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Abstract—Laser speckle is a complex interference phe-
nomenon that can easily be understood, in concept, but is
difficult to predict mathematically, because it is a stochas-
tic process. The use of laser speckle to produce images,
which can carry many types of information, is called laser
speckle imaging (LSI). The biomedical applications of LSI
started in 1981 and, since then, many scientists have
improved the laser speckle theory and developed differ-
ent imaging techniques. During this process, some in-
consistencies have been propagated up to now. These
inconsistencies should be clarified in order to avoid er-
rors in future works. This review presents a review of
the laser speckle theory used in biomedical applications.
Moreover, we also make a review of the practical concepts
that are useful in the construction of laser speckle imagers.
This study is not only an exposition of the concepts that
can be found in the literature but also a critical analysis of
the investigations presented so far. Concepts like scatter-
ers velocity distribution, effect of static scatterers, optimal
speckle size, light penetration angle, and contrast compu-
tation algorithms are discussed in detail.

Index Terms—Exposure time, gaussian distribution, laser
speckle contrast imaging (LSCI), Lorentzian distribution,
microvascular blood flow, static scatterersspeckle size.

I. INTRODUCTION

THE laser speckle effect is a very useful physical
phenomenon that is widely used in biomedical applica-

tions. Laser speckle is a random scattering phenomenon which
can only be described statistically [1]. This effect occurs when
coherent light is reflected by a rough surface on the scale of
the used wavelength. This effect is characterized by a granular
visual pattern composed by dark and bright spots.

The laser speckle effect was initially considered as a main
drawback in the use of coherent light sources. The optical
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speckle limits the spatial resolution and decreases the signal-to-
noise ratio (SNR) of multiple optical techniques, for example:
optical coherence tomography, holography, laser projection sys-
tems, and synthetic aperture radar imagery [2]. The laser speckle
pattern depends on the illumination source, the imaging system,
and the imaged sample. If moving scatterers are present in the
sample, then the speckle pattern changes along time. When this
pattern is imaged with a finite exposure time, the areas of the
image with moving scatterers will appear blurred (low contrast).
The analysis of this blurring effect is the basis of laser speckle
imaging (LSI) for biomedical applications, which can also be
named laser speckle contrast imaging (LSCI).

The designation LSI is associated with a two-dimensional (2-
D) assessment technique used in many research fields and for
many applications such as object velocity measurements [3],
[4], surface roughness evaluation [5]–[7], laser vibrometry [8]–
[10], and speech detection [11]. The biomedical applications of
LSI will be discussed in more detail later in this study.

As pointed out by Humeau-Heurtier et al. [12], most part of
biomedical laser speckle reviews are focused in only one part
of the theoretical basis. In our opinion, a compendium about the
methods that have been used since the year 1981 is missing in the
literature. This review presents an overview of the laser speckle
theory and practical concepts that can be found in the literature,
and a critical analysis of these works. To understand the laser
speckle nature and the methods used in biomedical applications,
theoretical concepts like speckle contrast, decorrelation time,
Lorentzian and Gaussian velocity models, and the effect of static
scatterers will be explored herein. Moreover, an explanation of
practical concepts such as speckle size, angle of incidence, and
exposure time will be performed. Additionally, the most used
image processing algorithms will be presented and, finally, the
actual limitations of LSI will be discussed.

II. SPECKLE THEORY

Considering an observation plane, which is exposed to co-
herent light reflected from a scattering sample, the intensity
registered in that plane, I(t), at a specific point, is the coherent
sum of many photon electric fields, E(t), scattered from differ-
ent points of the surface (or medium). Since each scattered wave
has its own optical path, all the scattered waves arrive to the ob-
servation plane with phase differences leading to constructive
or destructive interferences [13].

In perfect conditions, i.e., using a complete coherent and
polarized light source and assessing a static medium, the result-
ing speckle pattern is fully developed, which means that their
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Fig. 1. Fully developed speckle pattern simulated using the algorithm
proposed by Kirkpatrick et al. [14].

speckles are perfectly defined. An example of an ideal speckle
pattern is presented in Fig. 1.

A. Contrast

It has been shown by Goodman [13] that, for a fully devel-
oped speckle pattern, there is an equality between its spatial
standard deviation (σs) and its spatial mean intensity (〈I〉). This
useful property of the speckle interference effect is crucial for
its application in the biomedical field [15]. Following this idea,
the contrast (K) is typically defined as the ratio between the
standard deviation and the mean intensity [16]:

K = σs

/
〈I〉 =

√
〈(I − 〈I〉)2〉

/
〈I〉 . (1)

Considering the statistical equality between σs and 〈I〉 for
a fully developed speckle pattern, we can easily conclude that
the contrast of an ideal speckle pattern is 1. In fact, under real
conditions, the contrast is always lower than 1 and follows the
condition 0 ≤ K ≤ 1 [17].

In practice, the observed speckle pattern depends on the used
coherent light source, on the illuminated medium, and on the
image plane. The speckle pattern will remain unchanged if all
these elements are static (static speckle pattern). On the other
hand, a time change in one of these components causes a modi-
fication of the pattern (dynamic speckle pattern) [18].

If the scattering particles inside the medium are moving, the
temporal pattern changes contain information about the motion
of the particles. Two examples of these moving scatterers are
the red blood cells flowing inside a blood vessel and the artery
walls vibration. Imaging systems with finite exposure times
perform an integration of all the light that reaches the sensor
during the exposure time. If the speckle pattern changes during
this integration time, the areas where the particles are moving
become blurred [19].

It is clear that, by using an imaging system, it is the inten-
sity (I(t)) of the speckle pattern that is recorded. The inten-
sity spatial distribution (2-D image) can be used to compute
the speckle contrast (K). However, what is the relation between
the measured contrast and the scatterers motion?

