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Laser power calculations: sources of error

Lee W. Casperson

The physical phenomena that dominate the power characteristics of a laser depend on the detailed nature
of the amplifying medium and the resonator structure. In predicting the power characteristics, numerous
approximations are always required. The most important approximations are considered here in detail, and
error estimates are presented so that a designer can select the appropriate model for a particular application.
Emphasis is placed on analytic solutions and specific phenomena considered include longitudinal and
transverse spatial hole burning, large single-pass gain, and mixed line broadening.

1. Introduction

One of the most important parameters of a laser os-
cillator is the total output power. For many applica-
tions one seeks to maximize the power output of a laser
subject to constraints of size, efficiency, and cost.
Unfortunately, this problem can become analytically
difficult, and one never attempts an exact solution for
even the simplest of laser configurations. The usual
approach s to choose suitable approximations and ob-
tain estimates of the maximum error that such choices
will entail. Thus, it is helpful if simple realistic models
are available for predicting the characteristics of par-
ticular laser designs.

The purpose of this paper is to bring together several
basic laser models, which include most cw lasers of in-
terest. Some of these mcidels have been considered
previously in one form or another, but, even for these
cases, there has been little attention given to estab-
lishing the magnitude of the inevitable errors. Such
error information is obviously necessary to ensure that
a calculation is sufficiently accurate for a particular
application. An equally important benefit of accurate
error information is that one can avoid making unnec-
essarily precise corrections for one physical effect, while
ignoring altogether other effects that might be more
substantial. Time and cost spent on empirical opti-
mization studies can also be reduced. A brief review of
the simple power calculations usually encountered is
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presented in Sec. II. Each following section then treats
a specific correction to the basic power formulas. These
sections conclude with explicit analytic relationships
between the one-way intensity in the laser cavity and
the threshold parameter. These relationships are then
plotted and compared with the simpler formulas of Sec.
II. The internal intensity is chosen for display rather
than the output intensity, because one less parameter
(the mirror transmission) is involved.

Many modern lasers exhibit large values of the sin-
gle-pass gain, and the usual perturbation calculations
are inaccurate. Corrections for large single-pass gain
are discussed in Sec. III. Section IV describes the
corrections that result from recognizing that the fields
in the laser oscillator are standing waves rather than
traveling waves. These calculations are based on the
familiar density matrix equations, and one finds that
longitudinal spatial hole burning usually tends to reduce
the laser intensity. If the atoms are in rapid motion this
effect is eliminated, and the intensity may even be larger
than otherwise expected. In Sec. V it is shown that
transverse spatial hole burning tends to enhance the
output intensity as even the wings of the electromag-
netic field distribution are eventually able to saturate
the amplifying medium. The effects of mixed line
broadening are discussed in Sec. VI. It is always con-
venient to regard a laser as being either homogeneously
or inhomogeneously broadened, but, in fact, all lasers
are to some extent mixed cases.

11. Basic Concepts

To calculate the laser power for many single-mode
applications, one takes as a starting point the relation-
ship

-I= g(,I)I - I,
dz

(1)

where g(v,I) is a gain coefficient depending on frequency
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v and intensity I, and -q is a distributed loss coefficient.
The solution to Eq. (1) can be obtained once an explicit
form for g(vI) is assumed. The functional form of
g(vI) depends on which broadening mechanisms are
dominant in the particular laser medium being con-
sidered.

In a homogeneously broadened laser medium all the
atoms (or molecules) are equivalent in the sense of
having the same laser transition frequency, radiative
lifetimes, and collision rates with other atoms or pho-
nons. It can be shown that the stimulated emission
coefficient for this type of medium has a Lorentzian
frequency dependence. 1 2 Combining this result with
a rate equation model for the atomic populations, one
finds that the gain coefficient for a homogeneously
broadened laser takes the form

gh (P,I) =gh. 2

1 + [2(v - vO)/Avh2 + sI (2)

where gho is the line center unsaturated gain, Avh is the
full width at half-maximum of the unsaturated Lo-
rentzian, vO is the center frequency of the transition, and
s is a saturation parameter.

In an inhomogeneously broadened laser medium, the
atoms have different transition frequencies due to
Doppler shifts, nonuniform Stark or Zeeman effects, or
isotope shifts. In such a medium the net gain is ob-
tained by summing up the gain functions like that in Eq.
(2) for-each frequency class of atoms. Thus, the inho-
mogeneous gain function can often be written

gi(VI) = Sho0 1 + [2(v -Va)AVh]2 + sI

where p (vs) is a normalized distribution of atomic
center frequencies. If p(va) is broad compared with
APh, the result of such a summation is

gi(V,I) = ghp(v) W dva
o 1 + [2(v - V,)/Avh]2 + sI

ghP)(7rAVh/2)

(1 + SJ)1/2

In a Doppler broadened gas laser, for example, this line
shape function is the Gaussian

2(1n2)1/2 [_ 2(v,, - po)l2 
P(va) = lA exp ln

2
J (5)

I112AVDD

where AVD is the full Doppler width at half-maximum.
Thus the inhomogeneous gain of Eq. (4) is

gi(vI) = gi, expl-[2(v - Vo)/AVPD]
2

ln2} (6)

(1 + SJ)1/2

where the line center unsaturated gain gio is relatated
to gho by

gjo = gho- (r 1n2)1/
2
. (7)

AVD

Using the homogeneous or inhomogeneous gain dis-
tributions given, respectively, in Eqs. (2) and (6), one
can apply Eq. (1) to a variety of laser problems. Thus,
the intensity in a homogeneously broadened laser am-
plifier is governed by the equation

dz 1 + [2(v - vo)/Avh]
2

+ sI (8)

In a low-gain laser oscillator the intensity of the waves
traveling to the right and to the left are approximately
equal, and one can replace the term sI by 2sI to reflect
the fact that the gain is saturated by both waves. It
then follows that the increase in intensity after one
round trip in a low-gain laser oscillator can be written

AI = [2 hol + 2 2=71I,
1 + [2(v - vo)/A~h ]

2
+ 2s1 I~I

(9)

where is the length of the amplifying medium. On the
other hand, the mirror loss after one round trip is

AI = (1-R)I + (1 -Rr)I, (10)

where RI and Rr are, respectively, the reflectivities of
the left-hand and right-hand mirrors.

