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Abstract

This report presents a novel method for 2D laser scan matching called

Polar Scan Matching (PSM). The method belongs to the family of point to

point matching approaches. Our method avoids searching for point associ-

ations by simply matching points with the same bearing. This association

rule enables the construction of an algorithm faster than the iterative closest

point (ICP).

Firstly the PSM approach is tested with simulated laser scans. Then

the accuracy of our matching algorithm is evaluated from real laser scans

from known relative positions to establish a ground truth. Furthermore, to

demonstrate the practical usability of the new PSM approach, experimental

results from a Kalman filter implementation of simultaneous localization

and mapping (SLAM) are provided.
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1 INTRODUCTION 3

1 Introduction

Localization and map making is an important function of mobile robots. One

possible way to assist with this functionality is to use laser scan matching. In

laser scan matching, the position and orientation or pose of the current scan is

sought with respect to a reference laser scan by adjusting the pose of the current

scan until the best overlap with the reference scan is achieved. In the literature

there are methods for 2D and 3D scan matching. This report restricts discussion

to 2D laser scan matching.

Scan matching approaches can be local [Lu and Milios, 1997] or global
[Tomono, 2004]. When performing local scan matching, two scans are matched

while starting from an initial pose estimate. When performing global scan match-

ing the current scan is aligned with respect to a map or a database of scans without

the need to supply an initial pose estimate. Scan matching approaches also can be

categorized based on their association method such as feature to feature, point to

feature and point to point. In feature to feature matching approaches, features such

as line segments [Gutmann, 2000], corners or range extrema [Lingemann et al.,

2004] are extracted from laser scans, and then matched. Such approaches inter-

pret laser scans and require the presence of chosen features in the environment. In

point to feature approaches, such as one of the earliest by Cox [1991], the points

of a scan are matched to features such as lines. The line features can be part of

a predefined map. Features can be more abstract as in [Biber and Straßer, 2003],

where features are Gaussian distributions with their mean and variance calculated

from scan points falling into cells of a grid. Point to point matching approaches

such as the approach presented in this report, do not require the environment to be

structured or contain predefined features.

Examples of point to point matching approaches are the following: iterative

closest point (ICP), iterative matching range point (IMRP) and the popular itera-

tive dual correspondence (IDC). Besl and Mac Kay [1992] proposed ICP, where

for each point of the current scan, the point with the smallest Euclidean distance

in the reference scan is selected. IMPR was proposed by Lu and Milios [1997],

where corresponding points are selected by choosing a point which has the match-

ing range from the center of the reference scan’s coordinate system. IDC, also

proposed by Lu and Milios [1997] combines ICP and IMRP by using the ICP

to calculate translation and IMPR to calculate rotation. The mentioned point to

point methods can find the correct pose of the current scan in one step provided

the correct associations are chosen. Since the correct associations are unknown,

several iterations are performed. Matching may not always converge to the correct

pose, since they can get stuck in a local minima. Due to the applied association

rules, matching points have to be searched across 2 scans, resulting in O(n2) com-
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1 INTRODUCTION 4

plexity1, where n is the number of scan points. All three approaches operate in a

Cartesian coordinate frame and therefore do not take advantage of the native polar

coordinate system of a laser scan. However, as shown later in this report, a scan

matching algorithm working in the polar coordinate system of a laser scanner can

eliminate the search for corresponding points thereby achieving O(n) computa-
tional complexity for translation estimation. O(n) computational complexity is
also achievable for orientation estimation if a limited orientation estimation accu-

racy is acceptable.

These point to point matching algorithms apply a so called projection fil-

ter [Gutmann, 2000] prior to matching. The objective of this filter is to remove

those points from the reference and current scan not likely to have a corresponding

point. The computational complexity of this filter is also O(n2).
There are other scan matching approaches such as the method of Weiss and

Puttkamer [1995]. Here for both reference and current scans, an angle-histogram

of the orientation of line segments connecting consecutive points is generated. The

orientation of the current scan with respect to the reference scan is obtained by

finding the phase with the maximum cross correlation of the 2 angle histograms.

The translation is found similarly by calculating x and y histograms, and calcu-

lating cross correlations. In scan matching, not all approaches use only that infor-

mation in a scan, which describes where objects are located. Thrun et al. [2000]

in their scan matching method utilize the idea, that free space in a scan is unlikely

to be occupied in future scans.

In scan matching another important task, apart from finding the current scans

pose, is the estimation of the quality of the match. Lu and Milios [1997] calculate

the uncertainty of the match results by assuming white Gaussian noise in the x,y

coordinates of scan points. This implicitly assumes that correct associations are

made that results in optimistic error estimates, especially in corridors. Bengts-

son and Baerveldt in [2001] developed more realistic approaches. In their first

approach the pose covariance matrix is estimated from the Hessian of the scan

matching error function. In their second approach, the covariance matrix is es-

timated off-line by simulating current scans and matching them to the reference

scan.

Mapping with scan matching has been done for example by minimizing an

energy function [Lu, 1995], using a combination of maximum likelihood with

posterior estimation [Thrun et al., 2000], using local registration and global cor-

1Lu and Milios [1997] claim that the IDC is ofO(n) complexity if the search for corresponding
points is restricted to a window consisting of a fixed number of points. However if the angular

resolution of laser scans is increased then the use of such a search window results in a decrease in

the performance of the IDC due to the shrinking size of the search window expressed in angles.

Therefore as it is correctly pointed out in [Gutmann, 2000] the computational complexity of IDC

is O(n2).
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2 SCAN PREPROCESSING 5

relation [Gutmann, 2000] and using FastSLAM [Hähnel et al., 2003]. A Kalman

filter implementation can be found in [Bosse et al., 2004].

In this report the Polar Scan Matching (PSM) approach is described which

works in the laser scanner’s polar coordinate system, therefore taking advantage

of the structure of the laser measurements by eliminating the search for corre-

sponding points. It assumed that in the 2D laser measurements range readings

are ordered by their bearings. Laser range measurements of current and reference

scans are associated with each other using the matching bearing rule, which makes

translation estimation of the PSM approach O(n) complexity unlike IDC’s O(n2).
The orientation estimation’s computational complexity is also O(n) if limited ac-
curacy is acceptable, otherwise O(kn), where k is proportional to the number of
range readings per unit angle i.e. to the angular resolution of the scan. Note that

k is introduced to differentiate between increasing the number of scan points by

increasing the field of view or the angular resolution of the laser range finder. An

O(mn) complexity scan projection algorithm working in polar coordinates is also
described in this report. The variablem equals to one added to the maximum num-

ber of objects occluding each other in the current scan viewed from the reference

scan’s pose. However this projection filter is of O(n) complexity if no occlusions
occur in the scan, therefore being more efficient than that of [Gutmann, 2000].

The rest of this report is organized as follows; first scan preprocessing steps,

followed by the PSM algorithm is described. A heuristic scan match error model

is presented next followed by a Kalman filter SLAM implementation utilizing

our scan matching approach. Details of experimental results follow that include

simulation, ground truth measurements and an implementation of SLAM. SLAM

results with PSM are compared with results from SLAM using laser range finder

and advanced sonar arrays [Diosi et al., 2005; Diosi and Kleeman, 2004]. Finally

conclusions and future work are presented.

Part of the work presented in this report is published as [Diosi and Kleeman,

2005].

2 Scan Preprocessing

Prior to matching, the current and the reference scans are preprocessed. Pre-

processing helps to remove erroneous measurements, clutter or to group measure-

ments of the same object to increase the accuracy and robustness of scan matching.

In fig. 1 a laser scan is depicted in a Cartesian coordinate system. Corresponding

raw range measurements are shown in fig. 2. Laser scans can have points which

are not suitable matching. Such points are:

• Points representing moving objects such as the legs of a person in fig 1.
Table and chair legs are also such points, since they are less likely to be
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person

mixed

pixel

cable
hanging

Figure 1: Laser scan in a Cartesian coordinate frame. Grid is 1m.

person

hanging

cable mixed

pixel

Figure 2: Scan of fig. 1 in the laser’s polar coordinate frame. Horizontal grid size

is 10◦, vertical grid size is 1m.
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2 SCAN PREPROCESSING 7

static in the long term.

• Mixed pixels. At range discontinuities laser scanners often generate mea-
surements which are located in the free space between two objects [Ye and

Borenstein, 2002].

• Measurements with maximum range. Such readings are returned, when
there is no object withing the range of the scanner. Also some surfaces (for

example clean clear glass) do not illuminate well and show a laser spot,

therefore they can appear as measurements with maximum range.

Instead of only removing range readings which are out of the range of the

sensor, it was found useful to artificially restrict the sensor to a distance

PM MAX RANGE = 10m (1)

and disregard (tag) any more distant readings. When having a sensor with 1◦

angular resolution, the minimum distance between two readings at 10 meters is

17cm. A large distance between neighboring points complicates the segmentation

of scans, since if the distance between measured points is large it is hard to decide

if the points belong to the same object. Interpolating between two neighboring

points belonging to 2 different objects can be a source of error. In addition by

artificially restricting the range of the sensor, difficulties may be introduced in

large rooms with a lot of open space.

In the following subsections we will focus on how to exclude these unwanted

points from the scan matching process.

2.1 Median Filtering

Median filters are used to replace outliers with suitable measurements [Gutmann,

2000]. After the application of a median filter to the range readings, objects such

as chair and table legs are likely to be removed. Similarly to [Gutmann, 2000], a

window size of

PM MEDIAN WINDOW = 5 (2)

for the median filter was found satisfactory since it can replace at most 2 neigh-

borings outliers. Mixed pixels are unlikely to be replaced by a median filter. The

result after applying median filter to the scan of fig. 1 can be seen in figures 3

and 4. From fig. 4 it is clear, that at least 4 spikes were replaced, but all the mixed

pixels still remain.
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mixed

pixel

Figure 3: Laser scan of fig. 1 in a Cartesian coordinate frame after median filter-

ing. Grid is 1m.

mixed

pixel

Figure 4: Scan of fig. 1 in the laser’s polar coordinate frame after median filtering.

Horizontal grid size is 10◦, vertical grid size is 1m.
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2 SCAN PREPROCESSING 9

Figure 5: Laser scan of fig. 3 in a Cartesian coordinate frame after segmentation.

Grid is 1m. Segments are assigned numbers. 0 is assigned to segments having

only one point.

