The Adam Hilger Series on Optics and Optoelectronics

## Laser Resonators and the Beam Divergence Problem

Yurii A Anan'ev

Professor of laser physics, Laser Technology Centre, St Petersburg Technical University

Translated from the Russian by G P Skrebtsov



Adam Hilger Bristol, Philadelphia and New York

## Contents

| Foreword x                 |                                                           |        |                                                  |        |  |
|----------------------------|-----------------------------------------------------------|--------|--------------------------------------------------|--------|--|
| Series Editors' Preface xv |                                                           |        |                                                  |        |  |
| Pr                         | eface                                                     |        |                                                  | xvii   |  |
| 1                          | 1 Introduction. Briefly on the History and Essence of the |        |                                                  |        |  |
|                            | Problem                                                   |        |                                                  | 1      |  |
|                            | 1.1                                                       | Funct  | ions and main kinds of optical resonators        | 1      |  |
|                            |                                                           | 1.1.1  | Plane resonators                                 | 2      |  |
|                            |                                                           | 1.1.2  | Stable resonators                                | 4      |  |
|                            |                                                           | 1.1.3  | Unstable resonators                              | 5      |  |
|                            | 1.2                                                       | Some   | other sides of the problem of angular divergence | 8      |  |
|                            |                                                           | 1.2.1  | The optical homogeneity of a medium              | 8      |  |
|                            |                                                           |        | Wavefront correction                             | 8      |  |
|                            |                                                           | 1.2.3  | Briefly on the history of the problem            | 8      |  |
| 2                          | The                                                       | Laws o | of Light-beam Propagation                        | 10     |  |
|                            | 2.1                                                       | Funda  | amentals of the theory of multielement optical   |        |  |
|                            |                                                           | systen | 15                                               | 10     |  |
|                            |                                                           | 2.1.1  | Ray matrix                                       | 11     |  |
|                            |                                                           | 2.1.2  | The simplest optical systems in the diffraction  |        |  |
|                            |                                                           |        | approximation                                    | 18     |  |
|                            |                                                           | 2.1.3  | Complex optical systems with lenses and          |        |  |
|                            |                                                           |        | Gaussian diaphragms                              | 23     |  |
|                            |                                                           | 2.1.4  | General case of circular symmetry or simple      |        |  |
|                            |                                                           |        | astigmatism (orthogonal system)                  | 27     |  |
|                            |                                                           | 2.1.5  | Polarization characteristics of coherent light   | 100000 |  |
|                            |                                                           |        | beams                                            | 31     |  |

|   | 2.2  |        | of propagation for major types of light beams     | 32       |
|---|------|--------|---------------------------------------------------|----------|
|   |      | 2.2.1  |                                                   |          |
|   |      |        | velocity                                          | 32       |
|   |      | 2.2.2  |                                                   | 35       |
|   |      | 2.2.3  | Hermite and Laguerre beams with real              |          |
|   |      |        | parameters                                        | 40       |
|   |      | 2.2.4  | · ·                                               |          |
|   |      |        | parameters. Off-axis beams                        | 47       |
|   | 2.3  |        | lar divergence of radiation                       | 51       |
|   |      | 2.3.1  |                                                   | 51       |
|   |      | 2.3.2  |                                                   | 54       |
|   |      | 2.3.3  | Non-ideal sources with plane and spherical        |          |
|   |      |        | equiphase surfaces                                | 60       |
|   |      | 2.3.4  |                                                   |          |
|   |      |        | incoherent addition                               | 66       |
|   |      | 2.3.5  | The simplest methods to reduce the divergence     |          |
|   |      |        | and its measurement                               | 70       |
| 3 | Idea | l Reso | notore                                            | 73       |
| 3 | 3.1  |        | al information on open resonators                 | 73       |
|   | 5.1  | 3.1.1  |                                                   | 73       |
|   |      | 3.1.2  | Integral equation and mode spectrum of an         | 15       |
|   |      | 5.1.2  | arbitrary empty resonator                         | 75       |
|   |      | 3.1.3  | Resonators with semitransparent mirrors and a     | 15       |
|   |      | 5.1.5  | homogeneous active medium                         | 81       |
|   | 3.2  | Classi | fication, equations and conditions of equivalence | 01       |
|   | 5.2  |        | eal resonators                                    | 84       |
|   |      |        | Matrices of linear resonators                     | 84<br>84 |
|   |      | 3.2.2  |                                                   | 04       |
|   |      | 3.2.2  | ray matrices                                      | 87       |
|   |      | 3.2.3  | Integral equations and conditions of equivalence  | 07       |
|   |      | 5.2.5  | for ideal resonators                              | 92       |
|   | 3.3  | Stable | e resonators                                      | 92       |
|   | 5.5  | 3.3.1  |                                                   |          |
|   |      | 5.5.1  | round-trip wave matrices                          | 99       |
|   |      | 3.3.2  | •                                                 | 102      |
|   |      | 3.3.3  |                                                   | 102      |
|   | 3.4  |        | resonators                                        | 113      |
|   | 5.4  | 3.4.1  |                                                   | 114      |
|   |      |        | Reflection from the open waveguide end            | 121      |
|   |      | 3.4.2  |                                                   | 121      |
|   |      | 3.4.4  |                                                   | 123      |
|   |      | 3.4.4  | Mode nomenclature and polarization                | 129      |
|   |      | 5.4.5  | wode nomenciature and polarization                | 152      |