For stable oscillation the round-trip gain must equal
the round-trip loss so the left-hand sides of Eqs. (9) and
(10) are equal. The resulting equation may be solved
for the intensity I, and one obtains

(11)
I 1 | 2gh. l 2(v1 | 2 Vo)1

2s (1 - 11 + (1- R) + 21 L - J~ , 

The output intensity at the right or left end of the laser
is obtained by multiplying the intensity of Eq. (11) by
the appropriate mirror transmission. The frequency
term vanishes if the laser is tuned to line center, or it
may be absorbed into the gain and saturation parame-
ters. Then Eq. (11) can be written simply

sI = (r- 1)2, (12)

where r is a threshold coefficient representing the ratio
of round-trip gain to loss. In one form or another this
is the familiar and widely employed expression for the
intensity in a homogeneously broadened laser oscillator.
From it may be derived the output intensity and opti-
mum coupling conditions. One purpose of the following
sections is to investigate in detail the numerous sources
of error that may severely limit the accuracy of these
results.

A similar analysis applies to inhomogeneously
broadened lasers. From Eqs. (1) and (6) the intensity
in a laser amplifier must satisfy

dI gio expl-[2(v - o)/AVD]
2

n2l

dz (1 + sI) 
1
/2 -II.

(13)

The frequency dependence can again be incorporated
into the gain coefficient. The same analysis as em-
ployed for the homogeneous case yields the result

sI (r2-1)/2. (14)

In this case the gain is a quadratic function of r rather
than being a linear function.

Equation (14) applies directly for most types of in-
homogeneous broadening. However, in a Doppler
broadened medium tuned away from line center the
right and left traveling waves interact with different
velocity classes of atoms, and the factor of 2 should be
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deleted from Eq. (14). This relative decrease in in-
tensity near line center is the familiar Lamb dip, which
is typical of many gas lasers.3

Ill. Large Single-Pass Gain

A. Homogeneously Broadened Lasers

The emphasis in Sec. II was on lasers in which the
gain per pass is small compared to unity. It is now ap-
propriate to consider in detail the limitations on the
validity of the low-gain approximation. In a homoge-
neously broadened laser, the equations governing the
intensity of the wave traveling to the right I+ and the
intensity of the wave traveling to the left I- can be
written4 5

dI+ gh.I+ _ I (15)

dI- -gh.I 16
dz 1 + s(I+ + I1 (16)

For simplicity it has been assumed that the laser is op-
erating at line center. This assumption does not ac-
tually reduce the generality of the analysis, since off-
center frequencies can be represented by including a
Lorentzian frequency factor in the gain and saturation
parameters. Also it may be noted here that saturation
depends on the sum of the electric fields rather than on
the intensities, and the resultant longitudinal spatial
hole burning is discussed in Sec. IV. However, in
high-gain lasers the effective standing wave region is
short, and spatial hole burning (which will be found to
be small anyway) can have little effect on the output.

It follows readily from Eqs. (15) and (16) that the
product of the intensities of the waves traveling to the
left and to the right is a constant independent of z,
i.e.,

I+(z)(z) = const. (17)

With a bit more algebra one can find, for example, that
the intensity incident on the right-hand mirror in a
high-gain laser with negligible distributed losses is

2sI+(zr) = [(1 - Rr) + (Rr/Ri)/ 2
(l - RI)]-1[2h.1 + l(RLRr)].

(18)

In an optimized system the reflectivity of the left-hand
mirror would, it is hoped, be close to unity, and thus Eq.
(18) reduces to

2sI+(zr) = (1 - Rr)(2ghol + nRr). (19)

The threshold parameter is related to the gain and loss
by

r = -2ghol/lnRr. (20)

Therefore, Eq. (19) can also be written

-I Zr 9h
1

- r
1
) (21)

1 - exp(-2gh.1/r)

Equation (21) is plotted in Fig. 1 for various values
of the unsaturated single-pass gain ghol. From this
figure it is apparent that, at moderate levels of gain, the
laser intensity may be many times larger than the values

10

8

6

sI

4

2

0
0 2 4 r 6 8 10

Fig. 1. Normalized intensity sI incident on the coupling mirror of
a high-gain homogeneously broadened laser as a function of the
threshold parameter r for various values of the single-pass gain. The
curve labeled gh,,I = 0 is the same as the standard low-gain approxi-

mation of Eq. (12).

predicted by the standard low-gain formula (r - 1)/2
given in Eq. (12).

B. Non-Doppler Inhomogeneously Broadened Lasers

As shown previously in Sec. II, the saturation for-
mulas for homogeneous and inhomogeneous saturation
are similar except that here a square root is needed in
the saturation terms. Thus, Eqs. (15) and (16) must
now be replaced by the set

dI+ = gI+ .
dz [1 + (I+ + I-)]1/2 '7I

dI - -giI-
dz [1 + s(I+ + I-)]1/ + 71T

(22)

(23)

The inhomogeneous gain coefficient is assumed to in-
clude the frequency dependence of the transition.

Equations (22) and (23) cannot be solved without
making some fairly restrictive approximations. Nu-
merical solutions are straightforward, however, and
some typical results are given in Fig. 2 for the cases Ri
= 0 and = 0. As in the homogeneous case, the dis-
crepancy between the actual intensity and the low-gain
approximation (r2

- 1)/2 of Eq. (14) may be very sub-
stantial.

C. Doppler Inhomogeneous Broadening

As we have seen in Sec. II, with Doppler broadening
the right and left traveling waves may or may not both
interact with the same atoms depending on the fre-
quency tuning of the mode with respect to line center.
The general behavior is difficult to represent, so we
consider here only the two important limits. For
frequencies close to line center, both waves interact with
the same atoms, and the saturation equations are
identical with Eqs. (22) and (23). Hence, this limit does

424 APPLIED OPTICS / Vol. 19, No. 3 / 1 February 1980



not need to be discussed further. For frequencies far
from line center compared to the homogeneous line-
width Avh, the waves interact with different classes of
atoms, and the saturation equations are

dI+ g I2
dz (1 + sI+)1/2 - 7I+, (24)

dI- -giI +7I 25

dz (1 + sI-)'
1 2

I (25)

where gi is the unsaturated gain at the laser frequency.
These equations form the basis of the following dis-
cussion.