B. Autocorrelation Functions

Following the analysis performed by Boas and Yodh [20],
we can deduce that the temporal fluctuations of the speckles
intensity contain information concerning the dynamic properties
of the medium. These intensity fluctuations are produced by

electric field changes caused by the light scattered by moving
particles. A good way to analyze these fluctuations is by using
the normalized temporal autocorrelation function of the electric
field which, for complex functions (E(t) ∈ C), is [21]

g1(τ) =
〈E(t) · E∗(t + τ)〉
〈E(t) · E∗(t)〉 (2)

where E(t) is the electric field over time t, E∗ denotes the
complex conjugate of the electric field, τ the autocorrelation
delay time, and 〈 〉 the time average. However, conventional
imaging systems are not sensitive to the light electric field. They
are sensitive to intensity fluctuations. Therefore, it is convenient
to analyze the signal information as the normalized temporal
autocorrelation function of the intensity [22]. Since the intensity
is a real function (I(t) ∈ R), its autocorrelation is simply,

g2(τ) =
〈I(t) · I(t + τ)〉

〈I(t)2〉 . (3)

The Siegert relation relates the second-order autocorrelation
function [see (3)] with the first-order autocorrelation function
[see (2)] [23], [24] as follows:

g2(τ) = 1 + β |g1(τ)|2 (4)

where β ≤ 1 is a normalization constant that accounts for the
system imperfections, namely the absence of light stability and
the speckle averaging due to spatial aliasing in the image detec-
tor [16], [25], [26]. In perfect conditions this constant is equal
to 1, and in the preliminary speckle studies it has been omitted
[17], [19]. The additive value (1) results from the fact that the
mean value of the intensity function is different from zero [20],
contrary to the field mean value which is zero. The quadratic
factor in (4) occurs because of the quadratic relation between
amplitude and intensity [27].

It has been proven by Bandyopadhyay et al. [23] that the
reduced variance of the intensity across the pixels is related
with g1(τ). This relation falls from the idea that the variance of
the intensity of the speckle pattern is greater when the scatterers
motion is slow compared to the imaging system exposure time.
The following equation states the relationship between speckle
contrast and the autocorrelation function in terms of the imaging
system exposure time:

K(T )2 =
2β

T

∫ T

0
|g1(τ)|2

(
1 − τ

T

)
dτ (5)

where K(T ) is the speckle contrast as function of the expo-
sure time T . The second term in this expression (1 − τ/T ) was
not used in the original expression of Briers and Webster [15]
but several authors claim that this is the correct expression and
must be used to obtain accurate results [25], [28]–[31]. This
term falls from the transformation of the variance into the cor-
relation where a triangular weighting must be multiplied to the
autocorrelation function [23].

C. Motion Distributions

Two major types of motion can be considered for dynamic
scatterers. These motions are classified as ordered motion (or-
dered flow of the scatterers) and disordered motion (Brownian
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motion) which occurs due to the effect of temperature [16].
The dynamic scatterers motion was historically considered to
be close to Brownian motion [1], [16], [19], [29], [31]–[33] and
with single scattering contribution [34]. This approach was used
with the argument that the blood circulation is dense and turbu-
lent [31]. The Brownian motion supports the approximation of
the velocity distribution to a Lorentzian profile which leads to
the field autocorrelation function:

gL
1 (τ) = e−τ /τc l (6)

where τcl is the Lorentzian decorrelation time. The decorre-
lation time (τc ) quantifies the dynamics of the scatterers [25].
In other words, lower values of τc are associated to scatterers
with faster movements. Mathematically, this factor represents
the autocorrelation function width, by determining the delay
where the function falls from 1 to 1/e [15]. The substitution
of the autocorrelation function for the Lorentzian profile in (5)
gives

KL (T )2 = β

[
τcl

T
+

τ 2
cl

2T 2

(
e−2T /τc l − 1

)]
. (7)

The issue with this model is that, in fact, there are several
motions present in blood flow [16], [35]. The ideal model can
be explained as a combination of both Brownian (Lorentzian
distribution) and ordered motion (Gaussian distribution). The
autocorrelation function for a Gaussian velocity distribution,
which is the correct one for ordered flow, has been proposed as
[16]

gG
1 (τ) = e−(τ /τc g )2

(8)

where τcg is the Gaussian decorrelation time. A different equa-
tion was suggested by Ramirez-San-Juan et al. [35] as the cor-
rect one to model a Gaussian velocity distribution. Their choice
of the Gaussian model is based on the Mandel’s definition of
decorrelation time (see [35, Eq. (8)]) and can be described as

gG
1 (τ) = e−

π
2 (τ /τc g )2

. (9)

In fact, (9) does not satisfy our original definition of the decor-
relation time (falling from 1 to 1/e in τc ). By opposition, (8)
does meet this requirement and, additionally, it is the most re-
ferred in the literature to model a Gaussian velocity distribution.
Having this into account, we assumed that (8) is the most correct
one. By substituting the autocorrelation function for a Gaussian
velocity profile, (8), in (5) we obtain

KG (T )2 = β

[
τcg

T

√
π

2
erf(

√
2 T/τcg )

+
τ 2
cg

2T 2

(
e−2T 2 /τ 2

c g − 1
) ]

. (10)

It is important to note that the autocorrelation functions, (6)
and (8), are valid for an approximation of single dynamic scat-
tering regime but they present good agreement with the experi-
mental results [34].

Some recent works [16], [22], [32] claim that biologi-
cal tissues are complex systems with multiple sources of

Fig. 2. Error in contrast between the use of Lorentzian and Gaussian
distribution as function of the exposure time and decorrelation time.

decorrelation, i.e., multiple phenomenons that cause speckle
pattern temporal changes. For this reason, an autocorrelation
function that uses both Lorentzian and Gaussian distributions
was proposed as an accurate model [22]

|gLG
1 (τ)|2 ≈ |gL

1 (τ)|2 × |gG
1 (τ)|2 . (11)

In the definition of this combined velocity distribution (Gaus-
sian and Lorentzian) there is some misunderstandings because
other authors [16] describe the model as a convolution between
the two distributions yielding to a Voigt profile:

gV
1 (τ) = gL

1 (τ) ∗ gG
1 (τ) (12)

where gV
1 (τ) represents the Voigt autocorrelation function.