| ( | Con | ten | ts |  |
|---|-----|-----|----|--|

|   | 3.5  | Unsta         | ble resonators                                                                                                 | 135    |
|---|------|---------------|----------------------------------------------------------------------------------------------------------------|--------|
|   |      | 3.5.1         | A brief historical account                                                                                     | 135    |
|   |      | 3.5.2         | Geometric approximation                                                                                        | 137    |
|   |      | 3.5.3         | Unstable resonators with Gaussian mirrors                                                                      | 144    |
|   |      | 3.5.4         | Sharp-edge resonators in the diffraction                                                                       |        |
|   |      |               | approximation                                                                                                  | 147    |
|   |      | 3.5.5         | Unstable resonators with a partially 'smoothed'                                                                |        |
|   |      |               | edge                                                                                                           | 154    |
| 4 | Basi | c Conc        | epts Concerning the Properties of Real                                                                         |        |
|   | Rese | onators       | and the Processes Occurring in Them                                                                            | 159    |
|   | 4.1  | Some          | experimental data and their discussion                                                                         | 159    |
|   |      | 4.1.1         | Early observations of lasing                                                                                   | 159    |
|   |      | 4.1.2         | Beam divergence of plane-resonator solid state                                                                 |        |
|   |      |               | lasers                                                                                                         | 162    |
|   |      | 4.1.3         | On the theory of real resonators                                                                               | 164    |
|   | 4.2  | Princi        | pal kinds of perturbations and parasitic effects                                                               | 167    |
|   |      | 4.2.1         |                                                                                                                |        |
|   |      |               | resonator model to the description of real lasers                                                              | 167    |
|   |      | 4.2.2         |                                                                                                                | 170    |
|   |      |               | Resonators with arbitrarily located diaphragms                                                                 | 173    |
|   |      | 4.2.4         | Self-supporting and induced parasitic oscillations                                                             | 177    |
|   | 4.3  |               | -scale aberrations and light scattering                                                                        | 181    |
|   |      | 4.3.1         | Axis displacement resulting from resonator                                                                     |        |
|   |      |               | misalignment                                                                                                   | 181    |
|   |      | 4.3.2         | and an a stand of the second stand of the second stand stand stand stand stand stand stand stand stands and st |        |
|   |      |               | Perturbation theory                                                                                            | 184    |
|   |      | 4.3.3         | 5                                                                                                              | 191    |
|   |      | 4.3.4         | 5                                                                                                              | 200    |
|   |      | 4.3.5         | Light scattering                                                                                               | 205    |
|   | 4.4  |               | competition in the onset of lasing and in                                                                      |        |
|   |      | 27 - TAN RANK | -state operation                                                                                               | 210    |
|   |      | 4.4.1         | Initial stage in the onset of lasing in                                                                        | 120000 |
|   |      | 16 0301220    | low-diffraction-loss resonators. Iterative method                                                              | 211    |
|   |      | 4.4.2         | Onset of oscillations in unstable resonators                                                                   | 216    |
|   |      | 4.4.3         | Multimode generation: basic concepts and its                                                                   |        |
|   |      |               | nature                                                                                                         | 220    |
|   |      | 4.4.4         | Spatial competition of modes with different axial                                                              |        |
|   |      |               | indices                                                                                                        | 225    |
|   |      | 4.4.5         | Transverse mode competition                                                                                    | 232    |
|   | 4.5  |               | energy conversion efficiency in laser resonators                                                               | 239    |
|   |      | 4.5.1         | 'Local' approach to the evaluation of efficiency                                                               | 239    |
|   |      | 4.5.2         | Total energy balance of excitation and lasing                                                                  | 244    |

