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Abstract: Recently, laser polishing, as an effective post-treatment technology for metal parts fabricated
by laser powder bed fusion (LPBF), has received much attention. In this paper, LPBF-ed 316L stainless
steel samples were polished by three different types of lasers. The effect of laser pulse width on surface
morphology and corrosion resistance was investigated. The experimental results show that, compared
to the nanosecond (NS) and femtosecond (FS) lasers, the surface material’s sufficient remelting
realized by the continuous wave (CW) laser results in a significant improvement in roughness. The
surface hardness is increased and the corrosion resistance is the best. The microcracks on the NS
laser-polished surface lead to a decrease in the microhardness and corrosion resistance. The FS laser
does not significantly improve surface roughness. The ultrafast laser-induced micro-nanostructures
increase the contact area of the electrochemical reaction, resulting in a decrease in corrosion resistance.

Keywords: selective laser melting; laser polishing; 316L stainless steel; surface morphology;
electrochemical corrosion

1. Introduction

Additive manufacturing (AM), as an advanced technology, has received increasing
attention for its significant advantages in manufacturing high-strength and complex parts.
Compared with machining and other traditional manufacturing technologies, this tech-
nology shows significant advantages, such as high flexibility, no molds, material saving,
and reduced design cycle time [1–3]. It can manufacture digital models into solid parts
directly by accumulating materials layer-by-layer. As a representative AM technique, laser
powder bed fusion (LPBF) melts the metal powder in a predetermined scanning path by a
high-power laser beam and then shapes it after cooling and solidification [4,5].

316L stainless steel is austenitic stainless steel. With its high strength and excellent
corrosion resistance, 316L stainless steel has been widely used in aerospace, medical, food,
and chemical industries. For the manufacture of 316L stainless steel, LPBF shows many
advantages over traditional techniques, such as higher utilization of material, integrated
forming, and the ability to create complex structures [6–8]. However, the parts manufac-
tured by LPBF are prone to defects, such as unmelted powder, porosity, and cracks [9–12].
Moreover, due to the powder source material and layered manufacturing process, the
surface roughness (SR) of the LPBF-ed 316L stainless steel is very rough, which cannot
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meet the requirements of aerospace and biomedical use [13–15]. Therefore, post-treatment
is required to improve the surface quality of LPBF-ed parts. Currently, the technology for
polishing metal parts includes grinding, sand-blasting, and electropolishing. However,
these processes are still insufficient in polishing quality and efficiency for complex and
thin-wall structures.

Recently, laser polishing, as an effective post-treatment technology, has received much
attention for the advantages of non-contact, non-pollution, and high efficiency. With a
continuous wave (CW) or long-pulse laser, this technology relies on laser-induced remelting
and the subsequent rapid solidification of surface materials [16–19]. Previous studies show
that for the additive manufacturing parts with initial roughness below 8 µm, pulsed lasers
can reduce surface roughness by 71.3%, whereas CW lasers can reduce surface roughness
by 84.4% [20,21]. Chen et al. used a CW laser to polish 316L stainless steel, reducing the
surface roughness by 92%. Meanwhile, the microhardness and corrosion resistance could
also be improved [22]. Pakin et al. studied the effect of processing parameters such as
repetition frequency, laser power, and scanning speed on the polishing quality of aluminum
alloys [23]. When the laser used for polishing is ultrafast, improved surface roughness is
achieved by removing convex materials. Hafiz et al. adopted a picosecond laser to polish
nickel-based alloy, and surface roughness could be reduced from 0.435 µm to 0.127 µm [24].

Although laser polishing with different pulse widths can reduce the roughness of
metal surfaces, there are differences in the morphologies, metallographic structures, and
mechanical properties of material surfaces. The CW laser can quickly obtain a flat surface,
but the ultrafast laser can avoid the remelting and oxidation of surface materials. Currently,
there is still no clear conclusion on the need to use lasers with different pulse widths for
polishing metal components with different degrees of roughness.

