the change of amplitude of the
�1 and �2 defect peaks can be observed in Raman spec-
troscopy. However, in our experiment, we did not observe
obvious changes with di�erent laser power and/or number of
laser pulses. So the photoinduced structural changes in the
preirradiated sample in vacuum at di�erent areas (original
and damaged area) were studied using Raman spectroscopy
(Figure 8). �e optical micrograph of the damage sample
was shown in Figure 9. �ese Raman spectra consist of
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Figure 8: Typical Stokes Raman spectra of fused silica irradiated
by UV laser beam with a uence below LIDT (preirradiated and
damage sample).

a series of broad bands, which reect the coupled vibrational
modes of the silica random network [37]. �e main feature
of this spectrum is the broad band centered at 430 cm−1

(�1). �e frequency of this band relates to the Si–O–Si angle
in the glass network, and its width is considered to reect
the width of Si–O–Si angle distribution [38]. Two relatively
sharp bands (�1 and �2) centered on 495 (�1) and 606
(�2) cm−1, which may be assigned to in-phase breathing
motions of oxygen atoms in puckered four- and planar
three-membered ring structures, respectively [39]. Relative
intensities of the �1 and �2 lines signi�cantly increase in
the damage sites (by ∼10% and ∼300% for �1 and �2 lines,
resp.), which is related to the disruption of the continuous
random network of Si–O tetrahedral and to a densi�cation
of the material consistent with the recent Raman study of
fused silica damaged with di�erent laser pulses [40]. It is
attributed to the change in ring statistics where sixfold rings
transform to threefold and fourfold rings upon laser radiation
[40]. �is result is also consistent with previous reports on
the densi�cation of fused silica by X-ray, �-ray, electron, ion,
neutron, and so on [41], as well as by static compression and
shock wave propagation [42]. �e �3 probably ascribes to a

broad overtone band centered at about 803 cm−1 attributed
to the Si–O–Si symmetric stretching mode. �e Raman peak
�4 (attributed to the Si–O–Si asymmetric stretchingmode) is

about 1060 and 1194 cm−1 for TO and LO, respectively.
In absorption spectra, the absorbance of NBOHC

increased with the laser power and/or number of laser pulses
in vacuum.�ere are three FL bands of point defects in fused
silica, which are assigned to the oxygen-related defects. �e
generation of point defects before the damage appeared is
mainly due to that the UV irradiation can break the silicon
oxygen bonds or the dangling bonds on the fused silica
surface. However, there is a new band around 390 nm (3.1 eV)
in the UV laser-induced damage crater. �e origin of this

20�m

Figure 9: �e optical micrographs of the damage sample.

band can be attributed to oxygen loss, typically accompany-
ing rapid material heating and melting during laser-induced
point defects. Furthermore, material densi�cation revealed
by Raman studies (Figure 8) is attributed to the shock-wave-
induced densi�cation and a rapid resolidi�cation of the
damage core. In the UV laser-induced damage crater of fused
silica, the oxygen-de�cient centers were detected as primary
defects. Based on the above discussion, we can conclude that
the condition of vacuum accelerates the formation process of
laser-induced point defects and then produce laser-induced
damage.

4. Conclusion

We have studied UV-vis, FL, and Raman scattering from
fused silica preirradiated by UV laser with di�erent laser
pulse parameters in vacuum. Our results show that, a�er
UV laser preirradiation in vacuum, the fused silica exhibits
intense absorption or PL bands due to nonbridging oxygen
hole centers, oxygen-de�ciency defects, and some other laser-
induced defectswhose structure is presently unknown. Inten-
sities of the absorption band and FL bands increase with laser
power and/or number of laser pulses. Raman spectroscopy
has revealed laser-induced material densi�cation in samples.
�ese results indicate the possibility that laser-induced point
defects were introduced during the manufacturing process
and enhanced by UV laser irradiation in vacuum. Further
studies are currently needed to better understand these
fundamental issues of defect formation on fused silica in
di�erent atmosphere, which is important for controlling the
laser-induced damage in fused silica in many applications.
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