vii

|       |      | 4.5.3  | Lasers with unstable resonators and local         |       |
|-------|------|--------|---------------------------------------------------|-------|
|       |      |        | response media                                    | 250   |
|       |      | 4.5.4  | Lasers with a non-local response medium           | 255   |
| 5     | Reso | onator | Applications and Special Configurations           | 263   |
| 57535 | 5.1  |        | resonator types                                   | 264   |
|       |      | 5.1.1  | Main factors determining the choice of resonator  | 00.00 |
|       |      |        | type                                              | 264   |
|       |      | 5.1.2  | Continuous-wave lasers                            | 266   |
|       |      | 5.1.3  |                                                   |       |
|       |      |        | parameter selection of unstable resonators        | 271   |
|       |      | 5.1.4  | -                                                 |       |
|       |      |        | resonators                                        | 274   |
|       | 5.2  | Metho  | ods of the angular selection of radiation         | 281   |
|       |      | 5.2.1  | Attempts at solving the divergence problem with   |       |
|       |      |        | low-diffraction-loss resonators                   | 282   |
|       |      | 5.2.2  | Resonators with angular selectors                 | 285   |
|       |      | 5.2.3  | Angular selection through reduction of the        |       |
|       |      |        | Fresnel number                                    | 291   |
|       | 5.3  | Reson  | ators of lasers with controlled spectral and      |       |
|       |      | tempo  | oral characteristics                              | 297   |
|       |      | 5.3.1  | General                                           | 297   |
|       |      |        | Oscillators with three-mirror unstable resonators | 300   |
|       |      |        | Control with an external signal                   | 306   |
|       | 5.4  | Specif | fic resonator configurations                      | 310   |
|       |      | 5.4.1  | Unidirectional oscillation and unstable ring      |       |
|       |      |        | resonators                                        | 311   |
|       |      |        | Resonators with corner reflectors                 | 314   |
|       |      | 5.4.3  | Field rotation resonators                         | 321   |
|       |      | 5.4.4  | Resonators of lasers with annular active medium   |       |
|       |      |        | cross section                                     | 328   |
| 6     | The  | Simple | est Causes of Aberrations and Methods of          |       |
|       | Way  | efront | Correction                                        | 337   |
|       | 6.1  | Thern  | nal deformations of resonators                    | 337   |
|       |      | 6.1.1  |                                                   | 339   |
|       |      | 6.1.2  | Thermal deformations of semitransparent           |       |
|       |      |        | mirrors and output windows                        | 344   |
|       |      | 6.1.3  | Thermal effects in circular active elements of    |       |
|       |      |        | solid state lasers                                | 349   |
|       |      | 6.1.4  | Consequences of thermal aberrations in solid      |       |
|       |      |        | state lasers and attempts at their compensation   | 354   |
|       |      | 6.1.5  | Methods of reducing thermal resonator             |       |
|       |      |        | deformations                                      | 358   |

## Contents

| 6.2     | 5 1        |                                                           |     |
|---------|------------|-----------------------------------------------------------|-----|
|         | wavef      | ront correction. Stimulated scattering-based lasers       | 365 |
|         | 6.2.1      | Optico-mechanical correction systems                      | 365 |
|         | 6.2.2      | Holographic methods of wavefront correction               | 370 |
|         | 6.2.3      | Amplifiers and oscillators based on stimulated scattering | 377 |
| 6.3     | Wave       | front conjugation                                         | 382 |
| 0.5     | 6.3.1      | Concept and possibilities of the method                   | 382 |
|         |            | WFC by means of a Fourier filter                          | 390 |
|         |            | Standard version of four-wave interaction                 | 394 |
|         | 6.3.4      | Forward interaction                                       | 399 |
|         | 6.3.5      | Backward stimulated scattering and loop                   |     |
|         |            | arrangements                                              | 404 |
| Append  | lix Pa     | raxial Theory of Systems with Astigmatic                  |     |
|         | Ele        | ements                                                    | 415 |
| Referen | References |                                                           |     |
| Index   | Index      |                                                           |     |