In this paper, LPBF-ed 316L stainless steel with different initial surface roughness was
polished using different pulse width lasers. The polishing efficiency, surface morphology,
and phase composition achieved by the lasers with different pulse widths were analyzed.
The cross-sectional microstructures and microhardness were investigated. In addition,
the corrosion resistance characteristics of the laser-polished stainless steel surfaces were
also evaluated. This work aims to achieve flexible and fast polishing of 3D-printed metal
components with high roughness so that the prepared parts can meet the application
requirements of most fields.

2. Experimental Procedures
2.1. Materials Preparation

The experimental raw material was commercially available 316L powder (Table 1). The
powder morphology and size distribution are shown in Figure 1. The powder is spherical,
which is favorable for LPBF forming (Figure 1a). The powder size range was 15–65 µm
with 39.0 µm average diameter and 8.1 µm standard deviation (Figure 1b).
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Table 1. Chemical composition of the 316L stainless steel powder.

Element Ni Cr Mo C Mn Si Fe

Percent 10.72 16.96 2.44 0.01 0.73 0.51 balance

A batch of 15 × 15 × 15 mm3 cubic 316L stainless steel was made by LPBF equipment
(SLM-100, Han’s Laser Co. Ltd., Shenzhen, China) under a nitrogen atmosphere. The LPBF
process used a laser power of 180 W, a layer thickness of about 0.03 mm, and a scanning
speed of 300 mm/s. The adjacent molding layers are scanned 67◦ apart in the direction of
the LPBF process. Samples were cut from the substrate with an electric spark cutter and
cleaned sequentially by sonication in ethanol and deionized water for 10 min to remove
residual powder particles.

2.2. Laser Polishing Process

As shown in Figure 2b, the initial roughness of the LPBF-cube’s side surface (SS)
is 16.28 µm, and the top surface (TS) roughness is 8.12 µm. To study the influence on
low-roughness surfaces by laser polishing, the SS was pretreated with 80-grit sandpaper,
and the SR was reduced to 0.97 µm. Such a low roughness made the surface look shiny.
The pretreated SS was labeled P-SS. The adopted processing parameters are shown in
Table 2, and the laser polishing with an area of 5 × 5 mm2 was carried out in an air
environment (Figure 2). This study used the average surface roughness, Sa, to evaluate the
laser polishing performance.
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Figure 2. Actual images of the (a) CW, (b) FS, and (c) NS laser processing systems.

Table 2. Parameters adopted for laser polishing.

CW Laser NS Laser FS Laser

Energy density (J/mm2) 4.17 0.69 0.076

Scanning speed (mm/s) 300 100 500

Pulse frequency (kHz) - 40 250

Number of Passes (-) 3 2 3

2.3. Microstructure and Mechanical Testing Method

The surface roughness of the samples was measured by a 3D laser confocal micro-
scope (Olympus, OLS 5000), and the surface morphology of the samples was observed by
scanning electron microscopy (SEM) (Carl Zeiss, GeminiSEM300, Oberkochen, Germany).
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The crystal phase of the samples was identified using X-ray diffraction (XRD) (SmartLab,
Tokyo, Japan).

The microhardness of polished LPBF-ed 316L stainless steel samples was achieved
using a nanoindentation method. The nanoindentation was carried out at a distance of
approximately 20 µm from the sample cross-section, with 20 µm intervals each time, and
the experimental results were the average of 10 measurements. The test was performed
with a 500 mN load.

The electrochemical corrosion behaviors of samples were measured in 3.5% NaCl
solution through an electrochemical workstation using a three-electrode cell. The measured
316L stainless steel sample, a saturated calomel electrode (SCE), and a platinum foil were
used as working, reference, and counter electrodes. Open circuit potential (OCP) measure-
ments were performed for 1800 s to ensure that the working surface reached a relatively
stable state, and potentiodynamic polarization curves were obtained on OCP in the range
of −1.5 V to +1.5 V with a scan rate of 0.5 mV/s. The impedance spectrum ranges from
10−2~105 Hz with 10 mV AC signal amplitude. The following analytical tests were carried
out on TS samples.