The combined distribution improves the accuracy in the de-
termination of the decorrelation time [16], [22]. However, the
model that should be used for the autocorrelation function is still
a major investigation field in LSCI [1]. Currently, the Lorentzian
model is the most used in laser speckle studies [29], [33], [36]–
[38] because the ordered flow is approximated by a Lorentzian
distribution when scattering is random and uncorrelated [39].
Nevertheless, several authors [16], [40], [41] claim that the
Gaussian distribution should be used.

Fig. 2 shows the difference in the contrast obtained when the
function parameters (T and τc ) are fixed for both Lorentzian [see
(7)] and Gaussian distributions [see (10)]. This figure shows that
the largest differences, between the two profiles, are observed
when the exposure time is equal to the laser speckle decorrela-
tion time (T ≈ τc ). This is equivalent to say that the use of the
Lorentzian distribution, to analyze ordered flows, yields to the
largest errors when τc/T ≈ 1. This conclusion is particularly
important because the sensitivity of speckle contrast, in relation
to the decorrelation time (|dK/d(1/τc)|), is maximum when
τc/T = 1 [28], [42].

Equations (7) and (10) are, theoretically, the most correct
ones, but some authors pointed that the use of the triangular
weighting, as in (5)—second term, does not improve the results
for biomedical applications when long exposure times (T >>
τc ) are used [16], [28], [43].

Smausz et al. [44] showed that the curve obtained using (5)
without the triangular weighting can be approximated to the
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Fig. 3. Errors between the theoretical speckle visibility equations [see (7) and (10)] and the shifted approximated equations [see (13) and (14)].
(a) Lorentzian distribution. (b) Gaussian distribution.

theoretically correct one by substituting the variable T/τc by
≈ 0.57 T/τc in the case of a Lorentzian distribution.

The steps to find this multiplier constant (Cs = 0.57) were not
detailed in the work of Smausz et al., but the visual inspection
of the two curves (triangular weighting versus variable substitu-
tion) shows only small differences between them (see [44, Fig.
3]). However, a qualitative approach is highly dependent on the
window that is used to show the curves. The selected window
has a great influence in the determination of Cs that seems to
lead to the best adjustment of both curves. In Smausz et al. work
[44], the curves were plotted in a range of 0.001 ≤ τc/T ≤ 10.

In our opinion, a more numerical approach should be per-
formed. We therefore performed a simulation in order to find
which is the proper Cs for both Lorentzian and Gaussian distri-
butions. The Cs was swapped between 0.1 and 0.9 with steps
of 0.01 and the resultant function was compared with the the-
oretically correct ones [see (7) and (10)]. The comparison was
performed by computing the root mean square (RMS) devi-
ation between the two functions within a window of interest
(0.001 ≤ τc/T ≤ 2). This window of interest was chosen be-
cause, in real applications, the exposure time is always higher
than the scatterers decorrelation time. The lowest used exposure
times are in the order of the millisecond, as it will be presented
in Section III-E, but the decorrelation times are in the order of
microsecond [25], [45].

The results of the simulation revealed that the constants which
minimize the RMS deviation are: Cs = 0.61 for the Lorentzian
distribution with an error of 0.96%; and Cs = 0.62 for the Gaus-
sian distribution with an error of 1.6%. The approximated equa-
tions that correspond to (7) and (10) can thus be expressed as

KL (T )2 ≈ β

2
τcl

0.61T
× (1 − e−2×0.61T /τc l ) (13)

for a Lorentzian distribution and

KG (T )2 ≈ β

2
τcg

0.62T

√
π

2
× erf(

√
2 × 0.62T/τcg ) (14)

for a Gaussian distribution.

The differences between the theoretical equations and the ap-
proximated equations can be seen in Fig. 3. This figure shows
that the error in the contrast determination is low for all the
combinations of exposure times and decorrelation times. The
maximum error, for the Lorentzian distribution, is 0.022. For
the Gaussian distribution it is 0.031, which makes this approx-
imation much more valid than the application of a Lorentzian
distribution to ordered flow (see Fig. 2).

Approximated equations like (13) and (14) could be used
when faster processing is required. These equations are much
simpler and do not have any quadratic terms which reduces the
computation time to evaluate them. Online video processing,
in multiexposure speckle contrast techniques, takes a long time
because it is necessary to fit the raw data to the selected equation
for every single image pixel.

D. Normalization Constants

The normalization constant (β) is linked with the experi-
mental apparatus and needs to be computed for each indi-
vidual system. The normalization constant can be computed
as β = limT →0 K(T ) [46]. As stated in Section II-B, β is a
constant that accounts for the system light source instability, the
system vibrations, nonperfect polarization of the laser light and,
mainly, the spatial averaging that can occur when the speckle
size is lower than two times the imaging system pixel size
(Nyquist limit) [22].

Thompson et al. [26] and Zölei et al. [46] proposed a different
normalization constant which is defined as βm = 1/Kmax. This
is equivalent to say that βm is the maximum contrast that the
experimental system can achieve. This constant is multiplied
by the measured contrast [left side of (5)]. Contrary, β is a
multiplication factor in the right side of (5). The definition of βm

does not contradict the original definition of the normalization
constant [20], [47] which states that β ≤ 1. Although βm is
always greater than 1 (Kmax < 1), it is multiplied in the opposite
side of the equation which is in accordance with the original
definition.
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Thompson et al. [26] also showed, by simulation and exper-
iments, that βm is a correction factor that accounts for both
spatial averaging and external illumination. In practice, since
the normalization constant should be to “normalize” the con-
trast curve (K(T )), this second definition could be more useful
and easier to determine experimentally.