2.2 Long Range Measurements

After the application of a median filter all points further than a threshold

PM MAX RANGE are tagged. These tagged points are used only in segmenta-

tion described next and not in scan matching. Range measurements larger than a

PM MAX RANGE are not used in the scan matching because distance between

such measurements is large, which makes it hard to decide if they belong to the

same object or not.

2.3 Segmentation

Segmenting range measurements can have two advantages. The first advantage is

that interpolation between 2 separate objects can be avoided if one knows that the

objects are separate. Such interpolation is useful when one wants to know how a

scan would look from a different location (scan projection). The second advantage

is that if laser scans are segmented and the segments are tracked in consecutive

scans then certain types of moving objects can be identified. Tracking moving

objects can make scan matching more robust.

Two criteria are used in the segmentation process. According to the first crite-

rion, a range reading, not differing more than

PM MAX DIFF = 20cm (3)
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Figure 6: Scan of fig. 3 in the laser’s polar coordinate frame after segmentation.

Horizontal grid size is 10◦, vertical grid size is 1m. Segments are assigned num-

bers. 0 is assigned to segments having only one point.

from the previous range reading, belongs to the same segment. This criterion fails

to correctly segment out points which are for example on a wall oriented towards

the laser. Therefore a second criterion is also applied according to which if 3

consecutive range readings lie approximately on the same polar line, then they

belong to the same segment. Note that a mixed pixel can only then connect two

objects if the distance between first object and mixed pixel and second object

and mixed pixel is less than PM MAX DIFF . Tagged range readings also break

segments.

Segmentation results can be seen in fig. 5 and 6. Different segments are as-

signed different numbers, except 0, which is assigned to segments consisting of

only one point. Segments assigned 0 are also tagged, therefore they are not used

in the scan matching process. Note that most of the mixed pixels get assigned 0.

Note that this simple segmentation is of O(n) complexity.

2.4 Motion Tracking

One of the problems of point to point scan matching is that moving objects can

cause wrong associations thus reducing the accuracy of the scan matching results,

or can even cause divergence. It is therefore advisable to track and tag moving

objects in laser scans. Motion tracking constitutes future work and is beyond the

scope of this report.
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Figure 7: Reference and current coordinate frames.

2.5 Current Scan Pose in Reference Scan Coordinate Frame

To make scan matching simpler, let us set the goal of scan matching to find the

position and orientation (or pose) of the current laser scan’s coordinate frame

with respect to the reference scans coordinate frame (see fig. 7). Otherwise the

introduction of a world frame in which to relate the current and reference frame

would make the equations describing the relation of current and reference scan

points more complicated. The reference scans coordinate frame is the coordinate

frame of the laser scanner at the reference location.

To find out the position and orientation of the current frame with respect to

reference frame, from fig. 7 we can write:

T1TLT3 = T2TL (4)

where T1 is the homogeneous transformation matrix from robot frame at reference

location to world frame, T2 is the transformation from robot frame at current lo-

cation to world frame, T3 is the transformation from current laser scan frame to

reference laser scan frame and TL is the transformation from laser frame into robot

frame. With the multiplication of the matrices it is assumed that coordinates of

points are stored in column vectors therefore the transformations are applied from

right to left. From (4), the transformation from current into reference frame is:

T3 = T−1L T
−1
1 T2TL. (5)
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3 SCAN MATCHING 12

If (xrr,yrr,θrr) describes the robot’s pose at the reference location expressed in
world frame, (xcr,ycr,θcr) describes the robot pose the current location expressed
in world frame, (xc,yc,θc) describes the laser scanner’s pose at the current location
expressed in the reference frame, and if the laser scanners pose is described with

(xl,yl,θl) in the robots frame, then:

T3 =





cosθc −sinθc xc
sinθc cosθc yc
0 0 1



 T1 =





cosθrr −sinθrr xrr
sinθrr cosθrr yrr
0 0 1





TL =





cosθl −sinθl xl
sinθl cosθl yl
0 0 1



 T2 =





cosθcr −sinθcr xcr
sinθcr cosθcr ycr
0 0 1





(6)

By substituting (6) into (5) and comparing the left and right sides, the current

pose (xc,yc,θc) expressed in the reference frame can be determined as:

θc = θcr−θrr (7)

xc = xl(cosβ − cosθl)+ yl(sinβ − sinθl)+(xcr− xrr)cos γ +(ycr− yrr)sinγ (8)

yc = −xl(sinβ − sinθl)+ yl(cosβ − cosθl)− (xcr− xrr)sin γ +(ycr− yrr)cos γ (9)

where β = θl+θrr−θcr and γ = θl+θrr.

3 Scan Matching

The laser scan matching method described next aligns the current scan with re-

spect to the reference scan so that the sum of square range residuals is minimized.

It is assumed that an initial pose of the current scan is given, expressed in the

coordinate frame of the reference scan. The coordinate frame of a laser scan is

centered at the point of rotation of the mirror of a laser scanner. The X axis

or zero angle of the laser’s Cartesian coordinate system coincides with the di-

rection of the first reported range measurement. The current scan is described

as C = (xc,yc,θc,{rci,φci}
n
i=1), where xc,yc,θc describe position and orientation,

{rci,φci}
n
i=1 describe n range measurements rci at bearings φci, expressed in the

current scan’s coordinate system. {rci,φci}
n
i=1 are ordered by the bearings in as-

cending order as they are received from a SICK laser scanner. The reference

scan is described as R = {rri,φri}
n
i=1. Note that if bearings where range mea-

surements are taken are unchanged in current and reference scans then φri = φci.
The scan matching works as follows: after preprocessing the scans, scan projec-

tion followed by a translation estimation or orientation estimation are iterated. In
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Figure 8: a) projection of measured points taken at C to location R. b) points

projected to R shown in polar coordinates. Dashed lines represent bearings which

the scanner would have sampled.

the polar scan matching (PSM) of this report, one orientation step is followed by

one translation step. More details on these steps are given in the following sub

sections.

3.1 Scan Projection

An important step in scan matching is finding out how the current scan would look

if it were taken from the reference position. For example in fig. 8, the current scan

is taken at location C and the reference scan is taken at position R. The range and

bearings of the points from point R (see fig. 8b) are calculated:

r′ci =
√

(rci cos(θc+φci)+ xc)2+(rci sin(θc+φci)+ yc)2 (10)

φ ′

ci = atan2(rci sin(θc+φci)+ yc, rci cos(θc+φci)+ xc) (11)

where atan2 is the four quadrant version of arctan.

In fig. 8b the dashed vertical lines represent sampling bearings (φri) of the laser
at position R in fig. 8a. Since the association rule is to match bearings of points,

next ranges r′′ci at the reference scan bearings φri are calculated using interpolation.
The aim is to estimate what the laser scanner would measure from pose R. This

re-sampling step consists of checking (r′ci,φ
′

ci) (i.e. 1,2,..10 in fig. 8b) of each seg-
ment if there are one or more sample bearings between 2 consecutive points (i.e.
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between 1 and 2 there is one, between 6 and 7 there are 2). By linear interpolation

a range value is calculated for each sample bearing. If a range value is smaller

than an already stored range value at the same bearing, then the stored range is

overwritten with the new one to handle occlusion. As in [Lu and Milios, 1997] a

new range value is tagged as invisible if the bearings of the 2 segment points are

in decreasing order.

A pseudo code implementation of the described scan projection is shown in

fig. 9. Note that unlike the equations in this report, the indexes of vector elements

in fig. 9 start from 0. Also note that this particular implementation assumes that

laser scans have 1◦ bearing resolution. However this assumption is used only in

the transformation of bearings from radians to indexes into range arrays and can

be easy changed to work with scans of arbitrary resolution. The pseudo code

on lines 00-09 transforms the current scan readings (φi,rci) into the reference
scan’s coordinate frame, while using the current frame pose (xc,yc,θc) expressed
in the reference frame. Since the projected current scan (φ ′

ci,r
′

ci) is re-sampled
next at the sample bearings φi of the reference scan, the data structures associated
with the re-sampled current scan are also initialized. Status registers tagged ′′ci
contain flags describing if re-sampled range readings r′′ci have been tagged or if

they contain a range reading. All flags of the status registers are cleared except

the flag PM EMPTY which indicates that no range reading has been re-sampled

into the particular position of the range array r′′c . Re-sampled current scan range

readings r′′ci are set to a value which is larger than the maximum range of the laser

scanner.

The re-sampling of the projected current scan readings (φ ′

ci,r
′

ci) takes place on
lines 09-43 in a loop which goes through neighboring pairs of (φ ′

ci,r
′

ci). Pairs of
measurements are only re-sampled if they belong to the same segment and none

of them are tagged. Next, on lines 14-30 the measurement pair is checked if it is

viewed from behind by testing if φ ′

ci > φ ′

ci−1. Then depending on their order, φ
′

ci

and φ ′

ci−1 are converted into indexes φ0, φ1 into the re-sampled ranges array, so
that φ0 <= φ1. This is done to simplify the following interpolation step where the
re-sampled ranges r′′c are calculated in a while loop (lines 31-43) at index φ0 which
is incremented until it reaches φ1. In the while loop first range r corresponding to
φ0 is calculated using linear interpolation. Then if φ0 is within the bounds of the
array r′′c and if r is smaller than the value already stored at r

′′

cφ0
then the empty flag

of tagged′′cφ0 is cleared and r
′′

cφ0
is overwritten by r. This last step filters out those

projected current scan readings which are occluded by other parts of the current

scan. Finally the occluded flag of tagged ′′cφ0 is cleared or set, depending on if φ ′

ci

was greater than φ ′

ci−1, and φ0 is incremented.
The body of the while loop (lines 32-40) of the pseudo code is executed at most

2n times for scans with no occlusion, where n is the number of points. However
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/**************Scan Projection********************/

00 //Transform current measurements into reference frame

01 for i = 0→ number of points-1 {
02 x= rci cos(θc+φi)+ xc
03 y= rci sin(θc+φi)+ yc
04 r′ci =

√

x2+ y2

05 φ ′

ci = atan2(y,x)
06 tagged′′ci = PM EMPTY
07 r′′ci = LARGE VALUE
08 }
09 //Given the projected measurements (r′ci,φ

′

ci), calculate what would have been
10 measured with the laser scanner at the reference pose.

