

Open access • Journal Article • DOI:10.1007/BF00694424

Laser photoionization detection of the rare isotope 3He — Source link []

Yu. A. Kudryavtsev, V. V. Petrunin, V. M. Sitkin, Vladilen S. Letokhov

Institutions: Russian Academy of Sciences

Published on: 01 Jan 1989 - Applied Physics B (SPRINGER VERLAG)

Topics: Photoionization

Related papers:

- Laser photoionization spectroscopy
- · High-resolution laser spectroscopy in fast beams
- Rapid Trace Analysis of 89'90Sr in Environmental Samples by Collinear Laser Resonance Ionization Mass Spectrometry
- · Applications of resonance ionization mass spectrometry
- Laser method of highly selective detection of rare radioactive isotopes through multistep photoionization of accelerated atoms

Rapid Communication

Laser Photoionization Detection of the Rare Isotope ³He

Yu. A. Kudryavtsev, V. V. Petrunin, V. M. Sitkin, V. S. Letokhov

Institute of Spectroscopy, USSR Academy of Sciences SU-142092 Troitsk, Moscow Region, USSR

Received 5 October 1988/Accepted 19 October 1988

Abstract. Based on combination of the two-step collinear isotope-selective photoionization and time-of-flight separation of atoms in a fast modulated beam, a new technique has been developed for detecting the ³He rare isotope with an isotopic selectivity of up to 10^{10} . The technique helped to detect optically, for the first time, ³He at a relative abundance of $4 \cdot 10^{-8}$.

PACS: 32.80Fb, 31.60b, 07.75h

The solution of many problems in nuclear physics, geochemistry, oceanology, environmental protection, historical dating, etc., requires determination of ultralow number densities (less than 10^{-9}) of rare isotopes occurring amidst the abundant main isotopes of the same element. At present, this purpose is served, apart from the nuclear methods for measuring ultralow levels of radioactivity, by the accelerator mass spectrometry technique [1]. Many investigators have suggested that isotope-selective excitation by laser radiation should be used to develop a rare-isotope detector. A review of these proposals can be found in [2]. However, the maximum selectivities attained by means of laser techniques without preliminary concentration of the isotope to be detected range between 10⁵ and 10⁷ [3-6]. By using a preliminary three-stage enrichment. Thonnard and coworkers [7] have detected krypton isotopes with a natural relative abundance of 10⁻¹². These results are substantially inferior to those obtained with the aid of accelerator mass spectrometry.

The present paper reports on the direct optical detection of the rare isotope ³He with a relative concentration of up to 10^{-8} by the collinear laser photoionization of atoms in a fast modulated beam.

The idea of the collinear laser photoionization of rare isotopes, suggested in [8] and experimentally tested in the experiments with potassium isotopes [4], consists in the isotope-selective excitation of the isotopic atoms of interest to a Rydberg state in a beam of fast atoms obtained by neutralizing a beam of ions accelerated through a given potential difference of UA. Collinear excitation in such a beam gives rise to an additional kinematic isotope shift in the absorption spectrum of any atomic transition in any element which is much in excess of the natural isotope shift. Due to the velocity bunching of the atoms in the beam, the absorption linewidth can be brought down to the radiative linewidth [9, 10]. Thus, this method is potentially capable of an extremely high selectivity in the laser excitation of rare isotopic atoms.

However, experiments with the ³He isotope, whose natural content in air is $1.4 \cdot 10^{-6}$ relative to the ⁴He isotope, have shown that the detection selectivity provided by this method is limited to 10^{6} because of the background noise due to two collisional processes [11]. First, collisions between fast ⁴He atoms and the residual gas in the chamber lead, although with a low probability, to the nonselective collisional excitation of the atoms to Rydberg states which then undergo field ionization together with the ³He atoms to be detected. Secondly, the fast ⁴He atoms can be ionized by collision with the residual gas molecules in the region of field ionization of the Ryd-