3. Results and Discussions
3.1. Effect of Surface Roughness and Pulse Width on Laser Polishing Performance

Figure 3a shows the polishing performances of the lasers with different pulse widths.
For the P-SS with an initial Sa of 0.97 µm, the pulse width’s effect is not apparent. Moreover,
after laser polishing, the changes in roughness are also small. The FS laser polishing only
reduces the Sa by 0.12 µm (Table 3), and similar results are also achieved using the CW and
NS lasers. However, the CW laser’s advantages come to the fore as the initial Sa increases.
For the SS with the biggest Sa of 16.28 µm, the CW laser can quickly decrease the Sa to
1.15 µm, corresponding to a reduction of 92.9%. However, the Sa achieved by the NS laser
is 3.11 µm, and the FS laser polished SS still possesses a Sa of 11.2 µm. Previous studies
mainly focused on metal components with an initial roughness below 8 µm [15,20]. The
maximum roughness of 16.28 µm is much higher than the previous research. With a high
scanning speed of 300 mm/s, the CW laser can quickly reduce the roughness from 16.28 µm
to about 1 µm. This reveals that the research result is very significant in polishing efficiency.
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Table 3. Surface roughness of the polished samples with different laser pulse widths.

Sa (µm)

Samples P-SS TS SS

LPBF-ed 316L stainless steel 0.97 8.12 16.28
CW laser polishing 0.76 1.24 1.15
NS laser polishing 0.86 2.53 3.11
FS laser polishing 0.85 8.66 11.20

3.2. Effect of Laser Polishing on Microstructure

Figure 4 shows the surface morphologies of the samples before and after laser pol-
ishing. On the TS of the original LPBF-ed 316L stainless steel, some powder particles
that are not entirely melted can still be observed (Figure 4a). Moreover, the laser-parallel-
scanning-induced metal remelting is accompanied by sputtering. The above causes result
in a ripple-like rough surface. The powder particles and ripples disappeared from the
sample’s surface after CW laser polishing (Figure 4b). This is attributed to the remelting
of materials (Figure 5). The laser-melted material flows by gravity and then re-solidifies,
flatting the rough surface. However, the thermal stresses inside the material during the
cooling process cause cracks on the polished surface (Figure 4b).
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stainless steel surfaces.

Compared to the CW laser-polished surface, the cracks become more obvious on the
NS laser-polished surface (Figure 4b,c). This is because the NS laser has much less time
to act on the material than the CW laser, resulting in a smaller heat conduction depth
(Figure 4). The increased temperature difference along the normal direction of the material
surface leads to an increase in thermal stress, making the crack more obvious. The FS laser
polishing is based on removing convex materials (Figure 5). After three-laser scanning,
the amount of material removal is very small (Figure 4d). Meanwhile, a new micro-nano
structure is induced on the material surface, resulting in an insignificant reduction in
roughness (Figure 3a). However, the cold processing effect caused by the ultrashort laser
avoids the recast layer caused by the material melting, and the thermal-stress-induced
microcracks are also inhibited (Figure 4d).
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Figure 5. Schematic illustrating the laser polishing with different pulse widths.