11 for i = 1→ number of points-1 {
12 if segmentci 6= 0 & segmentci = segmentci−1
13 !taggedci & !taggedci−1 & φ ′

ci > 0 & φ ′

ci−1 > 0 {
14 if φ ′

ci > φ ′

ci−1 { //Is it visible?
15 occluded = f alse
16 a0 = φ ′

ci−1

17 a1 = φ ′

ci

18 φ0 = ceil(φ ′

ci−1
180

π )

19 φ1 = f loor(φ ′

ci
180

π )
20 r0 = r′ci−1
21 r1 = rci
22 }else{
23 occluded = true
24 a0 = φ ′

ci

25 a1 = φ ′

ci−1

26 φ0 = ceil(φ ′

ci
180

π )

27 φ1 = f loor(φ ′

ci−1
180

π )
28 r0 = r′ci
29 r1 = rci−1
30 }
31 while φ0 ≤ φ1{
32 r = r1−r0

a1−a0
(φ0

π
180

−a0)+ r0
33 ifφ0 6= 0 & φ0 < number o f points& r′′cφ0 > r {

34 r′′cφ0 = r

35 tagged′′cφ0&=∼ PM EMPTY
36 if occluded

37 tagged′′cφ0| = PM OCCLUDED
38 else

39 tagged′′cφ0&=∼ PM OCCLUDED
40 φ0 = φ0+1
41 }//while
42 }//if
43 }//for

Figure 9: Scan projection pseudo code for 1◦ resolution.
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current scan

reference scan

Figure 10: Example for the worst case scenario for scan projection.

it is easy to contrive a scenario where the inside of the while loop would execute

at most n2 times. For example fig. 10 depicts a situation where the noise in the

current scan readings (drawn with connected circles) is large and the scan readings

are aligned with the reference scan’s frame so that most of the reference scan’s

laser beams go through in between the points of the current scan. In a such case

for each pair of current scan points the while loop would execute almost n times

resulting in a total number of executions between 2n and n2. The computational

complexity of this projection filter is O(mn) where m is the maximum number of
objects occluding each other in the current scan viewed from the reference scan’s

pose incremented by one. For example if there is no occlusion then m is 1. If

there is at least one object which occludes another object, while the occluded

object does not occlude any other object, then m is 2. If there are objects A,B and

C where A occludes B and B occludes C then m is 3.

The scan projection filter described in [Gutmann, 2000] is of O(n2) complex-
ity, because a double loop is employed to check for occlusion. That occlusion

check consists of checking whether any current scan point in XY coordinates is

obscured by any other pair of consecutive current or reference scan points. Since

the scan projection implementation in fig. 9 is of O(n) complexity when there are
no occlusions in the current scan, it is reasonable to believe that under normal

circumstances it is more efficient than that described in [Gutmann, 2000]. Due to

its efficiency the projection filter of fig. 9 is applied in each iteration of the PSM

scan matching algorithm.

Note that the Cartesian projection filter in [Gutmann, 2000] removes all cur-

rent scan points which are further than one meter from all reference scan points

and vice versa. In PSM associated current and reference scan measurements with

a residual larger than a preset threshold are ignored in the position estimation

process and not in the projection filter. This eliminates the need for performing
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the computationally expensive removal of points without correspondence in the

projection filter.

3.2 Translation Estimation

After scan projection, for each bearing φri there is at most one r
′′

ci from the pro-

jected current scan and a corresponding rri from the reference scan. The aim is to

find (xc,yc) which minimizes ∑wi(rri− r
′′

ci)
2, where wi is a weight used to reduce

weighting2 of bad matches. To minimize the weighted sum of square residuals

linear regression was applied to the linearized eq. 10:

∆ri ≈
∂ r′′ci
∂xc

∆xc+
∂ r′′ci
∂yc

∆yc = cos(φri)∆xc+ sin(φri)∆yc (12)

∂ r′′
ci

∂xc
= cos(φri) has been derived from (10) the following way:

∂ r′′ci
∂xc

=
1

2

2(rc j cos(θc+φc j)+ xc)
√

(rc j cos(θc+φc j)+ xc)2+(rc j sin(θc+φc j)+ yc)2

=
(rc j cos(θc+φc j)+ xc)

r′′ci
=
r′′ci cosφri
r′′ci

= cosφri (13)

Where φc j,rc j is a virtual, unprojected reading which would correspond to an

uninterpolated φri,r
′′

ci. The derivation of
∂ r′′
ci

∂yc
is analogous to the derivation of

∂ r′′
ci

∂xc
.

If range differences between projected current range and reference range read-

ings are modeled as

(r′′c − rr) =H

[

∆xc
∆yc

]

+v (14)

where v is the noise vector and

H=







∂ r′′
c1

∂xc

∂ r′′
c1

∂yc
∂ r′′
c2

∂xc

∂ r′′
c2

∂yc
... ...






, (15)

then position correction ∆xc,∆yc of the current scan is then calculated by mini-

mizing the sum of weighted range residuals ∑wi(rri− r
′′

ci)
2 using the well known

equation for weighted least squares [Kay, 1993]:

[

∆xc
∆yc

]

= (HTWH)−1HTW(r′′c − rr) (16)

2Note that there is also an implicit weighting of closer objects, since they cover a larger angle.
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where r′′c ,rr are vectors containing r
′′

ci and rri and W is a diagonal matrix of

weights. The elements of W are calculated according to the recommendations

of Dudek and Jenkin in [Dudek and Jenkin, 2000]:

wi = 1−
dmi

dmi + cm
(17)

where di = r
′′

ci− rri is the error between projected current scan range measure-
ments and reference scan range measurements and c is a constant. Equation (17)

describes a sigmoid function with weight 1 at di = 0 and a small weight for large
di. Parameter c determines where the sigmoid changes from 1 to 0, and m de-

termines how quickly the sigmoid function changes from 1 to 0. In [Dudek and

Jenkin, 2000] (17) was used to weight the distance of a laser scan point to a line

in a point-to-feature scan matching method.

To reduce the effects of association errors in the implementation of equa-

tion (16), only those visible measurements are taken into consideration which

are not tagged (see section 2). Also the errors between reference and current scan

range measurements have to be smaller than a preset threshold PM MAX ERROR

to be included.

An example implementation for one step of the translation estimation can be

seen in fig. 11. In the implementation first HTWH and HTW∆r are calculated for

untagged associated reference and current scan measurements, which are closer

to each other than a threshold. Note that elements h1, h2 of the Jacobian matrix

H on lines 05-06 have to be calculated only once, since φri depends only on the
type of laser scanner. Matrix HTWH is inverted on lines 16-20 followed by the

calculation of pose corrections. As one can see from fig. 11, translation estimation

is of O(n) complexity. The translation estimation step of IDC and ICP is of O(n2)
complexity.

Note that the equation used in other point-to-point scan matching methods

which operate in XY coordinate systems such as ICP or IDC find the correct

translation and rotation of the current scan in one step if the correct associations

are given. The PSM approach, due to the use of linearization, requires multi-

ple iterations. Since the correct associations are in general not known multiple

iterations are necessary for the other methods as well. Also note that the PSM ap-

proach for translation estimation is most accurate if the correct orientation of the

current scan is known. Estimating the orientation of the current scan is described

in section 3.3.

A negative property of this translation estimation approach is apparent when

matching scans which were taken of long featureless corridors - the position error

along the corridor can drift. In fig. 12 the reference and current scan contain only

a wall. The associations are depicted with an arrow pointing from the current scan

point to the reference scan point. The direction of the arrows also coincide with the
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/**************Polar Translation Estimation*****************/

00 //Matrix multiplications for linearized least squares

01 for i = 0→ number of points-1 {
02 ∆r = rri− r

′′

ci

03 if !tagged′′ci & !taggedri &| ∆r| < PM MAX ERROR {
04 w= C

∆r2+C
//weight calculation

05 h1= cosφri
06 h2= sinφri
07 //calculating HTW∆r

08 hwr1= hwr1+w∗h1∆r
09 hwr2= hwr2+w∗h2∆r
10 hwh11= hwh11+w∗h12//calculating HTWH
11 hwh12= hwh12+w∗h1∗h2
12 hwh21= hwh21+w∗h1∗h2
13 hwh22= hwh22+w∗h22

14 }//if
15 }//for
16 D= hwh11∗hwh22−hwh12∗hwh21
17 inv11= hwh22

D

18 inv12= −hwh12
D

19 inv21= −hwh21
D

20 inv22= hwh11
D

21 ∆x= inv11∗hw1+ inv12∗hw2
22 ∆y= inv21∗hw1+ inv22∗hw2
23 xc = xc+∆x

24 yc = yc+∆y

Figure 11: Pseudo code for translation estimation in polar coordinates.
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R

Wall in reference scan

Wall in current scan

Resulting drift

Figure 12: Cause of drift in for translation estimation in corridor like environ-

ments.

corresponding Jacobians which project into the x and y corrections. From fig. 12

it can be observed, that all the arrows have a positive x component, therefore the

translation correction will drift to the right.

There are two reasons why polar scan matching estimates translation sepa-

rately from orientation. First reason: if the partial derivatives
∂ r′′
ci

∂θc
= yc cosφri−

xc sinφri are appended to matrixH (15), matrixH
TWH can become ill-conditioned

and the estimation process can diverge. The cause of ill-conditioning lies in the

structure of H:

H=







...
...

...

cosφri sinφri yc cosφri− xc sinφri
...

...
...






, (18)

where two columns contain small numbers in the range of 〈−1,1〉 and the third
column contains potentially large numbers depending on the value of xc and yc.

As an example let us assume that xc = 100, yc = 100, φri = 0
◦,1◦,2◦, ...,180◦ and

W is a diagonal matrix with 1’s on the diagonal. Then the largest eigenvalue of

HTWH is about 2x106 and the smallest eigenvalue is about 3x10−33 which means

the matrix HTWH is ill-conditioned and will likely cause numerical instability.

On the other hand if xc and yc are 0, then the right column of H will consist of 0’s

and HTWH will have 0 determinant and will not have an inverse which is nec-

essary for the computation of (16). The second reason why polar scan matching

estimates translation separately from orientation is that estimating orientation as

described later is much more efficient.