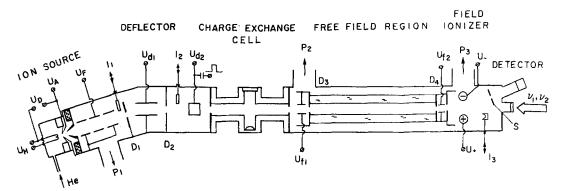


Fig.1. Schematic of the experimental setup. (D_1-D_4) : diaphragms; d_1 and d_2 : deflecting capacitors; f_1 and f_2 : filter capacitors; I_1-I_3 : atomic beam current meters; S: adjustable slit)

berg ³He atoms. To suppress this background noise, the method can be used in conjunction with various mass spectrometry techniques. In the present work, this was achieved through an additional time-of-flight separation of ⁴He and ³He, for which purpose use was made of an additional pulse intensity modulation of the continuous ion beam. This made it possible to reduce the background noise due to ⁴He⁺ ions by a factor of 10^4 and to detect ³He with a relative abundance as low as 10^{-8} . This limit was set by the number of the ³He atoms excited by the low-repetitionrate tunable dye lasers used in the experiment and not by the background noise.

The experimental setup (Fig.1) was described in detail in [11]. The continuous beam of helium ions was produced by a hot-cathode gasdischarge source. The ion energy (3.9keV) was determined by the extracting electrode potential U_A . The ion beam was collimated by a single lens and then deflected by the deflector d_1 into a charge-exchange cell through the modulator d_2 , which completely deflected the beam off axis when a dc voltage of $U_{d_2} = 50$ V was applied to it.

To effect the additional time-of-flight separation of ³He⁺ and ⁴He⁺ ions, an electric pulse was applied to the modulator d_2 so as to make it let the ions pass through for a short time of $\tau_p =$ 0.5 μ s. For the ³He and ⁴He ions to be completely separated by the time of arrival at the detector, the ion pulse duration must not exceed the difference between the times it takes for these ions to cover the distance L₁ from the modulator d₂ to the detector:

$$\tau = L_1 \left[(M_{3_{\text{He}}})^{1/2} - (M_{4_{\text{He}}})^{1/2} \right] (2eU_A)^{-1/2}$$

For ions with 3.9 keV energy, $\tau = 0.7 \ \mu s$.

In the charge-exchange cell containing potassium vapor, 40% of the ions were converted to metastable helium atoms in the 2^1 S and 2^3 S states, 3/4 of the atoms being formed in the 2^3 S triplet state [12]. The ions that failed to exchange their charge and the atoms excited in the chargeexchange cell to levels with principal quantum number n > 17 were extracted from the beam by a filter capacitor with an applied potential of U_{f_1} (the capacitor field strength was 9 kV/cm).

At the moment the ³He atoms arrived at the exit from the field-free region (the diaphragm D_4 was 2 mm in diameter) all the atoms in this region in the metastable 2³S state were excited in an isotope-selective fashion by means of two pulsed dye lasers 25 Hz in pulse repetition rate pumped by a XeCl laser 8 ns in pulse duration. The two laser beams were respectively collinear with, and counter to, the atomic beam.

Note that the trigger pulse applied to the modulator d_2 could be repeated a time 2τ later, so that two bunches of ³He atoms spaced 70 cm apart would be in the 110 cm long field-free region at the moment the exciting laser pulse arrives. Such an atomic beam modulation would make it possible to double the sensitivity of the technique. Unfortunately, no such modulation was realized in the present work, there being no suitable strobed pulse registration system available,

The dye laser frequencies ν_1 and ν_2 were tuned precisely to the frequencies of the transitions $2^3S \rightarrow 3^3P$ ($\lambda_1=3888$ Å) and $3^3P \rightarrow 26^3D$ ($\lambda_2=7945$ Å) of the atoms in the fast beam (Fig. 2c), and so the ³He atoms were excited from the 2^3S state to the Rydberg state 26^3D . The laser fluences were high enough to saturate both transitions. In accordance with the statistical weights of the levels used, 5/9 of all the ³He atoms in the 2^3S state were excited.