3.3. Surface XRD Analysis

Figure 6 shows the surface XRD patterns of the LPBF-ed 316L stainless steel samples
before and after laser polishing. It can be seen that on the original sample, diffraction peaks
with different intensities appear at 43.8◦, 51.1◦, and 74.9◦, corresponding to face-centered
cubic austenite (111), (200), and (220) crystal faces, respectively. After surface polishing
with the three kinds of laser, no new diffraction peaks can be observed. This indicates that
no new phase is generated on the polished surface, regardless of the pulse width of the
laser used. This may be attributed to the high nickel content in 316L stainless steel, and the
nickel can inhibit the formation of other phases [22].
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3.4. Cross-Sectional Microstructure

Figure 7 exhibits the cross-sectional micrographs of original and laser-polished sam-
ples. The original LPBF-ed 316L stainless steel shows an uneven surface (Figure 7a). The
semicircular metallographic organization caused by the unidirectional cooling of the melt
pool is also clearly visible. After the CW laser polishing, the rough surface becomes flat,
and a 49.08 µm remelted layer is formed (Figure 7b). Since the NS laser possesses a lower
thermal effect, the remelted layer’s thickness is decreased to 36.53 µm (Figure 7c). The FS
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laser polishing mainly depends on removing convex material (Figure 7d), so the improve-
ment in surface roughness is limited. However, the cold processing effect caused by the
ultrashort laser prevents the material from remelting.
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3.5. Cross-Sectional Microhardness Measurement

To evaluate the impact of different pulse width lasers on the specimens along the depth
direction, a microhardness measurement was performed on the sample’s cross-sections.
As shown in Figure 8, the average microhardness of the original LPBF-ed 316L stainless
steel is about 3.11 Gpa, and the microhardness remained almost constant with increasing
depth. The average hardness for the CW, NS, and FS laser-polished samples is 3.16 Gpa,
2.93 Gpa, and 3.04 Gpa, respectively. Figure 8a shows that the hardened layer of about
60 µm thickness is formed on the CW laser-polished sample. Related studies have shown
that laser-polished additive manufactured parts produce gradient-hardened layers [25–27].
The cracks and thinned remelting layer for the NS laser-polished surface lead to decreased
microhardness. Since there is no remelting layer on the FS laser-polished sample, the
microhardness is almost constant along the depth direction.
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3.6. Electrochemical Analysis
3.6.1. Potentiodynamic Polarization Studies

The polarization curves of original and laser-polished samples are shown in Figure 9,
and Table 4 shows the corresponding corrosion currents and potentials calculated by the
Tafel extrapolation method. The higher the corrosion potential of the sample, the better the
corrosion resistance. Moreover, the corrosion current determines the corrosion rate [28].
Surface roughness is essential to the material’s corrosion resistance [29]. The roughness
reduction caused by CW laser polishing increases the corrosion potential and decreases
the corrosion current. This indicates that the corrosion resistance is improved, and the
corrosion rate is reduced [30]. The corrosion resistance of the NS laser-polished sample is
not improved due to the surface cracks. During the electrochemical test, the electrolyte
may penetrate the material along the cracks, resulting in corrosion inside the sample. The
FS laser polishing does not obtain an improvement in surface roughness. Moreover, the
ultrashort laser-induced micro-nanostructures increase the electrochemical reaction area,
decreasing corrosion resistance. The polarization characteristics of the laser-polished P-SS
and SS are consistent with the results shown in Figure 9 (Appendix A Figure A1). This
indicates that the initial roughness does not affect the corrosion resistance of laser-polished
samples with different pulse widths.
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Figure 9. Potentiodynamic polarization curves of original and laser-polished samples.

Table 4. Quantitative information of four samples from the potentiodynamic polarization curves.

Samples Corrosion Potential (V) Corrosion Current (A)