Note, that if uniform weights were used, and all measurements were used in

each scan matching, then matrix (HTWH) is a constant matrix and as such it has
to be calculated only once.
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It is interesting to investigate how the matching bearing association rule per-

forms with the pose estimation equations described in Lu and Milios [1997]. The

details are given next.

3.2.1 Pose Estimation in Cartesian Frame

Lu and Milios in [1997] minimize the sum of square distance between current

and actual scan points. To increase robustness it is recommended in [Gutmann,

2000], that only the best 80% of matches take part in the estimation process. Here

instead of sorting the matches, each match is weighted based on its “goodness”,

as in the previous subsection. The original objective function in [Lu and Milios,

1997] expressed using the notation used in this report is:

E =
n

∑
i=1

(x′′ci cos∆θc− y
′′

ci sin∆θc+ ∆xc− xri)
2+(x′′ci sin∆θc+ y

′′

ci cos∆θc+ ∆yc− yri)
2 (19)

Where (x′′ci,y
′′

ci) correspond to the projected and interpolated current scans (φri,r
′′

ci)
in Cartesian coordinate frame. (xri,yri) corresponds to (φri,r

′′

ri) of the reference
scan. The weighted version used in this report:

E =
n

∑
i=1

wi
[

(x′′ci cos∆θc− y
′′

ci sin∆θc+ ∆xc− xri)
2+(x′′ci sin∆θc+ y

′′

ci cos∆θc+ ∆yc− yri)
2
]

(20)

Since (xci,yci) belong to the same bearing as (xri,yri), (20) is equivalent to the sum
of weighted square range residuals ∑wi(rri−r

′′

ci)
2 used in the previous subsection.

A solution to (20) can be obtained by solving ∂E
∂xc

= 0, ∂E
∂yc

= 0 and ∂E
∂θc

= 0:

∆θc = atan2
(

x̄r ȳ
′′

c − x̄
′′

c ȳr+W(Syrx′′c −Sxry′′c ),−ȳr ȳ
′′

c − x̄
′′

c x̄r+W (Sxrx′′c −Syry′′c )
)

(21)

∆xc =
x̄r− x̄

′′

c cosθc+ ȳ
′′

c sinθc
W

(22)

∆yc =
ȳr− x̄

′′

c sinθc− ȳ
′′

c cosθc
W

(23)

where

x̄r = ∑wixri, ȳr = ∑wiyri
x̄′′c = ∑wix

′′

ci, ȳc = ∑wiy
′′

ci

Sxry′′c = ∑wixriy
′′

ci, Sx′′c yr = ∑wix
′′

ciyri
Sxrx′′c = ∑wixrix

′′

ci, Sy′′c yr = ∑wiy
′′

ciyri
W = ∑wi

(24)
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Figure 13: Orientation estimate improvement by interpolation.

Even though the objective function here is equivalent to the objective function

in the previous subsection, the solutions are not equivalent. In the previous sub-

section, one iteration returns an approximate solution for xc,yc. Linearization was

necessary due to the square root in (10). Here on the other hand a solution is calcu-

lated without linearization and without the need for multiple iterations (assuming

known associations), which also contains θc and not just xc,yc. In experiments
it was found that if only (21-23) are used to estimate pose, then the convergence

speed is unsatisfactory, and the estimation process is more likely to get stuck in a

local minima. Therefore just as in the previous subsection, it is best to interleave

the described way of estimating xc,yc,θc with the orientation estimation described
in the following subsection.

Note that the advantage of using (21)-(23) for calculating a solution of ∑wi(rri−
r′′ci)
2 in one step opposed to the multiple iteration needed when using (16) is not

important since the unknown associations of the reference and current scan points

require an iterative pose estimation process. Also note that from now on using

(21)-(23) together with the orientation estimation approach described next will be

called PSM-C.

3.3 Orientation Estimation

Change of orientation of the current scan is represented in a polar coordinate sys-

tem by a left or right shift of the range measurements. Therefore assuming that

the correct location of the current scan is known and the reference and current

scans contain measurements of the same static objects, the correct orientation of

the current scan can be found by shifting the projected current scan (r′′ci,φri) until
it covers the reference scan. A ±20◦ shift was implemented at 1◦ intervals of the
projected current scan, and for each shift angle the average absolute range resid-

ual is calculated. Orientation correction is estimated by fitting a parabola to the 3

closest points to the smallest average absolute error, and calculating the abscissa
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of the minimum.

The calculation of the abscissa of the minimum is performed as follows. As-

sume that the 3 points of the error function are (−1,e−1), (0,e0) and (+1,e+1)
(see fig. 12). Then the abscissa m of the minimum em of the parabola described as

e= at2+bt+ c is sought. Given the equation of the parabola, the abscissa of the
minimum can be found at:

∂e

∂ t
= 0= 2am+b= 0⇒m= −

b

2a
(25)

To find a,b let us substitute the 3 known points into the equation of the parabola:

a−b+ c = e−1 (26)

c = e0 (27)

a+b+ c = e+1 (28)

By substituting (27) into (26) and (27), and adding (26) and (27), one gets:

2a+2e0 = e−1+ e+1⇒ a=
e−1+ e+1−2e0

2
(29)

Similarly b can be calculated by subtracting (26) from (27):

2b= e+1+ e−1⇒ b=
e+1− e−1
2

(30)

Then the abscissa of the minimum is:

m= −
b

2a
= −

e+1−e−1
2

2
e−1+e+1−2e0

2

=
e+1− e−1

2(2e0− e−1− e+1)
(31)

Assuming the orientation correction corresponding to 0 in fig. 13 is ∆θ1, the dis-
tance between 0 and 1 in fig. 13 is ∆φ , then the estimated orientation correction
will be

∆θc = ∆θ1+m∆φ (32)

A simple pseudo code implementation of the orientation estimation is shown

in fig 14. In fig 14 on lines 00-19 average absolute range residuals are calculated

while shifting the reference range readings left and right by ∆i. The value of ∆i

changes in the range of ±WINDOW . The value ofWINDOW is chosen so, that
the range of shift is around ±20◦. On lines 02-07 those indexes into the cur-
rent range readings array are calculated which overlap with the shifted reference

range array. In a for loop average absolute range residuals are calculated only

for untagged range readings. The average range residuals for the corresponding

shift values are then stored in errork and in βk. Then the minimum error and the
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corresponding shift value is found on lines 21-25, which is improved by fitting a

parabola on line 26-27. ∆φ on line 27 is the angle corresponding to changes of ∆i.
The computational complexity of this orientation estimation approach depends

on how the increments of ∆i are chosen. If the reference scan is shifted by con-

stant increments for example by 1◦ then the computational complexity is O(n).
The justifications for using constant increments, opposed to the smallest possible

increment which is the angular resolution of the scan are the following:

• The orientation estimates are improved by quadratic interpolation.

• When performing scan matching in real environments the error in orienta-
tion due to fixed ∆i increments will likely to be much smaller than errors

caused by incorrect associations.

If the increments of ∆i are chosen to be equal to the bearing resolution of the

scans, then assuming constant size of search window in angles, the orientation

estimation will be of O(kn) complexity, where k is proportional to the number of
range measurements per unit angle, i.e. to the angular resolution of the scan.

The last possibility discussed here in the choice of the increments of ∆i is

when one starts from a coarse increment of ∆i and iteratively reduce ∆i together

with the size of the search window. In this case the computational complexity of

O(n logn) may be achieved.

4 Error Estimation

4.1 Covariance Estimate of Weighted Least Squares

If correct associations are assumed, then the covariance estimate for the transla-

tion estimate of the polar scan matching algorithm is the same as the covariance

estimate for weighted least squares [Kay, 1993]:

C= σ2r (H
TWH)−1, (33)

where σ 2r is estimated range error variance. σ 2r can be estimated based on the
range residuals similarly to [Cox, 1991] as

σ2r =
[r′′c − rr]

T [r′′c − rr]

n−4
(34)

Unfortunately even if the current and reference scan were taken of the same

scene, there can always be incorrect associations for example due to moving ob-

jects, or due to objects which appear differently from different location (e.g. ver-

tically non uniform objects observed from a slightly tilted laser scanner). For this

reason a heuristic error estimation usually yields more accurate results.
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/**************Orientation estimation*****************/

00 for ∆i= −WINDOW → +WINDOW {
01 n= 0, e= 0
02 if ∆i<= 0
03 mini = −∆i

04 maxi = number o f points
05 else

06 mini = 0
07 maxi = number o f points−∆i

08 for i = mini→ maxi−1 {
09 if !tagged′′ci & !taggedri+∆i

10 e= e+ |r′′ci− rri+∆i|
11 n= n+1
12 }
13 if n> 0

14 errork =
e
n

15 else

16 errork = 1000
17 βk = ∆i

18 k = k+1
19 }
20 emin = LARGE VALUE
21 for i = 0→ k-1 {
22 if errori < emin
23 emin = errori
24 imin = i
25 }

26 m=
eimin+1−eimin−1

2(2eimin−eimin−1−eimin+1)

27 θc = θc+(βimin+m)∆φ

Figure 14: Pseudo code for orientation estimation in polar coordinates.
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4.2 Heuristic Covariance Estimation

A simple heuristic error estimation approach was chosen to circumvent overopti-

mistic error estimates arising from incorrect associations. A preset covariance C0
matrix is scaled with the square of average absolute range residual from which an

offset S0 is subtracted:

C = max

(

(
1

n
∑ |∆r|)2−S0,1

)

C0 (35)

If the mean error is smaller than S0 then C = C0 to ensure, that the covariance
estimate does not get too small. It is assumed that smaller range residuals are

the result of better association and better scan matching results. However on a

featureless corridors, one can have a small mean absolute range residual error,

and a large along corridor error. Therefore different C0 are chosen for corridor

like areas and for non-corridor like areas. For scans of non corridor like areas, a

diagonal covariance matrix is chosen. A non-diagonal covariance matrix is chosen

for corridors which expresses the larger along corridor error. Classification of

scans into corridors is done by calculating the variance of orientations (measured

as angles of the normals) of line segments obtained by connecting neighboring

points. If this variance is smaller than a threshold, then the scan is classified as

a corridor. The orientation of the corridor necessary for the covariance matrix

generation is estimated by calculating an angle histogram [Weiss and Puttkamer,

1995] from the line segment orientations. The angle perpendicular to the location

of the maximum of the histogram will correspond to the corridor orientation.