Other types of normalization constant can also be used, in ad-
dition to β. These constants are often defined as a quantification
of the noise present in the system [25] and are expressed as an
additive term in (5). This term leads to its inclusion in all the
equations that relate contrast, decorrelation time, and exposure
time ((7), (10) and equivalents). In this review, we decide to
omit this term in the theoretical analysis. Its influence will be
discussed during the analysis of static scatterers and practical
concepts (Sections II-E and III-D).

E. Effect of Static Scatterers

The presented models are based on a set of approximations
that do not account for the presence of static scatterers in the
assessed medium. However, static scatterers produce a speckle
contrast component that remains constant when the imaging
system exposure time increases. The light that is scattered by
these types of elements cause an underestimation of the sys-
tem dynamics. In other words, it increases the speckle contrast
[28]. The static scatterers issue has been neglected in the past
[23], [43], [48] but nowadays it is often accounted for [29],
[34]. The existence of static scatterers has been addressed by
Parthasarathy et al. [25] and Zakharov et al. [49] who presented
a new method to compute accurate values of τc .

In presence of static scatterers, the effective electrical field
that reaches the imaging system is a sum of photons scattered
by static particles and photons scattered by dynamic particles:

E(t) = Ed(t) + Es (15)

where Ed(t) is the light electrical field scattered by dynamic
particles and Es the light electrical field scattered by static
particles which, since its contribution is static, does not vary
with time [20], [24]. The new intensity autocorrelation function
can be expressed as

g2(τ) = 1 + β[(1 − ρ)2 |g1d(τ)|2 + 2ρ(1 − ρ)|g1d(τ)| + ρ2 ]
(16)

where g1d(τ) is the field autocorrelation function and ρ is
the fraction of light that is scattered by static particles, ρ =
〈Is〉/(〈Is〉 + 〈Id〉). When using the constant ρ, one should be
very careful about its definition. Inverse definitions can be found
in the literature. For example, several authors define ρ as the dy-
namic fraction of scattered light [22], [28], [40], [42] instead of
the definition mentioned earlier.

The intensity autocorrelation function depends on the auto-
correlation function of the dynamic component but does not
depend on the autocorrelation function of the static component.
This result is expected because, since the static electric field is
constant, its autocorrelation function is approximately 1 for all
the delay values (τ ) [20].

The application of the Siegert relation, (4), to the in-
tensity autocorrelation function yields to the modified field

autocorrelation function [24]

g1m (τ) = (1 − ρ)|g1d(τ)| + ρ . (17)

By substituting g1m in the integral of (5) we obtain

K2 (T ) =
2β

T

∫ T

0

[
(1 − ρ)2 |g1d (τ )| + ρ

]2
(
1 − τ

T

)
dτ

=
2β

T

[
(1 − ρ)2

∫ T

0
|g1d (τ )|2

(
1 − τ

T

)
dτ + 2ρ(1 − ρ)

×
∫ T

0
|g1d (τ )|

(
1 − τ

T

)
dτ +

∫ T

0
ρ2

(
1 − τ

T

)
dτ

]
.

(18)

The first integral is equivalent to (5). The modified speckle
contrast shares a common part with (5) which exclusively de-
pends on the dynamic autocorrelation. The other terms of (18)
are dependent on the static autocorrelation.

The analytical result for the integral of (18), considering the
autocorrelation function of the dynamic component as an expo-
nential decay (Lorentzian distribution), is [28]

K(T )2 = β

[
(1 − ρ)2 e−2x − 1 + 2x

2x2

+ 4ρ(1 − ρ)
e−x − 1 + x

x2 + ρ2
]

(19)

where x = T/τc . Using the same method, the speckle contrast
for the modified autocorrelation function with Gaussian distri-
bution is [22]

K(T )2 = β

[
(1 − ρ)2 e−2x2 − 1 +

√
2πx erf(

√
2x)

2x2

+ 2ρ(1 − ρ)
e−x2 − 1 +

√
πx erf(x)

x2 + ρ2

]
. (20)

Nadort et al. [22], [25], [26], [42] included in (19) and (20)
an additive term that quantifies the noise present in the system
(νnoise or Cnoise or K0 or P2). In practice, this term accounts for
the minimum contrast that the system can achieve. This term is
mainly used in analyses that take into account the presence of
static scatters but it can also be applied in simpler studies.

We consider that (19) and (20), with or without the noise
term, are the most complete equation to analyze laser speckle
contrast data. These equations, known as the speckle visibility
expressions [34], take into account the imperfections of the
imaging systems, the noncomplete light coherence, and the pres-
ence of static scatterers in the medium. However, simpler results
can be found in the literature [44], [46] as

K(T )2 =
1
T

∫ T

0
P 2

1 |g1(τ)|2
(
1 − τ

T

)
+ P 2

2 dτ . (21)

This method includes two constants (P1 and P2) in (5) that
normalize the experimentally speckle contrast between 0 and 1.
These constants account for both the static scatterers and speckle
spatial averaging, and can be determined by fitting this equation
to the laser speckle data [46]. Even if this is a promising method
that is very simple to apply, most of researchers still prefer
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using the methods described by Parthasarathy et al. [25] and
Zakharov et al. [49], (18), because of their better relation with
physics laws.

F. Scatterers Velocity Determination

The speckle contrast analysis starts with the computation
of the imaging contrast and tries to determine the decorrelation
time. The more rigorous is the decorrelation time determination,
the more correct the scatterers velocity estimation will be. This is
why so many different methods and analysis have been proposed
during the last years, to improve the estimation of τc . The most
used relationship between scatterers velocity and decorrelation
can be expressed as [15]

V = λ/(2π τc) (22)

where V is the scatterers velocity and λ is the laser light wave-
length. This relation does not have physics bases and is purely
hypothetical [16], but it is the most used expression to relate the
decorrelation time with the scatterers velocity. This simple rela-
tion is based on the intuitive notion that the velocity is inversely
proportional to the decorrelation time V ∝ 1/τc .

However, a different relation with a true physical meaning
can be found in the literature [16], [32]

V = PSF/τc (23)

where PSF is the point-spread function [32]. The PSF describes
the response of an imaging system to a point source. From the
knowledge of the authors, this velocity determination model has
not been used in laser speckle contrast studies possibly due to
the difficulty in determining the PSF.