LPBF-ed 316L stainless steel −0.577 −7.181

CW laser polishing −0.432 −7.722

NS laser polishing −0.797 −6.909

FS laser polishing −0.847 −6.038

3.6.2. Electrochemical Impedance Spectroscopic (EIS) Studies

The EIS spectra of the original and laser-polished samples are shown in Figure 10.
Capacitive arcs can be observed on the Nyquist plots for all the samples (Figure 10a), which
indicates that the corrosion reactions occurred at the stainless steel/electrolyte interface.
The capacitive arc’s radius is essential for assessing corrosion resistance [31,32]. A large
radius usually indicates excellent corrosion resistance. As shown in Figure 10a, the CW
laser-polished sample’s radius is more significant than that of the other three samples,
indicating the most vigorous corrosion resistance.
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To further analyze the corrosion mechanism, an equivalent circuit model, shown in
Figure 10d, was used to fit the impedance data. Rs, Rf, and Rct represent the resistances of
electrolyte solution, passivation film, and charge transfer, respectively. Qf and Qdl represent
the passivation film capacitance and the double-layer capacitance. The fitted EIS parameter
is shown in Table 5. The chi-squared values (χ2) ranged from 2.5 × 10−5 to 1.9 × 10−3,
indicating a good agreement between the EIS data and the fitting results.

Table 5. EIS fitting results of an equivalent circuit model for original and laser-polished samples.

Sample RS
(Ω cm2) Qf

Rf
(Ω cm2) QdL

Rct
(Ω cm2) χ2

LPBF-ed 316L stainless steel 29.14 8.67 × 10−6 74.05 7.40 × 10−6 4.13 × 106 2.5 × 10−5

CW laser polishing 27 9.86 × 10−7 2900 3.14 × 10−6 4.5 × 106 9 × 10−4

NS laser polishing 34.37 7.27 × 10−5 25.15 3.20 × 10−5 49,955 1.9 × 10−3

FS laser polishing 24.53 3.91 × 10−5 3.776 1.98 × 10−4 554,950 1.0 × 10−4

The corrosion rate r is inversely proportional to Rct [33]:

Rct × r = K (1)

Since K is a constant, Rct depends on the charge transfer rate caused by the Faraday
process of redox reactions occurring on the electrode surface. As such, Rct can be used to
evaluate the corrosion resistance. As can be seen in Table 5, the CW laser-polished surface
with the highest Rct of 4.5 × 106 Ω cm2 shows a lower corrosion rate than the other three
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samples. In addition, the CW laser-polished sample also has the lowest Qf and the highest
Rf, which indicates a stable passivation film and high corrosion resistance [34,35].

3.6.3. Electrochemical Corrosion Morphology

Figure 11 shows the corrosion micromorphologies of four samples after the EIS tests.
Some corrosion pits can be observed on the original surface of the LPBF-ed 316L stainless
steel (Figure 11a). Compared to the original sample, the corrosion pits on the CW laser-
polished specimen are significantly reduced. Only a few micro-sized corrosion pores can be
observed (Figure 11b). The corrosion pits on the NS laser-polished sample are mainly due
to the surface cracks (Figure 11c). A large number of bumps on the FS laser-polished sample
leads to the incompleteness of the passivation film during the corrosion process. The NaCl
solution tends to corrode the material interior along these surface defects, resulting in a
severely corroded surface (Figure 11d).
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3.6.4. Corrosion Mechanism

The corrosion mechanism of the original and laser-polished 316L stainless steel sam-
ples is shown in Figure 12. The oxidation reaction occurs at the anode:

Fe − 2e− → Fe2+ (2)

Cr − 2e− → Cr2+ (3)

The reduction reaction occurs at the cathode:

O2 + 2H2O + 4e− → 4OH− (4)

The metal cations produced by the anodic reaction readily react with Cl− in the NaCl
solution to form metal chlorides, resulting in the continued dissolution of the metal in
the solution:

Cr2+ + 2Cl− → CrCl2 (5)
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Fe2+ + 2Cl− → FeCl2 (6)

Next, the unstable CrCl2 and FeCl2 are easily transformed into Fe2O3 and Cr2O3
oxides due to the oxygen dissolved in the solution. The passivation film formed by the
metal oxides can slow down the corrosion process of the material surface. However, the
presence of surface microcracks leads to the erosion of Cl− inside the material, promoting
the formation of corrosion pits [36].