5 SLAM using Polar Scan Matching

A simple implementation of Kalman filter SLAM was programmed in C++ to

evaluate the practical usability of the described scan matchingmethod. As in [Bosse

et al., 2004] laser scanner poses are used as landmarks. With each landmark the

associated laser scan is also stored. Each time the robot gets to a position which

is further than one meter from the closest landmark, a new landmark is created.

Each time the robot gets closer than 50cm and 15◦ to a landmark not updated in

the previous step, an update of the landmark is attempted. Note that consecutive

scans are not matched. This is because it is assumed that short term odometry of

the robot when traveling on flat floor is much more accurate than scan matching.

When updating a landmark, the observation is obtained by scan matching. The

laser measurement is passed to scan matching as the reference scan, and the scan

stored with the landmark is passed as the current scan. The result of scan matching

is the position of the landmark expressed in the laser’s coordinate system at the

robot’s current position.
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A few details follow next. Following the notation and equations of Davi-

son [Davison, 1998], a new feature is appended to the state as

xnew =











xv
y1
...

yi











(36)

Pnew =





















Pxx Pxy1 · · · Pxx
∂yi
∂xv

T

Py1x Py1y1 · · · Py1x
∂yi
∂xv

T

...
...

. . .
...

Pyi−1x Pyi−1y1 · · · Pyi−1x
∂yi
∂xv

T

∂yi
∂xv
Pxx

∂yi
∂xv
Pxy1 · · · ∂yi

∂xv
Pxx

∂yi
∂xv

T
+ ∂yi

∂hR
∂yi
∂h

T





















(37)

Where xv is the vehicle pose, yn = [xn,yn,θn] is the n-th landmark, yi is new
landmark in world frame, h is the measurement of the new landmark expressed

in robot frame and R is the estimated covariance of h. Since the measurement h

corresponding to the new landmark yi is simply the accurately known pose of the

laser on the mobile robot, the measurement noise covariance R is a null matrix.

The transformation of the measurement into world frame is as following:

xi = xv− yL sin(θv) (38)

yi = yv+ yL cos(θv) (39)

θi = θv (40)

where it is assumed that the laser scanner’s X axis is parallel to the robot’s X axis

and that the laser scanner’s center is placed to (0,yL) on the robot. The Jacobian
∂yi
∂xv
is then the following:

∂yi
∂xv

=





1 0 −cos(θv)xL
0 1 −sin(θv)yL
0 0 1



 (41)

Next the specifics for update are described. The prediction hi= [xhi,yhi,θi]
T of

the i-th landmark, i.e. the i-th landmark expressed in the lasers frame is calculated

as:

xhi = (xi− xv)cos(θv)+(yi− yv)sin(θv) (42)

yhi = −(xi− xv)sin(θv)+(yi− yv)cos(θv)− yL (43)

θhi = θi−θv (44)
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PM MAX ERROR 100 cm

PM MAX RANGE 1000 cm

PM MAX ITER 30

PM MIN VALID POINTS 40

PM MAX DIFF 20cm

C 70 cm reduced to 10 cm after 10 iterations

Table 1: Parameters used in scan matching during the experiment.

Then the Jacobian on hi necessary for the update is:

∂hi

∂x
=

[

∂hi
∂xv

0T · · · 0T
∂hi
∂yi

0T · · ·

]

=




−cosθv −sinθv −sin(θv)(xv− xi)+ cos(θv)(yv− yi) · · · cosθv sinθv 0 · · ·

sinθv −cosθv −cos(θv)(xv− xi)− sin(θv)(yv− yi) · · · −sinθv cosθv 0 · · ·

0 0 −1 · · · 0 0 1 · · ·



 (45)

6 Experimental Results

The results of 4 experiments are presented where the performance of PSM, PSM-

C (polar scan matching using Cartesian coordinates) and a simple implementation

of ICP are compared. In the first experiment simulated laser scans are matched

and evaluated. The remaining experiments use a SICK LMS 200 laser range finder

at a 1◦ bearing resolution in indoor environments. In the second experiment, laser

scan measurements are matched at 10 different scenes by positioning the laser

manually in known relative poses and the results are compared with the known

relative poses. In the third experiment, the area of convergence for a particular

pair of scans are investigated. The scan matching algorithms are evaluated in

a SLAM experiment in the fourth experiment. The parameters used in all scan

matching experiments are shown in table 1.

Every scan matching variant was stopped and divergence declared if the num-

ber of matches sank bellow PM MIN VALID POINTS. The terminating condi-

tion for PSM and PSM-C was that either in 4 consecutive iterations

ε = |∆xc[cm]|+ |∆yc[cm]|+ |∆θc[
◦] (46)

was smaller than 1 or the maximum number of iterations PM MAX ITER has

been reached. The need for a hard limit on the number of iterations is necessary,

since PSM position estimate often drifts along corridors. Another reason for a

hard limit is, that both PSM and PSM-C can enter a limit cycle. This limit cycle
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is not a problem however if the terminating condition is chosen as 1. In the case

of ICP, terminating condition had to be chosen as ε < 0.1, because of the low

convergence speed of ICP. In the case of ε < 1, ICP often terminated with a too

large error. Due to the slow convergence speed, the maximum number of iterations

was chosen 60 for ICP, which is twice as much as that for PSM.

In PSM one position estimated step was followed by one orientation estima-

tion step. These 2 steps are considered as 2 iterations. In PSM-C 3 pose estimation

steps are followed by 1 orientation step. These 4 steps were considered as 4 iter-

ations. Note that this counting of iterations is different to [Lu and Milios, 1997]

where one position estimation step followed by an orientation estimation step was

considered as one iteration for IDC.

In the following results, all the run times were measured on a 900Mhz Celeron

laptop.

6.1 Simple Implementation of ICP

In the ICP implementation, initially a median filter is applied to the range read-

ings of the reference and current scan. Then in each iteration the projection of the

current scan follows similarly to [Lu and Milios, 1997]. First each current scan

point is transformed into the reference scan’s Cartesian coordinate system. Cur-

rent scan points are then checked if they are visible from the reference position

by checking the order of points. This is followed by checking if two neighbor-

ing (in a bearing sense) reference or current scan points occlude the current scan

point being checked. Occluded current scan points are then removed, if they are

at least one meter further back than their interpolated reference counterparts. Cur-

rent scan points not in the field of view of the laser at the reference location are

also removed. Note that none of the reference scan points are removed like in the

projection filter in [Gutmann, 2000]. Reference scan points are not searched in

this projection filter implementation, therefore this implementation is simpler but

faster than of [Gutmann, 2000].

After scan projection, the implementation of the closest point association rule

follows. For each remaining current scan point the closest reference scan point

is sought in a ±20◦ window. Unlike in [Lu and Milios, 1997], there is no inter-
polation between neighboring reference scan points, which increases speed, but

reduces accuracy. Associated points with larger than PM MAX ERROR distance

are ignored. Then the worst 20% percent of associations are found and excluded.

From the remaining associated point pairs pose corrections are calculated using

equations from [Lu and Milios, 1997] and the current pose is updated.

The ICP algorithm is simpler than that described in [Lu and Milios, 1997]

since at the corresponding point search there is no interpolation between two

neighboring reference scan points and the search window size is not reduced ex-
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Figure 15: Current and reference scan prior to matching. Grid size in 1x1m.

Figure 16: PSM, PSM-C and ICP results in the simulated experiment.Grid size

in 1x1m.

ponentially with the number of iterations. However, projection of the current

scan with occlusion testing has been implemented without expensive searches and

therefore it has been included at the beginning of each iteration. Performing an

occlusion check in each iteration opposed to once at the beginning can increase

the accuracy of the results in the case of large initial errors where many visible

points may be removed incorrectly or many invisible points are left in the scan

incorrectly.

6.2 Simulated Room

Figure 15 shows two simulated scans of a room. The scans were taken of the

same location, but the x and y position of the current scan was altered by 100 cm.

Orientation was altered by 15◦. Figure 16 shows the results after scan matching
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a) b) c)

Figure 17: Evolution of x (circles),y (triangles) and orientation (crosses) error

expressed in [cm] and [◦], respectively of PSM, PSM-C and ICP in the simulated
experiment. Grid size is 1ms x 10cm and 1ms x 10◦, respectively. The horizontal

resolution of the grid for ICP is 10 ms. Iterations are marked with small vertical

lines on the horizontal axis. Each 10-th iteration is marked with a longer vertical

line.

. iterations time [ms] |∆x|[cm] |∆y|[cm] |∆θ | [◦]
PSM 17 3.1 0.4 0.005 0.16

PSM-C 21 3.5 0.8 0.5 0.29

ICP 38 13.7 1.9 3.9 1

Table 2: Scan matching results of the simulated room.

using PSM, PSM-C and ICP. Figure 17 shows the evolution of errors. The final

errors can be see on tab. 2.

From fig. 17 and tab. 2 it is clear that the PSM algorithm reached the most

accurate result in shortest time, and ICP was the slowest and least accurate.

6.3 Ground Thruth Experiment

To determine how the polar scan matching algorithm variants cope with different

types of environments, an experiment with ground truth information was con-

ducted. On 4 corners of a 60x90cm plastic sheet, 4 Sick LMS 200 laser scanner

outlines were drawn with different orientations. This sheet was then placed into

different scenes ranging from rooms with different degrees of clutter to corridors.

At each scene, laser scans were recorded from all 4 corners of the sheet, and

matched against each other with initial positions and orientations deliberately set

to 0 in the iterative procedure. The combinations of scans taken at corners which
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take part in the scan matching are shown in tab. 3. Ground truth values have been

determined by first measuring the left bottom corners of each outline with respect

to an accurate grid printed on the plastic sheet. Then the measurement of outline

orientations followed using ruler and the inverse tangent relationship. The deter-

mined orientations were also checked using a protractor. Finally a Matlab script

was written which calculated the ground truth values by utilizing the relationship

of the laser range finder’s left bottom corner and the center of rotation of the mir-

ror determined from the technical drawings of the Sick LMS’s manual [SICK AG,

2002]. The carefully determined ground truth values for current scan poses in ref-

erence scan frames which also correspond to the initial errors are also displayed

in tab. 3. From tab. 3 one can see, that the initial errors were up to 80cm displace-

ment and up to 27◦ orientation. During the experiments the environment remained

static.