The correct determination of τc and its relation with the veloc-
ity of the scatterers are the key factors to achieve a quantitative
laser speckle analysis instead of a qualitative analysis, which is
performed in most cases [28]. In laser speckle studies, arbitrary
perfusion units are more used than velocity values because laser
speckle has not proved yet to be a quantitative tool for complex
systems [1], [16], [30], [31], [50].

This is in fact one of the most opened fields for research
in LSCI. However, if the decorrelation time is computed with
high accuracy, controlled phantoms or external methods can be
used to calibrate laser speckle data [22], [34]. This issue will
be discussed in more detail in Limitations and Future trends (see
Section VII).

III. PRACTICAL CONSIDERATIONS

The theoretical considerations discussed in the previous
section represent the basis of laser speckle contrast analysis
(LASCA) for biomedical applications. However, researchers
and engineers have to face another type of problem when per-
forming experimental work or want to build laser speckle de-
vices. In this case, the questions that rise are: How to maximize
the speckle contrast? How to increase the SNR? What are the
values for β and ρ?

A. Speckle Size

One of the most important points to consider when designing
a laser speckle system is the size of each individual speckle.
When a digital imaging system is used, e.g., charge-coupled
device (CCD) or CMOS sensors, its pixels have a finite size.
When the size of each speckle, produced in the imaging sensor,
is smaller than its pixel size, a spatial averaging occurs. In other
words, more than one speckle is imaged by the same pixel which
causes a decrease in contrast [12].

The speckle size in the imaging sensor depends on the wave-
length (λ) used and on the optical components used to image
the pattern. The minimum resolvable speckle size, for a system
using an imaging lens, is often expressed as [51]

dmin ≈ 1.2(1 + M)λ f/# (24)

where dmin is the minimum speckle diameter in the same unit
as the one used to express the wavelength, M is the imaging
system magnification, and f/# is the imaging system f-number.
From this expression, it is clear that the easiest parameter to
control is the f-number which can be changed by using the iris
diaphragm.

Thompson et al. [26] and Basak et al. [52] used (24) to
compute an estimation of the speckle size. However, others
[28], [31] used a different one (dmin ≈ 2.4(1 + M)λ f/#). The
oldest reference mentioning the size of speckle, from the best
of our knowledge, can be found in Ennos’s work [51]. This
study states that the minimum diameter of a speckle, viewed by
an imaging system, is given by (24). This expression is valid
for the so-called “subjective” speckle [51]. The “subjective”
speckle is obtained with imaging systems that use a lens to form
the image in the sensor [53]. This type of speckle is the most
common in biomedical applications.

It is also possible to use a different method to image
the speckle pattern, the “objective” speckle [51]. This type
of speckle is obtained as a projection of the pattern in the imag-
ing sensor without any lens. In fact, the speckle pattern is a
tri-dimensional field that propagates through the space. There-
fore, the position of the imaging sensor in “objective” speckle
will influence the observed pattern [54], [55].

Several authors studied the influence of different speckle sizes
in the speckle contrast [26], [56], [57]. All the studies agree in
the definition of speckle size as the number of pixels that a
single speckle occupies in the imaging sensor (pixels/speckle).
However, different optimal speckle sizes can be found in the
literature. The first works on LSI tried to maximize the system
spatial resolution by forcing a speckle size equal to the sensor
pixel size. Also several recent papers [52], [58] continue to use
1 pixel/speckle which could be an unwise decision.

The work of Kirkpatrick et al. [57] showed, by simulation
and by in vitro tests, that speckle sizes under the Nyquist limit
lead to spatial aliasing, resulting in a reduction of up to 30%
in the global contrast. They conclude that a minimum size of
2 pixels/speckle should be used for the speckle size. However,
in our opinion, their results show that the contrast is still in-
creasing for larger speckle sizes (up to 4 pixels/speckle). The
increasing of the speckle size has the disadvantage of decreasing
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Fig. 4. Spatial sampling of speckles with different sizes. Each black
square represents an imaging system pixel. The two left images repre-
sent a speckle size of 1 pixel/speckle and the two right images represent
a speckle size of 2 pixels/speckle.

the spatial resolution because, since each speckle is the source
of information, there are fewer speckles in the same area.

The simulations performed by Thompson et al. [26] showed
that with 2 pixels/speckle there is also a significant decrease
in the contrast (10% lower than the theoretically maximum).
However, the most important conclusion regarding speckle size,
in our opinion, is that the optimal speckle size is influenced
by the size of the window used to compute the contrast (see
Section V).

Ramirez-San-Juan et al. [56] also addressed this issue and
concluded that the speckle size has no strong influence in the
determination of τc . This result is more obvious when the tem-
poral contrast (t-K) analysis is used (see Section V). However,
this conclusion is only valid for relative measurements of τc in
an homogeneous phantom. Their work is based on simplifica-
tions that are not valid in real cases, like the absence of static
scatterers. Therefore, this result should be used carefully.

Contrary conclusions have also been reported. For example,
Qiu et al. [59] suggested that speckle sizes under the pixel size
can improve the SNR and the spatial resolution. This review
also shows that β can correct the speckle contrast even when
the speckle size is under the pixel size. However, the metric
used to analyze the SNR should be taken with caution (SNR ≡
μK /σK ).

It is clear that when the speckle size is smaller than the pixel
size, a spatial averaging occurs acting like a general 2-D low-
pass filter. This filter produces an intensity increase in darker
zones and an intensity decrease in brighter zones. The intensity
mean is maintained but its standard deviation is reduced, leading
to a reduction in the mean contrast and, more important, to the
homogenization of the contrast values. This homogenization
causes a reduction in the contrast standard deviation (σk ) which
results in the increase of the SNR in the proposed metric.