In summary, the rough structure on the original and FS laser-polished surface de-
stroyed the integrity of the passivation film, leading to the formation of corrosion pits. The
microcracks on the NS laser-polished sample also damaged the passivation film, resulting
in a severely corroded surface. In contrast, the CW laser polishing could remove most of
the defects on the LPBF-ed 316L stainless steel and obtain a flat surface, improving the
corrosion resistance [37,38].
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4. Conclusions

In this study, the surface morphologies and corrosion behaviors of LPBF-ed 316L
stainless steel polished with different laser pulse widths were investigated.

(1) Although the NS laser can also significantly reduce the surface roughness, the
generated microcracks decrease the microhardness and corrosion resistance.

(2) The FS can avoid the formation of remelting layers, but its improvement in the
roughness is very limited. Moreover, the ultrashort pulse laser-induced micro-nanostructures
increase the contact area of the electrochemical reaction, resulting in a decrease in corrosion
resistance.

(3) The demonstrated advantage of the CW laser over the FS and NS laser is decided
by the initial roughness. The surface material’s sufficient remelting realized by the CW
laser can significantly improve the roughness. When the initial roughness of LPBF-ed
stainless steel is higher than 10 µm, the CW laser can quickly reduce the surface roughness
of LPBF-ed stainless steel to about 1 µm. Meanwhile, the surface hardness and corrosion
can also be improved. The research results suggest that CW laser polishing presents promis-
ing applications in the pretreatment of LPBF-ed parts for ocean engineering, mechanical
transmission, and punching die. However, compared to electrochemical polishing, the
roughness of the laser-polished surface is still high. For applications requiring a surface
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roughness below 500 nm, the laser-polished surface must be treated using chemical and
mechanical methods to further reduce the roughness.
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Appendix A

Appendix A Figure A1 shows the polarization curves of initial and laser-polished
P-SS and SS samples. The corresponding corrosion current and potential are listed in
Tables A1 and A2, respectively. The experimental results show that the influence of laser
pulse width on the polarization characteristics of P-SS and SS samples is consistent with
the results shown in Figure 8. The CW laser-polished surfaces possess the best corrosion
resistance. This indicates that the initial roughness does not affect the corrosion resistance
of laser-polished samples with different pulse widths.
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Table A1. Quantitative information of P-SS samples before and after laser polishing.

Corrosion Potential (V) Corrosion Current (A)

LPBF-ed 316L stainless steel −0.805 −6.168

CW laser polishing −0.371 −7.273

NS laser polishing −1.054 −5.752

FS laser polishing −0.836 −5.398
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Table A2. Quantitative information of SS samples before and after laser polishing.

Corrosion Potential (V) Corrosion Current (A)

LPBF-ed 316L stainless steel −0.522 −6.793

CW laser polishing −0.453 −7.721

NS laser polishing −0.688 −6.522

FS laser polishing −0.930 −5.009

Figure A2 shows the influence of laser energy density, scanning speed, and processing
times on the roughness of laser-polished surfaces. As shown in Appendix A Figure A2a,
when the scanning speed of the CW laser was fixed at 300 mm/s, the surface rough-
ness could decrease to 3.2 µm with the laser energy density ranging from 2.53 J/cm2 to
5.82 J/cm2. An energy density outside this range resulted in an increase in the surface
roughness. With the optimized laser energy density of 4.17 J/cm2, the optimal laser scan-
ning of 300 mm/s could also be obtained (Figure A2a). The repetition frequencies of the FS
laser and NS laser were fixed at 250 kHz and 40 kHz, respectively. Figure A2b shows that
the optimized energy density and scanning speed for the NS laser polishing are 0.69 J/cm2

and 100 mm/s. The optimal parameter combination for the FS laser polishing was an energy
density of 0.076 J/cm2 and a scanning speed of 500 mm/s (Figure A2c). Figure A2d shows that
the optimal processing times for the CW, NS, and FS laser polishing are 3, 2, and 3, respectively.
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