A photo of each scene numbered 0-9 is shown on fig. 18. A matched current

and reference scan from each scene is displayed in fig. 19 for PSM, fig. 21 for

PSM-C and fig. 23 for ICP. The evolution of pose error is shown in fig. 20 for PSM,

fig. 22 for PSM-C and fig. 24 for ICP. The displayed scans have all undergone

median filtering. Only results for match 3 for each scene are displayed because

match 3 contains a large initial error in displacement (77 cm) and a large initial

error in orientation (−27◦) as can be seen from tab. 3. Absolute residual between
ground truth and match results together with number of iterations and runtime are

shown in tables 5-7. There are 6 error vectors corresponding to each match for

each scene. In Table 5 “ERROR” denotes a situation, when scan matching stopped

due to the lack of corresponding points and divergence was declared.

Scene 0 is a room with a small degree of clutter. Current and reference scans

were quite similar, and the matching results are good. Scene 1 is in a more clut-

tered room where laser scans from different locations look different as one can

see in Fig. 19. The reason why the current scan differs from the reference scan so

much is not clear. Perhaps the objects in the room were not uniform in the vertical

direction and the laser beam is not a small spot or the laser was slightly tilted. The

results for scene 1 (see Table 5-7, row 1) are not good for all 3 implementations,

but they are still usable for example in a Kalman filter with an appropriate error

estimate. In scene 2 the sheet was placed in front of a door to a corridor. The

results are excellent. Scene 3 is a corridor without features. While the orienta-

tion error and the error in the cross corridor direction were quite small, the along

corridor errors are large. PSM has the largest along corridor error of all, since the

solution can drift in the direction of the corridor. With a proper error model (small

orientation and cross corridor error, large along corridor error) the results are still

useful when used with a Kalman filter. Scenes 4,5 and 6 are similar to 3. In scene

4 PSM diverged once. When observing the results for 4,5 and 6 in Fig. 19, there

are phantom readings appearing at the corridor ends, even though the real corridor
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match ref. scan current scan x y θ
number recorded at corner recorded at corner [cm] [cm] [◦]
0 0 1 39.41 2.12 13

1 0 2 2.02 66.55 -14

2 0 3 38.84 66.99 12

3 1 2 -21.94 68.33 -27

4 1 3 14.04 68.33 -1

5 2 3 35.62 9.33 26

Table 3: Combinations of scans taken at different corners (numbered 0-3) of the

plastic sheet for the ground truth experiment. These combinations marked as

match number 0-5 were used for each scene. The pose of current scan with re-

spect to reference scan is also shown. These poses correspond to the initial errors

as well.

iterations time [ms] orientation err. [◦] displacement err. [cm]
PSM 18.57 3.35 0.86 3.8

PSM-C 15.78 2.66 1.04 4.36

ICP 30.8 12.66 4.1 15.3

Table 4: Summary of average scan matching results in the ground truth experi-

ment.

ends were 30 meters away. The likely reason for the phantom readings is a slight

tilt of the laser beams causing and readings from the floor to be obtained. Scene

7 is situated on the border of a room and a corridor. The results are good for all 3

scan matching methods. Scenes 8 and 9 were situated in a room. The results are

quite good except those of ICP.

To compare the 3 scan matching approaches average of errors, number of it-

erations and run times were calculated and shown on tab 4. Average orientation

error, iteration and run time were calculated for all scenes except for the scenes

4,5,6 with the large phantom objects. In the average displacement error calcula-

tion, all corridor like environments (3,4,5,6) were left out, due to the large along

corridor errors.

In the ground truth experiment, the implemented PSM and PSM-C clearly out-

performed the implemented ICP. According to tab. 4 the performance of PSM and

PSM-C are almost the same, with PSM being slightly more accurate but slower.
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Figure 18: A photo of each scene with the plastic sheet in the foreground.
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Figure 19: Scan match result for each scene for match number 3 in the experiment

with ground truth using PSM.
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Figure 20: Match 3 scan match error evolution for each scene in the experiment

with ground truth using PSM. Error in x (circles),y (triangles) and orientation

(crosses) are expressed in [cm] and [◦], respectively. Grid size is 1ms x 10cm and
1ms x 10◦, respectively. Iterations are marked with small vertical lines on the

horizontal axis. Each 10-th iteration is marked with a longer vertical line.
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Figure 21: Scan match result for each scene for match number 3 in the experiment

with ground truth using PSM-C.
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Figure 22: Match 3 scan match error evolution for each scene in the experiment

with ground truth using PSM-C. Error in x (circles),y (triangles) and orientation

(crosses) are expressed in [cm] and [◦], respectively. Grid size is 1ms x 10cm and
1ms x 10◦, respectively. Iterations are marked with small vertical lines on the

horizontal axis. Each 10-th iteration is marked with a longer vertical line.
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Figure 23: Scan match result for each scene for match number 3 in the experiment

with ground truth using ICP.
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Figure 24: Match 3 scan match error evolution for each scene in the experi-

ment with ground truth using ICP. Error in x (circles),y (triangles) and orientation

(crosses) are expressed in [cm] and [◦], respectively. Grid size is 1ms x 10cm and
1ms x 10◦, respectively. The horizontal resolution of the grid for scene 0 is 10ms.

Iterations are marked with small vertical lines on the horizontal axis. Each 10-th

iteration is marked with a longer vertical line.
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0 (0.9, 1.5, 0.3) (0.7, 0.4, 1.3) (1.1, 0.2, 0.1) (1.5, 0.4, 2.4) (0.6, 7.4, 0.2) (3.6, 0.1, 1.3)

14, 2.7 16, 2.9 18, 3.3 20, 3.6 12, 2.2 12, 2.2

1 (5.1, 17.3, 5.5) (7.7, 13.1, 5.8) (0.4, 24.8, 8.3) (1.0, 1.5, 0.4) (0.3, 5.0, 0.6) (2.4, 0.5, 0.6)

20, 3.7 28, 5.1 30, 5.5 27, 4.8 24, 4.3 12, 2.3

2 (0.4, 0.3, 0.3) (0.2, 0.6, 0.1) (0.5, 1.0, 0.3) (0.2, 0.9, 0.3) (0.2, 4.8, 0.3) (1.0, 2.7, 0.3)

8, 1.5 24, 4.2 20, 3.6 20, 3.5 28, 4.9 12, 2.2

3 (9.7, 5.0, 0.2) (51.8, 25.3, 0.2) (22.1, 11.1, 0.3) (90.8, 19.4, 0.0) (24.3, 11.2, 0.1) (55.3, 46.3, 0.1)

18, 3.2 12, 2.2 20, 3.6 30, 5.2 16, 2.9 30, 5.2

4 ERROR (4.2, 47.9, 1.3) (0.9, 4.3, 0.0) (61.6, 160.3, 4.7) (73.8, 210.5, 1.5) (1.0, 6.1, 0.1)

20, 3.7 30, 5.1 30, 5.2 30, 4.9 30, 5.1

5 (0.6, 20.3, 0.4) (0.2, 24.0, 0.4) (1.3, 10.7, 0.4) (12.6, 49.3, 0.5) (3.6, 6.6, 0.9) (1.6, 4.6, 1.5)

24, 4.4 30, 5.5 30, 5.4 30, 5.4 21, 3.8 19, 3.4

6 (1.4, 30.7, 0.3) (2.0, 63.0, 0.1) (2.7, 79.1, 0.2) (23.0, 85.2, 0.4) (21.8, 86.6, 0.3) (0.8, 4.7, 0.0)

18, 3.3 16, 2.9 16, 3.0 30, 5.2 16, 3.0 9, 1.7

7 (0.2, 0.1, 0.0) (1.5, 0.2, 0.2) (0.1, 0.3, 0.1) (0.8, 2.6, 0.3) (0.9, 4.9, 0.1) (0.0, 0.6, 0.3)

26, 4.7 16, 2.9 20, 3.6 18, 3.2 16, 2.9 15, 2.7

8 (0.7, 0.0, 0.0) (1.3, 2.1, 0.1) (0.1, 0.4, 0.3) (0.6, 0.6, 1.9) (0.0, 5.6, 0.9) (0.6, 0.4, 0.1)

11, 2.0 22, 3.9 19, 3.3 22, 3.9 23, 4.0 12, 2.2

9 (3.7, 1.7, 0.8) (2.0, 0.4, 0.4) (1.4, 0.9, 0.2) (2.8, 3.0, 0.5) (1.6, 9.5, 0.7) (1.1, 1.6, 0.2)

10, 1.9 18, 3.3 18, 3.3 18, 3.3 12, 2.2 13, 2.4

Table 5: Absolute errors in x[cm], y[cm], θ [◦], number of iterations and runtime
[ms] of the PSM algorithm in the experiments with ground truth.

0 (0.7, 1.4, 0.2) (0.8, 0.4, 1.3) (1.0, 0.3, 0.2) (1.6, 0.0, 2.4) (0.8, 6.5, 0.4) (3.0, 0.3, 1.1)

13, 2.3 20, 3.5 17, 2.9 21, 3.6 14, 2.4 13, 2.3

1 (7.7, 19.3, 5.4) (7.4, 15.0, 6.2) (1.4, 26.7, 8.5) (1.2, 1.3, 0.3) (4.9, 16.3, 2.8) (1.0, 0.1, 0.4)

12, 2.1 30, 5.0 30, 5.0 28, 4.6 13, 2.2 13, 2.2

2 (0.4, 0.1, 0.3) (0.8, 0.5, 0.1) (0.3, 0.7, 0.4) (0.3, 1.0, 0.3) (0.2, 4.6, 0.4) (1.0, 2.5, 0.3)

9, 1.6 13, 2.2 13, 2.2 17, 2.8 13, 2.2 13, 2.2

3 (13.2, 6.9, 0.3) (49.4, 24.0, 0.2) (34.1, 17.2, 0.2) (71.5, 14.5, 0.0) (23.2, 10.9, 0.0) (29.1, 24.7, 0.1)

9, 1.5 5, 0.9 6, 1.0 17, 2.8 6, 1.0 9, 1.5

4 (2.6, 44.4, 2.5) (6.0, 57.3, 1.6) (0.9, 1.5, 0.0) (53.8, 133.5, 5.3) (65.4, 169.9, 5.8) (6.1, 23.8, 0.2)