The size defined by 2 pixels/speckle is also ambiguous since
it is expected that each speckle has a circular shape. Fig. 4
illustrates the spatial sampling of speckles. The two images
from the left show a speckle with diameter equals to one pixel.
The two images from the right show a speckle with a diameter
of 2 pixels/speckle. This illustration shows that it is necessary
to have 4 pixels to sample a speckle with 2 pixels of diameter.
In our opinion, considering a spatial contrast (s-K) computation
(see Section V), the speckle size should be maintained above
the Nyquist limit for both dimensions (x and y). To ensure a
correct sampling of a 2-D structure, at least two points should
be sampled in each dimension. Further studies on the speckle
size could lead to a conclusion in order to clarify the optimal
speckle size.

Fig. 5. Schematic representation of the Brewer’s angle. n1 and n2 rep-
resent the refractive index of each medium and θB the Brewster’s angle.
The plane of incidence is represented by the thick-dashed rectangle.

The increase in the speckle size leads to a strong decrease in
spatial resolution. First, less speckles are present in the same
region and, second, larger processing windows must be used
to ensure enough statistical relevance in the computation of the
contrast. But, nowadays, imaging systems are very powerful and
can have dozens of Megapixels which can balance the reduction
of the resolution that happens due to the processing methods.

B. Light Polarization

The photons produced by light amplification by stimulated
emission of radiation are coherent and, usually, linearly polar-
ized. When light penetrates in a boundary between two media
with distinct refractive indices (n), some fraction of the light is
reflected while the other fraction is transmitted. The amount of
light that is reflected and transmitted depends on the angle of
incidence of the photons, on its polarization, and on the media
refractive indices. This light behavior is described by the Fresnel
equations [60].

The light that is reflected in this process is partially polarized
in the orientation perpendicular to the plane of incidence (s-
polarized). Most LSI systems use a polarizer in front of the
imaging system to cut this light because it does not contain any
information about the moving scatterers that are inside the tissue
[52].

By the Fresnel equation, it is possible to prove that if the
incident light is polarized parallel to the plane of incidence (p-
polarized), there is an angle in which all the light is transmitted
through the medium. This angle is the so-called Brewster’s angle
[61] and can be expressed as [60]

tan(θB ) = n2/n1 (25)

where θB is the Brewster angle in radians, n1 is the refractive
index of the initial medium, and n2 is the refractive index of
the final medium. Fig. 5 shows the case when a p-polarized
light beam reaches a media boundary with the Brewster’s angle.
There is no reflected beam because, as stated earlier, the reflected
beam should be s-polarized but this component is not present in
the incident beam.

From the knowledge of the authors, the Brewster’s angle has
not been explored in LSI systems for biomedical application.
However, some authors have used an illumination angle between
30–40◦ [39] and between 50–70◦[62], but with no estimation of
the exact Brewster’s angle.
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The use of this penetration angle could prevent the reflection
of light in the first tissue layer, increasing the penetration depth
and avoiding the use of the imaging system polarizer. This ap-
proach can also allow the reduction of the laser power since
more light is transmitted to the tissue and interacts with the in-
ner moving scatterers. However, the exact Brewster’s angle is
difficult to define because the optical refractive index of biolog-
ical tissues is difficult to estimate. Moreover, since the samples
are not usually flat, it is complicated to select an illumination
angle very close to the Brewster’s angle. These issues reduce
the efficiency of this method. Anyway, more studies should be
performed in order to confirm or refute this idea.

C. Measuring Beta (β)

The method used in laser speckle contrast theory—to account
for the spatial averaging and partial light polarization—is the
normalization constant (β). The primary and the precise way to
compute β is to use the limit β = limT →0 K(T ). To compute
this limit, it is necessary to take a set of contrast images with
different exposure times (T ), from a unique dynamic sample
(ρ = 0), and apply a fitting process to the obtained contrast
[25]. The y-intercept value obtained by the fitting process is
equal to β and the function minimum value (limT →∞ K(T )) is
equal to Cnoise.

A different process to compute βm (see Section II-D) was
proposed by Thompson et al. [26] based on a single experi-
mental measure. This process is interesting for single-exposure
LSI systems. The experimental measurement consists in de-
termining the maximum speckle contrast that the system can
achieve by using a sample with only static scatterers (ρ = 1).
In their work [26], the authors used a block of a mixture of
silicone and alumina because this material tries to mimic the
skin optical properties. Other authors have simply used a white
sheet of paper to simulate the static scatterers [59]. The value
of βm is then multiplied by the obtained contrast in order to
normalize it.

D. Measuring Rho (ρ)

Even if the variable ρ has been presented in many works as
the correct way to account for static scatterers, its determination
is not yet very clear. However, an experimental and objective
method to compute ρ has been presented by Zakharov et al.
[24].

Typical LSI systems use exposure times (T ) longer than the
dynamic scatterers decorrelation time (τc ), and interframe times
(Δt) longer than the exposure times. Interframe time represents
the time between the acquisition of one frame and the next one.
Considering this, the relation Δt > T >> τc can be stated.

This relation proves that, between consecutive frames, all
the dynamic scatterers have been completely decorrelated
(g1d(Δt) ≈ 0) because their decorrelation time is much lower
than the interframe time. Therefore, the correlation between
consecutive frames appear only due to the presence of static
scatterers. By substituting this proposition in (16) we obtain

g2(Δt) = 1 + βρ2 (26)

where g2(Δt) is equivalent to the 2-D-correlation coefficient
between two consecutive frames. Since the static scatterers dis-
tribution is not homogeneous in the tissues, the ρ values should
be computed locally, i.e., in regions of interest smaller than the
image. The computation area is defined by the researcher. The
initial proposition of this analysis invalidates its use when high-
speed systems are used like the one proposed in [29] and [63].
This type of systems has interframes times much lower than the
exposure time. In this case, a traditional analysis of the sample
should be performed in advance to compute the values of ρ.