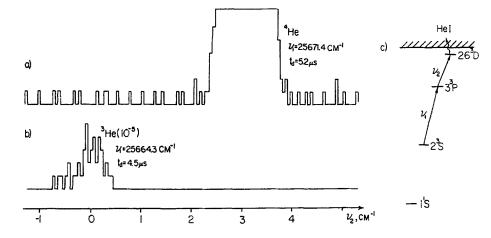


Fig.2. Ion signal as a function of the second-step excitation laser frequency ν_2 . (a) The first-step laser frequency is in resonance with ⁴He. The counting system gate is set to detect ⁴He ($t_d=5.2\mu$ s). Averaged over 64 pulses. (b) The first-step laser frequency is in resonance with ³He. The counting system gate is set to detect ³He ($t_d=4.5\mu$ s). Averaged over 64 pulses: (c) Diagram of two-step excitation of the He atom from the 2³S metastable state

The bandwidths of each laser pulse ($\Delta \nu_{1,2}$ = 0.5cm⁻¹) were substantially less than the isotope shifts in the first and second excitation steps $(\delta \nu_1^{is} = 7.1 \text{ cm}^{-1} \text{ and } \delta \nu_2^{is} = 3.2 \text{ cm}^{-1})$. The final spectral selectivity of excitation of the rare isotope ³He is related to absorption on the line wing of the main isotope ⁴He and is determined by the expression $S_{1,2} = (\delta \nu_{1,2}^{i_B} / \Gamma)^2 (2\Gamma / \Delta \nu_{1,2})$, Γ being the absorption line half-width, provided that the condition $\Gamma < \Delta \nu_{1,2} \ll \delta \nu_{1,2}^{is}$ is satisfied and the absorption line wing has a Lorentzian profile. For the helium atom transitions used, $\Gamma =$ 0.84 MHz. The excitation selectivity of ³He in the first and second excitation steps was 7.2.106 and 1.4.106, respectively. The total spectral selectivity of the two-step excitation was $S = S_1 S_2 =$ 1013. The selectivity of multistep excitation has been considered in detail in [2, 13].

The Rydberg atoms were ionized by the electric field of an ionizer and deflected onto the detector. The detection of the ³He⁺ ions was effected by means of a gated counting system during a time interval of $\tau_{det} = 0.6 \ \mu s < \tau$ delayed for a time of $t_d = 4.5 \ \mu s$ relative to the modulating pulse applied to the electrode d_2 . The background ions resulting from collisional processes involving the atoms of the main isotope ⁴He were delayed for 5.2 μs .

To prepare calibration mixtures, use was made of 99% pure ³He and ⁴He containing less than 10^{-7} ³He. Use was also made of helium

extracted from atmospheric air with a relative ³He content of $1.4 \cdot 10^{-6}$ [14]. This heluim was obtained from a helium-neon mixture taken from a nitrogen liquefier and then purified with liquid heluim.

Figures 2a and b illustrate the isotopic selectivity of the process of ionization of He atoms. Figure 2a shows the ion signal obtained while varying the frequency ν_2 of the second-step excitation laser, the first-step excitation laser frequency $\nu_1 = 25671.4$ cm⁻¹ being in resonance with ⁴He ($t_d = 5.2 \ \mu s$). The background ions in the spectrum of ⁴He are due to the two collisional processes mentioned earlier. The ion signal from ³He with a relative content of 10⁻⁵ is shown in Fig.2b. It was obtained with the frequency ν_1 shifted 7.1 cm⁻¹ toward the "red" side and the counting system delay time t_d set at 4.5 μ s. The rate of counting background ions was so low that it could not be measured with the laser pulses recurring at a frequency of f = 25 Hz. which corresponded to relative concentrations of ³He below 10⁻⁸.

Figure 3 shows the ion signal as a function of the relative content of the ³He isotope. The measured relative content of ³He in the helium gas used to prepare the calibration mixtures was $4 \cdot 10^{-8}$.