The first feature of Eqs. (24) and (25) to be noted is
that they are entirely decoupled. If the reflectivity of
the left-hand mirror is unity, one can simply integrate
a single equation for two passes through the amplifier,
and the result is6

2g~i = n [(1 + SI2)1/2 -1 (1 + sII)1/
2

+ 1]

1(1 + I2)1/2 + 1 (1 + SI,) -/2 1

+ 2(1 + sI2)1/
2

- 2(1 + sI,)/
2
, (26)

where I, is the intensity before the round trip, I2 is the
intensity afterward, and distributed losses have again
been neglected (I = 0). The boundary condition at the
transmitting mirror is I = RI 2 , so Eq. (26) can be
written

2gil = n [(1 + SI2) 1/2 X(1 + RsI2 )/2 +

(n + sI 2)1/
2 + 1 (1 + RsI2 )12 -11

+ 2(1 + SI2)1/2 - 2(1 + RsI2)12. (27)

This is a single equation in the unknown function I2,
and solutions can be readily obtained by iteration. The
results can also be expressed in terms of the gain gil
instead of the mirror reflectivity R by means of the in-
homogeneous analog of Eq. (20).

Equation (27) is plotted in Fig. 3 for various values
of the gain gil. Again it may be seen that, for moderate

100

80-

60

sI

40-

20- 

0
0 2 4 6 8 10

r

Fig. 2. Normalized intensity sI incident on the coupling mirror of
a high-gain non-Doppler inhomogeneously broadened laser for various
values of the single-pass gain. The curve labeled gil = 0 is the same

as the standard low-gain approximation of Eq. (14).

values of gain, the intensity is much larger than the
low-gain limit r2

- 1.

IV. Longitudinal Spatial Burning

A. Homogeneous Broadening

A second potential source of error in laser power
calculations concerns longitudinal spatial hole burning. 7

Due to this effect, the standing wave character of the
resonator mode causes the gain saturation to be a strong
function of longitudinal position. Some aspects of this
effect can be understood in terms of rate equation
models, but a complete. discussion must be based on a
more general semiclassical approach. A brief density
matrix derivation of the basic equations is given in the
Appendix, and we consider here the results of those
calcuations.

For a laser medium having negligible Doppler
broadening, the semiclassical analysis yields two cou-
pled equations for the mode intensity and frequency:

1 Owa
2 fX e' sin2(kz)N(wa)dzda (2

2t, EoLyh Jo Jo 1 + [(W - a)/^y 2
+ 4 sin

2
(kz)sI

co y SI 0 a w

sin2(kz)N(wa)dzdwa ,

1 + [( - Wa)/'y]
2 + 4 sin

2
(kz)sI

where t, is the cavity lifetime, ,u is the transition matrix
element, is the length of the amplifying medium, L is
the length of the cavity, y is the phase relaxation rate,
and N(Wa) is the unsaturated population inversion as
a function of the atomic frequencies Da. The electric
field is assumed to have a sin(kz) longitudinal depen-
dence, and these equations given also as (A27) and (A28)
apply for both homogeneous and non-Doppler inhom-
ogeneous broadening.

200

160

120

sI

80

40

0
0 2 4 6 8 10

r

Fig. 3. Normalized intensity sI incident on the coupling mirror of

a high-gain Doppler laser tuned away from line center for various

values of the single-pass gain. The curve labeled gil = O is the same

as the standard low-gain approximation r
2

- 1.
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In the homogeneous limit the function N(wa) is very
narrow compared to the Lorentzian terms and is cen-
tered at the frequency wo. Thus Eqs. (28) and (29) can
be written

1 Wo5 
2
N ,IL sin2

(kz)dz

2t, EoLyh Jo 1 + [(W -o)/y]
2

+ 4 sin
2
(kz)sI

W - =Wo
2
N Wo sin

2
(kz)dz

coLyh 7 fo 1 + [(W -Wo)/-y]
2

+ 4 sin
2
(kz)sI

(31)

where

N - N(wa )dw(ha

is the total population difference. With some simple
manipulations these integrals may be put into a stan-
dard form, and the results are8

field nodes. The largest discrepancy occurs near
threshold (sI << 1), where Eq. (38) reduces to

sI (r - 1)/3. (39)

Comparing Eqs. (12) and (39) one finds that ignoring
spatial hole burning leads to a 50% overestimate of the
laser intensity. It is important to note that Eq. (38) is
not significantly more difficult to apply than is the much
less accurate formula found previously.

B. Non-Doppler Inhomogeneous Broadening

In the solution of Eqs. (28) and (29) it was previously
assumed that the function N(coa) was very narrow
compared to the Lorentzian factors. This assumption
led to the homogeneous saturation limit. However, for

12r + 4sI + + 4sI , (32)

1 +[W - Wo)/y]
2

1 1+ [(W - W6)/,y]2

(w-Q)t,=rWO-W (1 + 4sI + 4sI 1/2 - (33)

(z _Il 1 + [(W - o)/y]
2

1 + [(W-Wo)/,y]
2

where r is a threshold parameter given by

I =t'WO
2
Ni [1 + (. - ]o)2J1 . (34)

For values of r greater than unity the laser is above
threshold and produces a nonzero output.

Equations (32) and (33) can be readily solved for the
intensity and frequency of the laser mode. Thus Eq.
(32) is basically a quadratic equation, and the solution
is

sI 4r-1-(8r + 1)1
2

1 + 1(w- o)/,y 2 8

In practice the actual oscillation frequency w is usually
almost identical to the empty cavity frequency , and
the difference w - is unimportant. Here, however,
the frequency can be obtained exactly. Substituting
Eq. (32) into Eq. (33) yields

(W - )t' = (36)

Since the product 2tc is usually large compared to
unity, this result implies a slight mode pulling toward
gain center. The explicit solution is

w = ( + wo/2yt,)(1 + 1/2yt,)-', (37)

which may be used to eliminate o from r in Eq. (34) and
from Eq. (35). If the laser is tuned to line center (a =
Q = co), Eq. (35) is simply

sI =
4r - I - (8r + 1)1/2

8

Equations (12) and (38) are plotted for comparison
in Fig. 4. It is evident from this comparison that, for
any given value of the threshold parameter r, spatial
hole burning has the effect of reducing the intensity by
about 20 or 30%. It is reasonable that such a reduction
should occur, since the standing wave fields cannot in-
teract effectively with atoms that are situated near the

many lasers the opposite limit of inhomogeneous
broadening is more appropriate. In this case the
function N(wa) is broad compared to the Lorentzian
and to first order it may be removed from the integrals
leaving I