E. Exposure Time

The exposure time is another practical key factor that in-
fluences the final results of an LSI system. Different exposure
times are sensitive to different scatterers velocity. For example,
shorter exposure times are more suitable to analyze fast-moving
scatterers [64]. This is a very intuitive notion because, at short
exposure times, only rapid movements will cause blurring.

Some works have been published [42], [64] in order to deter-
mine the optimal exposure times to use in biomedical applica-
tions. Yuan et al. [64] proposed that, for single-exposure time
LSI, its value should be ≈5 ms. They showed that the relative
sensitivity of speckle contrast is maximum when T/τc > 1.8
but also that the SNR decreases with the increase of exposure
time. Their experiments dealt with cerebral blood flow (CBF).
Single-exposure time systems can be found in the literature with
many different exposure times. A tendency to use exposure times
between 1 and 20 ms is noticed [65]–[70]. The most used LSI
commercial devices are the moorFLPI (Moor Instruments—U.
K.) and Pericam PSI (Perimed AB—Sweden). The exposure
time of the moorFLPI can be set to 1, 2, 4, or 8.3 ms [71].
Pericam PSI uses a fixed exposure time of 6 ms.

Kazmi et al. [42] have performed an intensive study on the
optimal exposure time and its optimization to decrease the ac-
quisition time. The study started by using 15 exposure times
ranging for 50 μs to 80 ms and the authors evaluated τc with a
multiexposure speckle imaging (MESI). After that, the redun-
dant exposure times were eliminated and a final optimal set of
six exposure times was determined as 50 μs, 0.25, 0.75, 5, 25,
and 80 ms.

This optimal set can be plotted as a logarithmic scale: short
increases in the shorter exposure times and large increases in
larger exposure times. This is an expected result because, for
τc in physiological values, the dK(T )/dT is higher for lower
exposure times. In addition to these intensive studies, several
exposure times ranges can be found in the literature, for example
from 50 μs to 80 ms [22], [25], [34], from 50 μs to 30 ms [41],
and from 200 μs to 20 ms [29].

As the exposure time becomes shorter, less photons are de-
tected by the imaging sensor, which decreases the SNR. In
conclusion, both too high and too short exposure times decrease
the SNR, but for different reasons. Add to this: 1) the fact that
to increase the speckle size the imaging iris must have a small
aperture (some works reported the use of f/6 [48] and f/4
[72]), and 2) the polarizer that is often used in front of the imag-
ing sensor reduces the number of detected photons. These facts
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make necessary the use of high light irradiance to illuminate
the tissues in order to achieve acquisitions with short exposure
times (<1 ms).

A pertinent question then arises: Can the optimal expo-
sure time be dependent on the analyzed tissues? Most LSI
applications are related with high perfused tissues (see Sec-
tion VI) like the fore brain or the cornea. Additionally, most of
the studies that try to optimize LSI are performed in this kind
of tissues. In contrast, the analysis of skin, which is a much less
perfused tissue, is also a major application of the LSI. There-
fore, the optimization studies should also be performed for this
kind of tissue.

IV. LSI TECHNIQUES

Different LSI techniques have been developed since 1981.
The LSI started with analog devices using only single-exposure
times to assess the blood perfusion. In the 1980’s, there was a
well-established technique for blood perfusion assessment, the
laser Doppler flowmetry (LDF). The research on laser speckle
slowed down for many years due to its lack of performance
compared with laser Doppler. However, the emergence of digital
devices boosted the capabilities of LSI making it an attractive
field of investigation.

A. Single Exposure

Single exposure LSI is a technique that is based on the com-
putation of the laser speckle contrast [see (1)] by using one or
more images acquired with a fixed exposure time. The contrast
of these images is then related with the decorrelation time by a
direct application of the expressions presented in Section II.

The pioneer work from Fercher and Briers [17], [19] pro-
posed, for the first time, the use of laser speckle effect as a
tool for microcirculation assessment. They used a photographic
camera to image the retina during laser light illumination. The
large exposure time (166 ms) and a completely analog imaging
system caused problems to the technique despite its promising
results.

The works of Fujii et al. [73], [74] were an improvement of
the original technique because they used a linear CCD to image
blood flow in the hands and fingers. This system required the
use of a laser scanning system, composed of a moving mirror, in
order to acquire perfusion maps (2-D blood flow images). Later,
Tamaki et al. [75] used a CCD array to produce speckle images
of the retina using a blue laser (488 nm). This time, the contrast
was not computed spatially, as it has been done before, but it
was computed temporally.

The milestone in the LSI occurred in 1996 with the work
of Briers and Webster [15]. This paper proposed, and used
for the first time, the acronym LASCA to define the analysis
of laser speckle images using contrast computation for blood
perfusion measurements. Even today, single-exposure LSI is
widely used as a research tool because its results, although only
quantitative, are conclusive and reliable [33], [65], [76], [77].
Single-exposure LSI has advantages over the traditional blood
flow techniques (e.g., LDF), namely its capacity to perform flow
maps (2-D images) at a reasonable cost.

B. Multiexposure

With the demand for a more quantitative LSI instrument, an
improvement of the original technique emerged more recently
[25]. This technique computes the contrast in multiple images,
acquired with different exposure times, to perform a more ac-
curate estimation of τc . Consequently, several position vectors
(K,T ) are computed leading to the possibility to represent the
K(T ) function as a curve. Finally, this curve can be fitted using,
for example, the least-squares method, and the parameter τc is
extracted as the fitting variable.

The newer high-speed LSI devices [29], [63] adopt a different
technique to produce multiexposure using only one exposure
time. These systems can produce really high frame rates (up
to 15 k images/s) with low exposure times (<70μ) and an
interframe time so small that it can be neglected. The use of
a highly sensitive imaging sensor, like an array of avalanche
photo diodes, allows to emulate larger exposure times by simply
summing the signals for each individual frame.

The current main line of research in the LSI technique is
related to MESI systems [22], [26], [29], [30], [34], [46], [55],
[78]. These custom systems have been developed by several
researcher groups to perform a proof of concept and preclinical
studies and their results are encouraging. Commercial devices
only use single-exposure laser speckle [38]. However, the strong
commercial interest of the MESI technique could conduct to a
fast update of the existing devices or to the development of new
imagers.