The sensitivity of the detection technique under consideration is limited by the number of ³He atoms excited in the beam. The rate of counting rare isotope atoms with a relative content of c is N = $I\tau_P f\eta c$, where I is the continuous atomic beam current (atoms/s), τ_P the atomic beam current pulse duration, f the laser pulse repetition rate, and η the efficiency of exciting the atoms and detecting the ions produced. With f = 25 Hz, I = 10¹¹ atoms/s, $\tau_P = 0.5 \mu s$, $\eta = 0.1$, and c = 10⁻⁵, the rate of counting ³He atoms

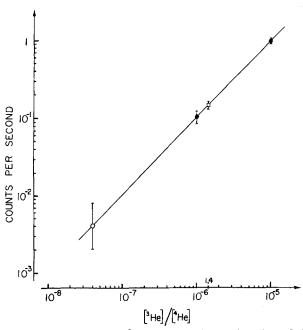


Fig.3. Ion signal from ³He (t_d =4.5. μ s) as a function of the relative content [³He]/[⁴He]. (Full circles: calibration mixtures; open square: helium extracted from atmospheric air; open circle: helium used to prepare the calibration mixture)

will be N = 1.25 counts/s. The sensitivity of the technique, defined as the number of counts per rare isotope atom in the beam, N/Ic, is equal to 1.25.10⁻⁶ counts/atom. This sensitivity can be substantially improved by using dye lasers pumped by a Cu-vapor laser with a higher pulse repetition frequency $(f=10^4 \text{ Hz})$ and modulating the atomic beams with a pair of trigger pulses as indicated earlier. In that case, the sensitivity of the technique will rise to 10⁻³ counts/atom, which will correspond to a counting rate of 11 count/s at a ³He concentration of 10⁻⁸. We measured the background ion counting rate with the atomic beam modulated by single trigger pulses following at a rate of 10⁴ Hz in the absence of laser radiation. This rate was $0.5 \cdot 10^{-2}$ counts/s, which corresponded to a ³He concentration of 10-10.

Thus, the described technique for detecting the rare isotope 3 He, based on combining the

collinear isotope-selective photoionization of fast atoms with the time-of-flight separation of isotopes, makes it possible to measure the relative content of ³He as low as 10^{-10} . The determination of the isotopic composition of helium is essential to the solution of many problems in geochemistry and geophysics, cosmochemistry, oceanology, and so on [14]. The isotopic ratio $[^{3}He]/[^{4}He]$ in various objects ranges between 10^{-4} and 10^{-10} . The method of collinear laser ionization of fast atoms can be used to solve these problems and to detect other rare isotopes as well.

References

- Proc. 4th Int'l Symp. on Accelerator Mass Spectrometry, Niagara-on-the-Lake, Ontario, Canada, 1978, Nucl. Instr. Meth. in Phys. Res. B 29, 1-445 (1987)
- 2. V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando 1987) Chap.9
- B.A. Bushaw, B.D. Cannon, G.K. Gerke, T.J. Whitaker: In Proc. 3rd Int'l Symp. on Resonance Ionization Spectroscopy and its Applications (1986), ed. by G.S. Hurst, C.G. Morgan (IOP, Bristol 1987) p.103
- Yu.A. Kudryavtsev, V.S. Letokhov, V.V. Petrunin: Pis'ma ZhETF 42, 23 (1985) (in Russian); JETP Lett. 42, 26 (1985)
- C.M. Miller, R. Engleman, Jr., R.A. Keller: J. Opt. Soc. Am. B 2, 1503 (1985)
- 6. K. Niemax: Appl. Phys. B 38, 147 (1985)
- N. Thonnard, R.D. Willis, M.C. Wright, W.A. Davis, B.E. Lehmann: Nucl. Instr. Meth. in Phys. Res. B 29, 398 (1987)
- Yu.A. Kudriavtsev, V.S. Letokhov: Appl. Phys. B 29, 219 (1982)
- 9. S.L. Kaufman: Opt. Commun. 17, 309 (1976)
- K.-R. Anton, S.L. Kaufman, W. Klempt, G. Moruzzi, R. Neugart, E.-W. Otten, B. Schinzler: Phys. Rev. Lett. 40, 642 (1978)
- 11. Yu.A. Kudryavtsev, V.V. Petrunin: Zh. Eksp. Teor. Fiz. 94, No.4, 76 (1988) (in Russian)
- 12. C. Reynaud, Y. Pommier, V.N. Tuan, M. Barat: Phys. Rev. Lett. 43, 579 (1979)
- 13. A.A. Makarov: Zh. Eksp. Teor. Fiz. 85, 1192 (1983) (in Russian)
- 14. B.A. Mamyrin, I.N. Tokstikhin: Helium Isotopes in Nature (Elsevier, Amsterdam 1984)