1 wo5
2N(w) r sin

2
(kz)dwadz

2t, coL'yh Jo Jo 1 + [(W - a)/zy]2
+ 4 sin

2
(kz)sI

(40)

i WOA2Nt°) 4 I f
eoLyh o o 7

sin2(kz)dwadz

x [c - a )/-y]2 + 4 sin2(kz s
(41)

An accurate calculation of the oscillation frequency
would require some knowledge of the function N(coa).
For the present purposes mode pulling is neglected by
transforming the frequency integration in Eq. (41) to
an integration over the difference Wa - and extending
the lower limit from -X to -a. In this approximation
the integral vanishes since the integrand is an odd
function of cOa - co. The frequency integration in Eq.
(40) can be readily performed, and the result is

1 =rWosA
2

N(w) ' sin
2
(kz)dz

2t, coLh Jo [1 + 4sI sin2(kz)]1/2 (42)

Since the range of integration is much greater than a
wavelength, we may first average the integrand using
the integral9

/2 sin
2

-l
1
x Cos

2
"-lxdx B(5 ,v)F(p,5 ;At + ;a

2
)

Jo (1- a
2

sin
2
x)P 2

where B is a : function, and F is a hypergeometric
function. The final result is

1 Oo2N(W) B(3/ 2,/ 2)F(/ 2,
3/;2;-4sI) (44)

2t, cohL

The value of this 3 function is 7r/2, so Eq. (44) can be
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written simply1 0

1 = rF(/ 2,
3/2 ;2;-4sI),

where the threshold parameter is defined by

7rwOtL
2

N(W)I

eohL

where N(v) is the velocity dependent population in-
version. The function W(v) is expressed in Eq. (A50)
as a continued fraction involving the optical frequency
and intensity of the laser field together with the velocity
and lifetimes of the laser atoms or molecules. For the
present application the mode pulling implied by Eq.
(51) can be neglected. Before considering the general
implications of Eq. (50), it can be observed that this

10

(45)
8

(46) 6

sI
Equations (14) and (45) are plotted for comparison

in Fig. 4. As in the case of homogeneous broadening,
spatial hole burning has the effect of reducing the in-
tensity. The largest percent discrepancy occurs near
threshold where the hypergeometric function has the
first-order approximation"

1
- = 1 -

3
/2SI +....- 

4

2

0
(47)

This result suggests the alternative approximation

r (1 + 3sI)
1/

2
. (48)

From these results it is clear that again the neglect of
spatial hole burning leads to a substantial overestimate
of the laser intensity, and near threshold this overesti-
mate amounts to 50%. It should also be noted that, for
laser operation with r reasonably close to threshold, Eq.
(48) provides a useful replacement for the somewhat
cumbersome hypergeometric function. Equation (48)
may be inverted explicitly yielding the simple for-
mula

sI (r
2

- 1)/3. (49)

C. Doppler Inhomogeneous Broadening

The subject of gain saturation and power in gas lasers
is somewhat more complicated than the same topics
applied to most common solid or liquid lasers. The
basic reason for this added complexity is the inevitable
rapid motion of the lasing atoms or molecules. The
Doppler shifts resulting from this motion may cause the
light waves propagating to the right to interact with a
different velocity class of atoms from that seen by the
light waves propagating left. Furthermore, during their
excited-state lifetimes the atoms may be able to move
across the nodes and maxima that constitute the
standing wave saturating field. Such motion will be
found to reduce the longitudinal spatial hole burning
and increase the laser intensity.

The basic equations governing the intensity and
frequency in a Doppler broadened laser are given as
(A54) and (A55):

1 f-N(v)Wr(v)dv/ N(v)ar(v)dv,

r 1 + 2W(v)sIl J (-to~~

0 2 4 6 8 10

Fig. 4. Normalized internal one-way intensity sI vs the threshold

parameter r for various types of lasers. The curve labeled ho is the

homogeneously broadened laser of Eq. (12) neglecting longitudinal

spatial hole burning, while hi denotes the homogeneously broadened

laser of Eq. (38) with hole burning included. Similarly, i0 is the in-

homogeneously broadened laser of Eq. (14), and il is the laser of Eq.

(45). The curve id is the extreme case of a Doppler laser described

by Eq. (50), and most Doppler lasers would be closer to i0 .

equation must include homogeneous broadening as a
special case. To obtain this limit.one may simply set
N(v) equal to a 6 function centered at v = 0. Thus aj (v)
of Eq. (A46) reduces to a real Lorentzian, and Oj (V) of
Eq. (A48) reduces to unity. The continued fraction
W(v) can be readily summed and one regains Eq. (32),
as should be expected for this limit.

The general relationship between r and sI that is
implied by Eq. (50) must be evaluated numerically and
an example is shown in Fig. 4. For this example it has
been assumed that there are no phase interrupting
collisions (Yph = 0), the other decay rates are equal (Ya

= Yb = y), and the laser is tuned to line center to
maximize spatial hole burning (W = wo). Furthermore,
the laser is strongly inhomogeneously broadened so that
the inversion N(v) may be replaced by a constant and
cancelled from the right-hand side of Eq. (50). It may
be seen from the figure that the present very cumber-

(50)

some solution differs but slightly from the results ob-
tained for a non-Doppler inhomogeneously broadened
laser neglecting spatial hole burning entirely. Thus the
motion of the atoms or molecules is highly effective at
smoothing out the spatial holes. Apparently, the
standing wave nature of the fields causes a slight in-

1 February 1980 / Vol. 19, No. 3 / APPLIED OPTICS 427
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crease in the laser efficiency as all the lasing atoms are
able to interact with the field maxima.