17, 2.8 18, 3.1 30, 4.8 30, 4.9 30, 4.7 16, 2.6

5 (1.2, 17.8, 0.6) (0.1, 39.7, 0.5) (0.9, 25.8, 0.4) (13.8, 54.6, 0.4) (3.2, 2.8, 1.3) (0.9, 0.5, 0.7)

17, 2.9 17, 2.9 21, 3.7 13, 2.2 26, 4.4 17, 2.9

6 (1.3, 24.1, 0.4) (1.5, 58.1, 0.4) (2.7, 74.1, 0.0) (19.6, 71.1, 0.3) (20.3, 79.9, 0.1) (1.3, 4.3, 0.3)

17, 3.0 17, 2.8 13, 2.3 16, 2.6 17, 2.9 9, 1.6

7 (0.6, 0.1, 0.1) (0.9, 0.3, 0.1) (0.6, 0.0, 0.1) (1.5, 2.5, 0.3) (1.2, 4.9, 0.2) (0.2, 0.8, 0.1)

17, 2.8 13, 2.2 14, 2.3 17, 2.9 13, 2.2 16, 2.7

8 (0.6, 0.7, 0.1) (1.1, 2.0, 0.3) (0.1, 0.3, 0.2) (0.5, 0.1, 2.2) (8.5, 13.3, 6.6) (0.3, 0.1, 0.0)

13, 2.2 21, 3.4 20, 3.3 20, 3.3 13, 2.2 17, 2.9

9 (1.5, 1.4, 0.6) (1.5, 1.1, 0.2) (1.3, 2.5, 0.0) (2.3, 2.4, 0.1) (0.2, 5.2, 0.5) (0.8, 1.4, 0.2)

13, 2.3 24, 4.1 13, 2.3 28, 4.7 20, 3.4 17, 2.9

Table 6: Absolute errors in x[cm], y[cm], θ [◦], number of iterations and runtime
[ms] of the PSM−C algorithm in the experiments with ground truth.
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0 (0.4, 0.1, 0.5) (0.2, 0.5, 1.3) (0.9, 0.2, 0.4) (0.4, 1.5, 4.1) (0.7, 5.3, 0.7) (1.4, 0.8, 1.0)

56, 24.3 60, 28.1 22, 10.5 60, 27.3 43, 20.2 60, 25.9

1 (7.2, 16.5, 6.4) (2.1, 1.6, 1.0) (13.0, 29.9, 9.6) (11.0, 88.9, 27.0) (13.5, 53.3, 0.6) (24.7, 5.5, 22.6)

18, 7.5 38, 14.3 13, 5.0 16, 5.3 16, 6.3 60, 21.4

2 (0.2, 1.1, 1.3) (0.1, 0.6, 0.4) (1.2, 1.7, 1.8) (0.1, 1.1, 1.6) (1.3, 5.4, 1.1) (2.1, 4.4, 4.6)

25, 10.9 55, 22.2 42, 17.4 52, 20.7 38, 15.9 35, 14.1

3 (3.0, 1.3, 0.2) (40.5, 19.9, 0.1) (37.8, 19.6, 0.3) (30.7, 4.5, 0.2) (30.5, 12.8, 0.0) (6.9, 5.7, 0.1)

8, 3.3 21, 9.1 9, 3.9 11, 4.6 8, 3.6 23, 9.2

4 (0.5, 2.7, 1.3) (5.5, 61.3, 1.5) (6.2, 55.5, 1.5) (9.4, 54.3, 1.4) (10.7, 70.1, 1.3) (5.8, 22.4, 0.1)

21, 8.3 30, 10.1 20, 7.0 60, 18.6 60, 20.8 36, 13.1

5 (0.1, 1.4, 0.1) (7.8, 89.4, 4.3) (0.6, 47.4, 0.4) (15.4, 98.7, 6.3) (14.6, 67.7, 0.0) (0.3, 2.2, 0.1)

35, 13.7 60, 22.2 52, 21.9 60, 20.7 9, 4.1 47, 17.5

6 (0.1, 1.4, 0.1) (1.6, 65.4, 0.5) (2.4, 63.7, 0.1) (14.7, 56.7, 1.1) (17.0, 68.6, 0.2) (0.6, 0.5, 0.4)

23, 9.9 35, 13.3 19, 7.6 24, 9.0 12, 5.2 27, 10.1

7 (0.2, 0.1, 0.0) (0.4, 0.0, 0.1) (0.1, 0.2, 0.3) (0.5, 3.1, 0.3) (1.6, 6.5, 3.0) (0.0, 0.2, 0.6)

19, 7.4 23, 8.7 20, 7.9 29, 10.3 16, 6.8 32, 11.7

8 (1.9, 0.3, 2.0) (0.2, 0.1, 0.5) (28.0, 89.1, 11.6) (45.5, 55.9, 22.6) (2.1, 7.2, 1.9) (0.3, 0.4, 0.7)

28, 10.9 23, 8.8 18, 6.5 11, 4.3 37, 15.2 56, 23.1

9 (1.1, 0.8, 0.8) (19.5, 55.6, 11.8) (1.0, 0.4, 0.6) (23.4, 42.0, 28.6) (0.5, 4.8, 0.4) (0.4, 1.8, 1.4)

43, 17.9 21, 9.4 36, 14.6 14, 5.7 32, 13.7 48, 17.7

Table 7: Absolute errors in x[cm], y[cm], θ [◦], number of iterations and runtime
[ms] of the ICP algorithm in the experiments with ground truth.

6.4 Convergence Map

The purpose of this experiment is to find those initial poses from which scan

matching converges to an acceptable solution. Ideally one varies the initial posi-

tion and orientation of the current scan in a systematic way and observes if the

found solution is close enough to the true solution. Areas of convergence can be

visualized by drawing the trajectory of the current scan into an image. To make

visualization simpler just like in [Dudek and Jenkin, 2000] only the initial pose

was changed.

Scan pairs from scenes 0-9, match 2 were selected for the convergence map

experiment. Match 2 was selected in this experiment because the point of view

for the current and reference scan differed the most from all matches. The ini-

tial orientation error was always 12◦. The initial position varied from -250cm to

250cm for x and y in 10cm increments. The resulting convergence plots for scene

9 can be seen in fig. 25. Dark circles represent initial positions where the scan

matching algorithms failed for the lack of associated points. Light colored circles

represent final positions. Black lines correspond to the trajectories of the scans.

Gray crosses mark the correct current scan positions.

When examining fig. 25, one has to keep in mind that in all scan matching im-

plementations, associations having a larger error than one meter were discarded.

To get an objective value for the performance of the implementations, the total

number of matches and the number of successful matches were counted. Success-

ful matches were matches with less than 10cm error in position and 2◦ in orienta-
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Figure 25: PSM, PSM-C and ICP convergence maps.
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scene PSM [m2] PSM-C [m2] ICP [m2]
0 6.68 6.53 7.18

1 0.00 0.23 2.05

2 4.38 4.38 4.34

3 0.52 0.42 0.42

4 0.81 0.56 0.66

5 3.10 2.05 1.57

6 0.10 0.26 0.36

7 3.71 3.06 2.92

8 3.60 3.59 3.45

9 7.01 5.81 5.09

average 2.99 2.69 2.80

Table 8: Convergence areas for match 2 of all scenes for PSM, PSM-C and ICP.

tion. The total number of scan matching trials was 2500 which corresponds to an

area of 25m2. PSM had 701 successful matches which means that it converged to

the correct solution from around a 7m2 area. PSM-C had 581, giving 5.8m2. ICP

had 509 correct ones which corresponds to 5.09m2.

A non-graphical representation of all the results can be seen in tab. 8. From

this table one can observe that PSM has the largest average area of convergence

followed by ICP and PSM-C. However the differences of the averages are small.

One can also observe, that the area of convergence of PSM was in 7 cases larger

than that of ICP. Note that the small areas of convergence from scenes 3-6 were

due to the corridor like character of the scenes, where the lack of features limit the

accuracy of scan matching results in the along corridor direction.

From this experiment one can conclude, that on average the implemented PSM

converged from slightly larger area than ICP when using the dataset for scene 0-9,

match 2. PSM-C performed slightly worse than ICP.

6.5 SLAM

The raw data set used in the Kalman filter SLAM is shown in fig. 26. The struc-

tures in the middle of the two rooms on the left are office cubicles. The third

room is a seminar room filled with tables and chairs. The table and chair legs

are represented by a randomly distributed point cloud. The robot was equipped

with one SICK LMS 200 and odometry and started from the corridor intersection

between the 2 rooms on the left. It visited the left room, and after one loop, it pro-

ceeded through the corridor to the middle room where it performed a large and a
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Figure 26: Maps resulting from odometry only, SLAM with PSM, PSM-C and

ICP. Grid size 10x10m.
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small loop and continued to the third (seminar) room. In the third room the robot

was twice driven over a 1.5cm high cable protector on the floor at 40cm/s and

at 20cm/s speed. After the visit to the third room the robot returned to its initial

location from which it traveled to the far end of the corridor, went around a loop

and came back. During the traversal of the environment, no less than 10 people

walked in the view of the laser scanner and some doors were opened and closed.

Considering the presence of walking people, repetitive cubicles, long corridors

and 2 collisions with an obstacle on the floor, this dataset is not the most ideal for

mapping.

The SLAM results are shown in fig. 26. The SLAM results are significantly

better than those from odometry only (fig 26, top). Consecutive laser scans were

not matched against each other, since it was assumed that over short distances

odometry is more accurate than scan matching. PSM performed best on this data

set followed by PSM-C, and worst with the ICP implementation. Note that the

odometry of the robot was reasonably calibrated. This was necessary to be able

to perform loop closing in the repetitive cubicle environment of the second room

without the implementation of special loop closing algorithms.

In the C++ implementation of scan matching and SLAM, the 20 minutes worth

of data consisting of 35× 103 scans and 13× 104 odometry readings took about
2 minutes to process on a 900MHz Celeron laptop for all variants. There were

100 successful (no divergence) scan matches for PSM SLAM variant with an av-

erage of 3.1ms scan matching time. There were 100 scan matches with PSM-C,

with 2.1ms average time. ICP was successfully used 65 times with an average of

12.6ms.

The dataset used in this SLAM experiment was also processed using a pro-

gram performing SLAM using fused laser and advanced sonar measurements.