It is important to note that, for many applications,
Eq. (50) can be replaced by a much simpler approximate
relationship. From Eq. (A48) it follows that the peak
value of the function :1(v) at velocity v = 0 is always
unity. The width of this function, however, is charac-
terized by the smaller of ya/2k and Yb/2k. The func-
tion ao(v), on the other hand, has one or two peaks
(depending on the value of w - WO), which are charac-
terized by the width y/k. It then follows from the form
of W(v) in Eq. (A50) that, in any velocity integration,
013(v) may simply be replaced by zero as long as Ya or Yb
or both are much smaller than Y. The same result
applies if the laser is tuned away from line center such
that w - wo is greater than the smaller of Ya and Yb.
But these cases include the vast majority of practical
lasers, and it usually happens that Ya is much smaller
than Yb. The only time that the full continued fraction
form of W(v) would be required would be in a laser
tuned near line center with Ya '- Yb and negligible
pressure broadening (y >> Yph). Such a system would
not often be encountered in practice, and one is usually
safe in replacing W(v) with oe0(v). Thus Eq. (50) be-
comes

r S- a 1 + 2or(v)sd/S N(v)aor(v)dv
- N(v)dv

X2/9 1-l

garded as an undesirable effect because of its reduction
in laser intensity and its encouragement of complex
multimode effects. Accordingly, various techniques
have been developed to eliminate this effect including
operation as a one-directional ring laser,7 longitudinal
translation of the cavity mode with respect to the am-
plifying medium,12 or twisting the mode with internal
birefringent plates.13

V. Transverse Spatial Hole Burning

A. Homogeneous Broadening

When calculating the power characteristics of a laser
amplifier or oscillator, one typically assumes that the
intensity is roughly uniform over some cross section.
Then the usual 1-D saturation results are used. In ac-
tual lasers, however, it is always the case that the in-
tensity has a nonuniform spatial dependence. Here the
possibility of extending the saturation equations to 3-D
situations is investigated. The principal assumption
made is that the form of the laser mode is known, and
that only the total power is to be determined. The
magnitude of the errors involved in the 1-D approxi-
mation is determined, and some useful saturation for-
mulas are derived.

In most practical lasers the beams are nearly plane
waves. Thus the intensity at any point can be factored
into two parts as

, ,_~ ~~hv + , 2sI
[Ty2 + (kv + o.-.aO)2 y2+(kv'iL+O)2 s

+ ~ [ ~ 2/2 ~ ,2/2 1N(v)d.X_ jy2 + (kv + Co- Wo)
2

+ 
2

+ (kv + a,- _ )21

(52)

If the laser is tuned to line center ( = Wo), Eq. (52)
reduces to

1= :. N(v)dv X N(v)dv

r J- 1 + (kv/ly)
2
+ 2sI - 1 + (kv/y)

2

For strong inhomogeneous broadening the integrals are
elementary, and one finds sI = (r2

- 1)/2, the same as
Eq. (14). This result accounts for the reasonably close
agreement in Fig. 4 between the Doppler case with
spatial hole burning and the non-Doppler case without
spatial hole burning. The Doppler example in Fig. 4 is
actually a worst-case for the approximation given in Eq.
(52). Other exact numerical solutions have also been
obtained, and it may be noted that, with the single
change y = 0.1 Yb, the exact solutions are indistin-
guishable in the figure from the approximate results.

In concluding this section it might be worth men-
tioning that the longitudinal spatial hole burning effects
that have been considered include most of the basic
broad categories of lasers. Needless to say, there are
additional complicating factors that may be important
in certain cases. Among these are drift and diffusion
of the lasing atoms and molecules. For a discussion of
these complications from a rate equation point of view
the reader is referred to Ref. 12. It might also be noted
that longitudinal spatial hole burning is usually re-

I (r, 0,z) = P(z)f (r, ,z), (54)

where P(z) describes the z dependence of the power,
and f(r,k,z) is a normalized function describing the
variation of the intensity over any cross section of the
beam. For this discussion f (r,-k,z), the mode structure,
is presumed known, while P(z) is to be determined. In
particular we assume that the field distribution is the
normalized Gaussian

f(r,),z) = [2/7rw
2
(z)] exp[-2r

2
/w

2
(z)], (55)

where w(z) is the lie amplitude spot size.
From Eq. (8) the formula for the line center intensity

saturation in a homogeneously broadened laser ampli-
fier is

dI ghoI

dz 1+sI
(56)

If Eqs. (54) and (55) are substituted into Eq. (56), the
result can be integrated over the beam cross section to
obtain a differential equation for the power in the
beam

dP grw 2 ( 2sP~
= h _ In 1 + _ -)1 P.

dz 2s 7rw2 (57)

This equation provides a good description of the power
in a beam propagating through a laser amplifier, as long
as the amplitude distribution remains approximately
Gaussian.

A similar equation can also be obtained for describing
the power in a low-gain laser oscillator. For this pur-
pose the saturating intensity should be doubled to ac-
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count for the right and left traveling beams, and Eq. (18)
is replaced by

dP gh17rw
2 4sP-

dz 4s In to +7rw
2

1P
(58)

Setting the round-trip gain equal to the round-trip loss
as in Sec. II, one finds that the one-way power in the
laser cavity is given implicitly by

7rw
2

4sP 1
- In 1+ 2 '
4sP rW r

(59)

over the beam profile, one obtains the power equa-
tion

(61)dP [\1 + 2 12 11P.

In a laser oscillator saturation is caused by the sum of
the right and left traveling intensities, and Eq. (61) is
replaced by

(62)dP = gi7rW 2 J1 + -2 1] -P.

where r is the threshold parameter. To be specific, it
has been assumed that the spot size is effectively con-
stant over the length of the amplifying medium. For
comparison with the original approximate results de-
scribed in Sec. II, it is convenient to introduce the nor-
malized intensity sI =' sP/Irw 2. Thus Eq. (59) is

-ln(1+ 4s)=1
4sI r

Setting the round-trip gain equal to the round-trip loss
leads to the power equation

7rw
2

1{1 + 4sPll/2_ 11 = 

2sP 7rw
2
j = r

(63)

This equation can also be inverted, and the power is
then given explicitly by

(60)

This result is plotted in Fig. 5 along with Eq. (12).
From this figure it is clear that the inclusion of a realistic
beam profile leads to the prediction of substantially
larger (100%) power output. This discrepancy is
largest for operation far above threshold. At large
values of r the wings of the beam profile are able to ex-
tract energy efficiently from the amplifying medium,
so the effective beam area is much greater than 7rw2.

B. Inhomogeneous Broadening

The power characteristics of a Gaussian beam in an
inhomogeneously broadened laser can als6 be calcu-
lated. As a starting point we take Eq. (13) for a laser
tuned to line center. If this equation is combined with
Eqs. (54) and (55) for a Gaussian beam and integrated

20

16

12

sI

8

4

0
0 2 4 6 8 10

Fig. 5. Normalized intensity sI vs the threshold parameter r for

various lasers. The curve labeled ho is the homogeneously broadened

laser of Eq. (12) neglecting transverse spatial hole burning, while ht

denotes the laser of Eq. (60). Similarly, i0 is the inhomogeneously

broadened laser of Eq. (14), and it is the laser of Eq. (65).

Sp
-= r(r- 1).
7rw

2 (64)

In terms of the normalized intensity sI = sP/rw 2, this
is simply

sI = r(r - 1). (65)

Equation (65) is plotted in Fig. 5. Also shown is our
earlier approximation sI = (r 2

- 1)/2, which corre-
sponds to a uniform beam of cross section 7rw2. It is
clear from this comparison that, as before, the Gaussian
beam profile, results in a much larger power. For
completeness we note that the formulas obtained are
strictly applicable only for non-Doppler broadening or
for Doppler broadening when the laser frequency is
tuned close to line center. For a detuned Doppler laser
-the right and left traveling intensities interact with
different atoms. The result of a power calculation in
this case is that the power is simply doubled, and the
lines corresponding to it and i, in Fig. 5 should be
shifted upward by a factor of 2.

It should also be noted that this same procedure
applies equally well for other beam profiles. Thus one
might repeat these calculations for Laguerre-Gaussian,
Hermite-Gaussian, astigmatic or slab-geometry beams,
or the sinusoidal and Bessel function modes occurring
in waveguide lasers. While more difficulty might be
encountered in the integrations, the results should be
qualitatively the same. As with longitudinal spatial
hole burning, diffusion may sometimes be important,
particularly in lasers with long excited-state life-
times.14

VI. Mixed Broadening

In all the preceding calculations it has been assumed
that the laser could be regarded as being either homo-
geneously or inhomogeneously broadened. In fact, of
course, the line broadening of every real laser lies
somewhere in between these two idealized limits. For
practical applications it is, therefore, essential to un-
derstand first the magnitude of any competing broad-
ening processes. Once this has been determined, it still
is useful to be able to estimate the errors that might
result from assuming that the line broadening is either
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Fig. 6. Normalized intensity sI vs the threshold parameter r for
various values of the mized broadening parameter p. For small values
of p the curve approaches the relationship of Eq. (14), and for large

p the curve approaches Eq. (12).

purely homogeneous or purely inhomogeneous. It is
always desirable to be able to assume one of these pure
cases because of the resulting simplification in the
analysis.

The effects of mixed broadening can be best esti-
mated by solving exactly what is probably the most
common example. Thus we consider the case of a gas
laser with comparable levels of Doppler and homoge-
neous broadening. For line center tuning the governing
equation is (53), and this can be written explicitly as

1 I' exp(- 2/2)dv , exp(-V2
/U

2
)dv

r J.-- 1 + (kv/y)
2

+ 2s/ J- 1+(kv/y)
2

where u is the average speed of the atoms. It is conve-
nient to introduce the normalized velocity y = kv/y and
the broadening parameter p = y2 /(k2 u2 ). Then Eq.
(66) takes the form

1 - exp(-py
2
)dy / f- exp(-py

2
)dy

r - 1 +y2 + 2s/ - 1 +Y2
(67)

In the notation of Sec. II these new parameters would
have the values y = 2(vo - V)/AVh and p = Avrh
ln2/Av .

Equation (67) is plotted in Fig. 6 for various values
of p. Not surprisingly, for small values of p the curve
approaches the inhomogeneous limit sI = (r2

- 1)/2,
and for large values of p the curve approaches the ho-
mogeneous limit sI = (r - 1)/2. The most significant
aspect of these curves is that the case of truest mixed
broadening occurs with p 0.1 rather than occurring
with p - 1, as one might have expected. Thus, when
it is mathematically important to identify a laser as ei-
ther homogenenous or inhomogeneous, the transition
between these types should be considered to occur at
about p = 0.1.

Another interesting feature of Fig. 6 is the general
similarity of the curves for all values of p, and one is led

to inquire whether Eq. (67) might be reasonably ap-
proximated by a relationship of the form

sI = [rf(P) - 11/2. (68)

It would be especially useful if such a relationship could
be found for the most common operating regime near
threshold (r S 2). For this purpose Eq. (67) may be
expanded for small values of sI, and one readily finds

fJo) = ( exp(-py2
)dy/ Xexp(-py2 )dy

Jo 1+y2 Jo (1 + y
2
)
2 (69)

The numerator of this ratio is the error function,' 5 and,
with the change of variables x = y2, the denominator is
recognizable as a Whittaker function. 6

Equation (69) is plotted in Fig. 7. As expected, for
small values of p the limit is one. Using Fig. 7 and Eq.
(68) one can readily determine the intensity in a laser
with arbitrary mixed broadening. If these results are
compared to the exact solutions of Fig. 6, one finds that
the approximation holds well for r as large as two or
three.

In some cases it is helpful to have a fully analytic ex-
pression for the intensity, and the simple form of the
curve in Fig. 7 suggests some analytic approximations.
For example, there is some resemblance to the Fermi
distribution, and one readily finds the best fit is

1 + exp[logp - logpo)]
(70)

with po 0.12, and = 1.4.

VII. Conclusion

Any calculation of the power characteristics of a laser
oscillator involves several approximations. In this
paper we have examined some of the most fundamental
of these approximations to see how large the corre-
sponding errors might be. For uniformity the results
have been summarized in a set of plots of intensity vs
the threshold parameter. In brief one can observe from

2.0

1.8

1.6

f (p)

1.4

1.2

1.0 -

I0-3 10-2 10-1

p

I 10

Fig. 7. Saturation exponent as a function of the mixed broadening
parameter p.
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these plots that, in lasers having a large single-pass gain,
the intensity can be an order of magnitude higher than
expected from the low-gain formulas. Longitudinal
spatial hole burning typically causes an intensity re-
duction of 20-30% in comparison to the standard for-
mulas for homogeneously broadened or inhomo-
geneously broadened lasers. Transverse spatial hole
burning may cause an increase in intensity by about
100%. Very large errors also may result if one does not
correctly identify the dominant type of line broadening,
and simple formulas have been given for estimating the
power characteristics of lasers with mixed broadening.
Although it is not feasible to account simultaneously for
all these error types, one may reasonably expect that,
when each type is small, the effect will be cumulative.
Extensive experimental confirmation of the high-gain
formulas exists in the literature, and it is likely that
more careful studies of the other effects discussed here
will be possible in light of the new formulas. It is also
anticipated that the use of such formulas, which are
often almost as simple as the approximations, might
lead to substantial savings in time and cost in the laser
design process. Greater accuracy should also be pos-
sible in the familiar problem of inferring the charac-
teristics of a laser component from the behavior of a
laser oscillator system.