The advanced sonar arrays are capable of measuring range and bearing with a

standard error of 0.1◦ and 0.2mm respectively, and classifying sensed targets into

planes, right angle corners and edges [Kleeman, 2002]. In the fusion scheme, the

advanced sonar aids laser line segmentation by detecting small edge and corner

features not seen by the laser. Planes and corners measured by laser and sonar are

fused, achieving greater robustness and accuracy. Finally laser measurements help

to remove spurious sonar measurements and to select good point features. More

on SLAM using advanced sonar and laser can be read in [Diosi and Kleeman,

2004]. To accurately overlay the laser scans on a the feature based SLAM map

the robot’s path together with laser scans are stored with respect to neighboring

SLAM features. Then when mapping is completed, the previous robot poses are

recalculated using the stored neighboring features and the associated SLAM map

features in a process similar to scan matching. More on how to use feature based

SLAM for occupancy grid generation can be read in [Diosi et al., 2005].

When comparing the map created using SLAM with PSM (fig. 26) with the
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Figure 27: Results from SLAM using laser and advanced sonar fusion.

results in fig. 27 from SLAM with fusion of laser and advanced sonar, one can

notice that laser scans are better aligned in fig. 27, however SLAM with sonar and

laser could not cope well with the error introduced at the collision of the robot

with the cable protector which resulted in a curved corridor.

The advantages of performing SLAM with PSM over SLAM with fusion of

advanced sonar and laser measurements are the following:

• Since laser scans are in general more distinguishable than line segments or
point features, association can be made more robust due to easier detection

of failure.

• Scan matching may converge from an initial error in the order of meters and
tens of degrees. When performing SLAM with advanced sonar and laser,

such errors in the relative pose of the robot with respect to neighboring

landmarks would likely result in an invalid association or in a robot unable

to update it’s pose due to many features falling into measurement validation

gates. SLAM with scan matching is more robust with respect to error in the

robot pose.

• Since the robot is allowed to have a larger pose estimate error with respect
to neighboring landmarks, the SLAM filter can be run at lower update rate

which makes scan matching SLAM more computationally efficient.

• Since there is no need to extract features, SLAM with scan matching may
work in environments lacking lines, points and corners necessary for the

functioning of SLAM with advanced sonar and laser.

• Since SLAM with scan matching is implemented using only a laser scanner
and an odometry sensor, in environments where a laser scanner is sufficient
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for navigation a robot performing SLAM with scan matching is cheaper.

Less sensors in this case also mean easier coding and debugging. SLAM

with advanced sonar and laser requires two extra advanced sonar arrays

which make a robot more expensive and require more complicated coding

and debugging.

The disadvantages of performing SLAM with PSM over SLAM with fusion of

advanced sonar and laser measurements are the following:

• Scan matching can get stuck in local minima.

• Unlike in SLAM with advanced sonar and laser, moving objects may have
adverse effects on the scan matching results.

• In corridors, scan matching may correct the robot’s pose in the cross cor-
ridor direction. This can result in a robot getting lost in long corridors. In

SLAM using laser and advanced sonar, the existence of small features on

the corridor such as doorjambs or wall moldings are sufficient for correct

operation. Therefore a robot navigating with SLAM using scan matching

may get lost while a robot with SLAM using advanced sonar and laser still

operates properly.

• SLAM with scan matching works best using 360◦ scans. If a robot with a
laser scanner providing only 180◦ coverage heads down a corridor, then on

the way back it will not be able to update the landmarks created in the way

there due to the lack of sufficient overlap. If the robot uses 360◦ scans, the

lack of overlap problem does not occur.

7 Extensions to 3D

3D scan matching has gained popularity in recent years. Therefore it would be

interesting to know if PSM could be adapted to 3D. The projection filter and po-

sition estimation would be still of O(mn) and O(n) complexities, respectively.
Estimation of the 3 orientation angles if done sequentially would still result in

O(kn) complexity, where k is proportional to the number of range readings per
unit angle. Even though 3D scan matching with a modified PSM is an exciting

problem, due to the lack of time we have to consider it as possible future work.

8 Discussion

In this report a laser scan matching method is proposed which works with the

laser measurements in their native, polar form. The polar scan matching (PSM)
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approach belongs to the class of point to point matching algorithms. PSM takes

advantage of the structure of laser scanner measurements by functioning in the

laser scanner’s polar coordinate system. The direct use of range and bearing mea-

surements coupled with a matching bearing association rule and a weighted range

residual minimization, results in an O(n) complexity pose estimation approach
and an O(kn) complexity orientation estimation approach, opposed to the O(n2)
complexity of the popular IDC algorithm by Lu and Milios [Lu and Milios, 1997].

In O(kn) of the orientation estimation approach, k is proportional to the angular
resolution of the laser scans. Opposed to the O(n2) projection filter of [Gutmann,
2000], preprocessing of scans is done also with O(n) complexity if there are no
occlusions in the current scan when viewed from the reference scans position. A

variant of PSM, PSM-C is also introduced where the translation estimation step of

PSM is replaced with a weighted variant of the pose estimation equations from [Lu

and Milios, 1997]. In PSM-C due to the use of the matching bearing rule, equa-

tions from [Lu and Milios, 1997] also minimize the sum of square range residuals.

For comparison, a basic ICP has also been implemented.

Simulation of matching scans in a room demonstrates that the current scan

pose error decreases more quickly with PSM and PSM-C to a small value, than

with ICP. Scan matching experiments were also performed with a SICK LMS

200 in a variety of environments. Comparison of the results with ground truth

revealed that in the tests, the performance of PSM and PSM-C surpasses that of

ICP in speed and accuracy. However when matching corridors, a position drift

in the direction of the corridor has been observed with PSM. This drift was not

observed when using PSM-C or ICP. A comparison of areas of convergence for

PSM, PSM-C and ICP were also performed. It was found, that PSM converged to

the correct solution from slightly larger area than PSM-C and ICP.

A simple heuristic scan matching error model has been proposed where first

scans are classified into rooms and corridors. For rooms a diagonal covariance

matrix is scaled by the sum of square errors. For corridors, the xy sub-matrix

(of the covariance matrix) with a large error in the x direction and small error in

the y direction is rotated first, so that the large error aligns with the direction of

the corridor. Then the resulting covariance matrix is scaled by the average square

error.

The usability of the proposed scan matching approaches has been tested by

performing Kalman filter SLAM with scan matching in a static environment. The

maps created by PSM and PSM-C are better than that of ICP as shown in fig. 26.

In fig. 26, the quality of the maps can be judged by the straightness of the corridor

and by the presence of walls with multiple representations.

A map resulting from SLAM with PSM has been compared to a map result-

ing from SLAM using laser and advanced sonar fusion and path tracking. Laser

scans of the map resulting from SLAM with PSM were less aligned than those
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from SLAM using advanced sonar and laser. In general SLAM with PSM can

experience problems when there is significant motion in the scans and also on

corridors with not enough features to correct the along corridor error of the robot.

On the other hand SLAM with PSM compared to SLAM with advanced sonar and

laser can handle larger robot errors relative to neighboring landmarks, needs less

frequent landmark updates, is simpler and it does not extract features from the

environment.

As future work, the tracking and tagging of moving objects could be consid-

ered. Also the real advantage of the efficient PSM over O(n2) methods becomes
more apparent when the number of points is large. One such case is in 3D scan

matching. The modification of PSM for 3D scan matching is also considered as

future work.

References

[Bengtsson and Baerveldt, 2001] O. Bengtsson and A.-J. Baerveldt. Localization

by matching of range scans - certain or uncertain? In Eurobot’01 - Fourth

EuropeanWorkshop on Advanced Mobile Robots, pages 49–56, Lund, Sweden,

Sep. 2001.

[Besl and McKay, 1992] P. J. Besl and N. D.McKay. Amethod for registration of

3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(2):239–256, 1992.

[Biber and Straßer, 2003] P. Biber andW. Straßer. The normal distributions trans-

form: A new approach to laser scan matching. In IROS’03, volume 3, pages

2743–2748. IEEE, 2003.

[Bosse et al., 2004] Michael Bosse, Paul Newman, John Leonard, and Seth

Teller. Simultaneous localization and map building in large-scale cyclic en-

vironments using the Atlas framework. The International Journal of Robotics

Research, 23(12):1113–1139, 2004.

[Cox, 1991] I. J. Cox. Blanche–an experiment in guidance and navigation of an

autonomous robot vehicle. IEEE Transactions on Robotics and Automation,

7(2):193–203, april 1991.

[Davison, 1998] A. Davison. Mobile Robot Navigation Using Active Vision. PhD

thesis, University of Oxford, 1998.

[Diosi and Kleeman, 2004] A. Diosi and L. Kleeman. Advanced sonar and laser

range finder fusion for simultaneous localization and mapping. In Proc. of

IROS’04, volume 2, pages 1854–1859. IEEE, 2004.

MECSE-29-2005: "Scan Matching in Polar Coordinates with Application to SLAM", A. Diosi and L. Kleeman



REFERENCES 51

[Diosi and Kleeman, 2005] A. Diosi and L. Kleeman. Laser scan matching in

polar coordinates with application to SLAM. Accepted for publication in the

Proc. of IROS’05, 2005.

[Diosi et al., 2005] A. Diosi, G. Taylor, and L. Kleeman. Interactive SLAM using

laser and advanced sonar. In Proc. of ICRA’05. IEEE, 2005.

[Dudek and Jenkin, 2000] G. Dudek and M. Jenkin. Computational Principles of

Mobile Robotics. Cambridge University Press, Cambridge, 2000.

[Gutmann, 2000] J.-S. Gutmann. Robuste Navigation autonomer mobiler Sys-

teme. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2000.

[Hähnel et al., 2003] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient

fastSLAM algorithm for generating maps of large-scale cyclic environments

from raw laser range measurements. In IROS’03, volume 1, pages 206–211.

IEEE, 2003.

[Kay, 1993] Steven M. Kay. Fundamentals of Statistical Signal Processing, vol-

ume 2. Estimation Theory. Prentice Hall, New Jersey, 1993.

[Kleeman, 2002] L. Kleeman. On-the-fly classifying sonar with accurate range

and bearing estimation. In IEEE/RSJ Int. Conf. on Intelligent Robots & Sys-

tems, pages 178–183. IEEE, 2002.

[Lingemann et al., 2004] K. Lingemann, H. Surmann, A. Nüchter, and
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