The author is pleased to acknowledge valuable dis-
cussions with Kendall C. Reyzer.

Appendix: Longitudinal Spatial Hole Burning

1. Saturation Equations

Before a rigorous discussion of longitudinal spatial
hole burning can be undertaken, it is necessary to set
down the equations that govern the interaction of light
with atoms on a small scale. The most generally useful
starting point is a semiclassical approach using Max-
well's equations coupled to the density matrix equa-
tions. The equations governing the ensemble averaged
density matrix can be written17

where Ye and Yb represent the decay rates of the diag-
onal matrix elements, y = (Ye + Yb)! 2 + Yph is the
decay for the off-diagonal elements, Xe and Xb are the
pumping terms, and Wa is the center frequency of the
laser transition for members of atomic class a. Max-
well's wave equation for the electric field of a linearly
polarized wave in a laser medium can be written

(A5)
62E(Zt) 6E(zot) 1 2E(zt) b2p(z~t)

-Z JBUa ct - yoe° at2 = 'U bt2

The polarization driving this wave equation can be re-
lated back to the off-diagonal matrix elements by

P(z,t) =f _ Pab(va,,Zt)dvdwa + c.c., (A6)

where , is the dipole moment.
In cw oscillation the rapid time and space dependence

of the electric field and off-diagonal matrix elements can
be factored out by means of the substitutions

E(zt) = /2 E' sin(kz) exp(-iw<t) + c.c., (A7)

Pab(VWaZt) = [C(v,,a,,z) + iS(vw,,,z)] exp(-iot)/2A. (A8)

With the standard rotating-wave approximation, Eqs.
(A1)-(A4) reduce to

V - S(9a,,Z) = ( - Wa)C(VWaz) - YS(vaZ)
oJz

Y2

- h E'D(v,oa,z) sin(kz),

V - C(V,Wa,z) = -(co -, a)S(V,,aWz) - yC(v,a,z),

(A9)

(A10)

V a D(v,aZ) = Xa(V,aa) - Xb(V,.aa) Y + D(vazz)
oz ~~~~~~~~2

_ Y -Yb M(VaaZ) +E- S(vacaz) sin(kz),
2 h

(All)

v a-M(aWaZ) = Xa(VWa) + Xb(V,Ca) - Y. + Yb M(va,Z)
az ~~~~~~~~~2

- Ya - D(vz),

2
(A12)

where D = Pa - Pbb is the population difference, and
M = Pee + Pbb is the population sum. Similarly, wave

+ V-) Pab(VWaZt) = -(ia2a + Y)Pab(V,WaZt)

ill

- tE(Zt)[Paa(VaZ,t) - Pbb(V,Wa,Z,t), (Al)

h

Ua_+ V dZ) Paa(V,aWa,Z,t0 = Xa(V,a,,,Z,0) - 'YaPaa(V,&Wa,Z,t)

+ . E(ZPb(PbV(Vata)Z+t) + c.c.I

+ V a ) Pbb(V~aZat = Xb(VCaZt) - Ybpbb(V,Wa,Z,t)

- lit E(Zt)Pba(Vaa,Z,t) + c.c.I

Pba(V,Wa,Z,t) = Pb(V,CWa,Z,t),

(A2)

(A3)

(A4)
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Eq. (A5) reduces to the set

E'= - Co - sin(kz)S(vawaz)dzdwadv, (A13)
2co coL J-' fJ I

(a,- 2)E' coo sin(kz)C(v,wa,z)dzdwadv
coL E< f o 

(A14)

where the rotating-wave approximation has been em-
ployed, real and imaginary parts have been isolated, and
both sides have, been multiplied by sin(kz) and inte-
grated over z.

Equations (A9)-(A14) represent six equations in the
unknowns S, C, D, M, E', and W. They may be solved
numerically, but for most practical applications further
analytical reductions are possible. To proceed with
these calculations it is necessary to specify the dominant
line broadening mechanisms.

2. Non-Doppler Broadening

In many practical laser media the broadening due to
Doppler shifts is small compared with broadening by
unequal atomic center frequencies or homogeneous
processes such as natural and collisional broadening.
Doppler effects can be eliminated by setting v equal to
zero on the left-hand sides of Eqs. (A9)-(A12) and in-
tegrating over velocity. The results of these operations
are

12
0 = ( - wa.)C(caw,z) - yS(wa.,z) - E'D(wa,,z) sin(kz),

0 = -(a - Wa)S(Waz) - yC(Waaz),

0 = Xa(Wa) - Xb(Wa) -'Y + Yb D(a,,,z) - Ya - Yb M("aZ)
2 2

+ 'S(,a,,z) sin(hz),
h

D(wa,,z) = '. zbE'S(wa,,z) sin(kz) + N(wOa), (A22)
2hwyhab

where the population difference has been defined by

N(waa) = Xa(Wa)/Ya - Xb(Wa)/Yb. (A23)

Combining these equations, the out-of-phase polar-
ization component S(wZz) can be related directly to the
unsaturated population inversion and the intensity
according to

8(a, ,z) = - 1 2E'N(ca,) sin(kz)/yh

1 + [(a - C.)/,y]
2
+ 4 sin

2
(kz)sI

where the normalized intensity is defined by
2
E'

2
+ Yb

8h
2

YYaYb

(A24)

(A25)

With Eq. (A16), the polarization component C(GZ)
is

C(aoa,z) = Wa 1 + i
2
EN(ca,) sin(kz)/yh

1 + [(a - Wa)/,y]
2

+ 4 sin 2
(kz)sI

(A26)

Equations (A19), (A20), (A24), and (A26) may be
combined yielding

1 =coj~t
2

r-'r sin
2

(kz)N(cav)dzdwa,

2t, EoLyh foJo 1 + [(a - w0 )/y] 2
+ 4 sin2

(kz)sI

(A27)

(A15)

(A16)

(A17)

0 = Xa(Wa) + Xb(Wa) - Ya + YbM(aZ) - Ya - b D(a,Z), (A18)
2 2

-E' -- S C sin(kz)S(COaz)dzdCva,
2eo coL O oe e

((d- Q)E'= -- 4 Ssin(kz)C(Oaaz)dzda,
coL fo O

where we have introduced the new definitions

S(Oasz) = 3' S(Va,,z)dv, C(aoaz) = 3 C(va,0 ,z)dv,

D(ao.,z) = E' D(v,ca,,z)dv, M(ao,,z) = 3 M(V,axa,Z)dv,

Xa(Wa) = 3"' Xa(Va0a)dv, Xb(COa) = Xb(V,(0a)dv.

The in-phase polarization component C(w,,,z) can be
eliminated from Eqs. (A15) and (A16) yielding

S(ao.,Z) - A
2

E'D(&a,,z) sin(kz)/,yh
1 + [(W - Wa)/I]

2 (A21)

Similarly, M(Wo,z) can be eliminated from Eqs. (A17)
and (A18) leaving

(A19)

(A20)

eoL-yh y -,Y)
X + sin2

(kz)N(wa.)dzdca,

1 + [(d - Wa)/,y]
2
+ 4 sin 2

(kz)sI
(A28)

This is a coupled set of equations governing the inten-
sity and frequency of the oscillating mode in a non-
Doppler broadened laser. These results appear as Eqs.
(28) and (29) in the text.

3. Doppler Broadening
In the limit that Doppler broadening dominates other

broadening processes, Eqs. (A9)-(A14) reduce to
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v-S(v,z) = ( - o)C(v,z) - yS(v,z) - A2 E'D(v,z) sin(kz),
6Z ~~~~~~~h

(Af

v -C C(v,z) = -(a, - wo)S(v,z) - 'yC(v,z), (A 
bz

(A45)S2j+i(v) = 2 aj(v)[D2 j(v) -D2j+2(V),
2h~y

?9) where aj(V) is defined by

30) a =(v) y/2
(2j + 1)ikv + i(w - wo) + 

'Ya + Yb 'Ya Yb
v-D(v,z) = Xa(V) - Xb(V)- D(v,z) - M(v,z)

Z ~~~~2 2

+ - S(v,z) sin(kz), (A31)
h

v-M(v,z) = Xa(V) + Xb(V)- M(vAz)- Ybv,
6Z ~~~~2 2

(A32)

- E' = L- ° sin(kz)S(vz)dzdv, (A33)
2fo eoL -

(a - Q)E' = - ' 4 sin(kz)C(vz)dzdv, (A34)
eoL f-- fo' 

where Eqs. (A9)-(A12) have been integrated over Oa

using the definitions

S(VJZ) = 3' S(va,,z)da, C(v,z) = 3' C(VWa)da,

D(vZ) = 3 D(v,ca,,z)dCza, M(v,z) = 3' M(va,,z)doa.

Now it is helpful to eliminate the z derivatives by
expanding the polarization and population elements in
series of spatial harmonics according to

+
(2j + 1)ikv - i(co - wt'o) + y

* (A46)

Similarly, Eqs. (A41) and (A42) may be combined
yielding

D2j(v) =-4' + j(v)[S2j-1(v)-2j+(V)]
4h YaYb

(A47)[Na (V) Xb(v)I 

'a -Yb

where fj3(v) is defined by

O V= YaYb [ 
'(v) Y + Yb |(2j)ikv + Ya' (2j)ikv + Yb]

Now Eqs. (A45) and (A47) produce

i4h YaYb
S(v) = - Do(v)W(v)sI,

E' Ya + 'Yb

where W(v) is the continued fraction

W(V) = ao(v)

1 + ao(v)03(v)sI

1 + aj(v)/
3
j(v)sI

1 + ol(v)02 (v)sI

1+ . . .

(A48)

(A49)

(A50)

S(v,z) = _ S2 j+1 (v) exp[(2j + 1)ikz],

C(v,z) = j C2j+1(v) exp[(21 + 1)ikz],

D(v,z) = E D2 j(v) exp[(2j)ikz],
j=-"

M(v,z) = j M2 j(v) exp[(2j)ikz],
j=_O

(A35) In this result sI is a normalized intensity given by Eq.

(A25). With Eq. (A47) for DO(v) and the condition
(A36) Sl(v) = S* 1(v), the imaginary part of S1(v) is

4h YaYb N(v)sIWr(v)

E' -ya + Yb 1 + 2W,(v)sI
(A37)

subject to the constraints Sa,(v) = S* (v), Ca(V) =
C*,(v), etc. These constraints ensure that Eqs.
(A29)-(A34) remain real, and one now obtains the
spatially independent set

0 = -[(2j + 1)ikv + yIS2j+l(v) + ( - wo)C2j+l(v) + 2h
2h

0 = -[(2j + )ikv + yIC2j+l(v) - ( - W)~~()

(A51)

where N(v) is the unsaturated population difference
defined in Eq. (A23), and the subscripts i and r denote,
respectively, the imaginary and real parts of a quantity.
With Eq. (A40) it follows that the imaginary part of
C1 (v) is

[D2 j(v) -D2j+2(V), (A39)

(A40)

0 = [(V) - Xb(V)bjo - (2j)ikV + + Yb] D2 j(v) - -2Yb M2 j(V)- - [S2 j1 l(v) - S2j+l(v)I, (A41)

0 = [Xa(V) + Xb(V)bj. - (2j)ikv + Ya + M2j(V) Ya - YbD2j ,
1 ~2 2 2()

(A42)

E = ol Sli(v)dv,
2t, eOL J -"

(a, - )E' = - r Cli(v)dv,
coL E.

(A43)

(A44) Cli(v) = 4h YaYb N(v)sI Re [O - W() ]-
E'Ya + Yb ikv + Y1 + 2Wr(Os

where the subscript i refers to the imaginary part.
Equations (A39)-(A44) may be combined to obtain

two coupled equations for the oscillation amplitude E'
and frequency o.16 First Eqs. (A39) and (A40) are
combined yielding

(A52)

Equations (A43) and (A51) may be combined to yield

the unsaturated intensity gain coefficient

= 3'o Sli(v)d = O 3 ' N(v)aor(v)dv. (A53)
ceoEI -- cfotyh -
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In terms of this gain coefficient Eq. (A43) can be
written

1 gcl XXN()W,()dv N(v)a,(v)dv.

tc L -"C 1 + 2Wr (v)sI /JN'o d
(A54)

Similarly, Eqs. (A44), (A52), and (A53) may be com-
bined to obtain

- Q = gc - N(v) Re [ - -- W(v) 1d

2L - eikv + 1 + 2W,(v)s /

3- N(v)a,()dv (A55)

Equations (A54) and (A55) are a coupled set that may
be solved to obtain the frequency w and the intensity sI
of the cw oscillating mode. In terms of the threshold
parameter r they appear in the text as Eqs. (50) and
(51).
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