V. CONTRAST COMPUTATION ALGORITHMS

The evolution of the theory, instrumentation, and techniques
was associated with the development of different ways to com-
pute the laser speckle contrast. These methods can be classi-
fied into three categories: s-K, t-K, and, a combination of both,
spatio-temporal (st-K) [18].

A. Spatial Contrast

The s-K was used in the work of Briers and Webster [15] and
consists in computing the contrast in small regions (elements)
of the laser speckle raw image. Normally, these elements corre-
spond to squares of 3 × 3 [12], 5 × 5 [48], [79] or 7 × 7 [15]
pixels. The general equation to compute s-K in raster images
can be expressed as [18]
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where μs
i,j,t is the mean intensity value in the element with a

central pixel in the coordinates (i, j, t), n is the lateral size of
the element, and Ix,y ,t is the raw speckle value in the respective
coordinates. Finally, Ks

i,j,t is the contrast value associated with
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Fig. 6. Illustration of the elements to compute contrast. The element is represented by blue squares. Pink squares represent the boundaries where
the computation of contrast requires padding. Curved arrows were used to indicate the element displacement directions. (a) s-K. (b) t-K. (c) st-K.

the element centered in (i, j, t). Attention must be given to the
boundary of the image since it is impossible to evaluate (I) at
negative coordinates. Two possible solutions can be applied: 1)
exclude the outer borders of the image from the analysis or 2)
using padding techniques for the outer borders of the images.

Fig. 6(a) illustrates an s-K element with size 3× 3 pixels (blue
square) with a central pixel (x, y, t) = (i, j, 1). The pixels col-
ored in pink represent the image boundary in which the contrast
computation can only be computed using padding techniques.
This boundary depends on the element size and is typically
(n − 1)/2 rows and columns. The s-K element is then moved
along the x- and y-directions to compute a contrast 2-D map.
The element displacement is often used without overlapping.

Laser speckle contrast is a statistic measure because it is
related to the mean and the standard deviation of the speckle
image intensity [see (1)]. Therefore, the larger the element,
i.e., the processing region, the better the contrast estimation.
However, the increase of the element size causes a decrease in
the spatial resolution of the contrast images and, therefore, of the
perfusion map. Larger sizes can be used when high-resolution
laser speckle images are acquired and the spatial resolution is
not a key factor.

To select a correct element size, it is necessary to take into
account the speckle size present in the raw images (see Section
III-A). To estimate the contrast in a statistically relevant num-
ber of speckles, the element size should be proportional to the
speckle size. Consequently, when the value of pixels/speckle is
high, larger elements should be used. Duncan et al. [80] stud-
ied the relation between speckle size and element size but their
analysis, in our opinion, is not clear about the relation between
speckle size and the optimal element size.

B. Temporal Contrast

Another type of algorithm was proposed by Cheng et al. [79]
in order to improve the spatial resolution. The t-K is computed
by using a set of statistically independent frames. These frames
can only be consecutive when the interframe times (Δt) is large
enough which, as stated early, does not occur in high-speed sys-
tems [29], [63]. The minimum number of frames (m) that should
be used, in the computation of the t-K, to obtain a valid statistic

is 15 [43]. The maximum number of frames only depends on the
minimum admissible temporal resolution but references can be
found that use up to 49 frames [18]. The t-K can be computed
using [18]
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where μt
x,y ,l is the temporal mean of the element with central

pixel in (x, y, l) and size 1 × 1 × m pixels, Kt
x,y ,l is the t-K

within this element.
Fig. 6(b) illustrates the application of t-K algorithm with an

element of size 1 × 1 × 3 and centered in the pixel (x, y, t) =
(1, 1, l). This element is displaced along the temporal direction
(t) until the last frame. Subsequently, this element is moved to
another pixel, i.e., to another location in the first image.

The t-K reduces the temporal resolution while the s-K re-
duces the spatial resolution. To select the suitable algorithm, it
is important to have in mind which dimension (spatial or time)
is the most important to preserve. Additionally, t-K proved to
accurately estimate contrast in the presence of static scatterers
[81]. Ramirez-San-Juan et al. [82] recently showed in vitro that
the values computed with the t-K algorithm are independent of
the static scatterers layer thickness.

The use of t-K has increased due to the advantage of dealing
with static scatterers [25], [83]. In our opinion, temporal laser
speckle contrast should be applied in the case of a speckle size
equal to the pixel size. The use of t-K with larger speckle size
(e.g., 2 pixels/speckle) will cause a decrease in both the spa-
tial and temporal resolutions without improving the t-K values
[25]. Nevertheless, one study [56] suggests that the increase
of speckle size causes an increase in speckle contrast for both
spatial and temporal algorithms.

We would like to propose the hypothesis that, using fast imag-
ing systems, the t-K can be used for very short exposure times
(T ≈ 50 μs). By this method, the t-K information will come
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from the time variations of a single pixel, and not from the
“blurring” of an image region. The shorter the exposure time,
the better the speckle sampling will be. In the case of short ex-
posure times, a static speckle will appear with approximately
the same intensity along several images, leading to low σ and
low contrast. Additionally, a moving speckle will appear with
different intensities due to changes in the interference of the
light leading to high σ and high contrast. This is exactly the
inverse of the s-K. This new interpretation of the contrast could
be related with the scatterers decorrelation time. This hypoth-
esis falls from the Nyquist theorem which states that signals
must be sampled with, at least, twice their maximum frequency.
Further studies to refute or confirm this hypothesis need to be
conducted.

C. Spatio-Temporal Contrast

A combination of both spatial and temporal algorithms can
be applied to compute the speckle contrast [84]–[87]. The used
element is usually a cuboid [see Fig. 6(c)] that can be isotropic
or anisotropic. The expression for the st-K computation is not
presented due to page limitation but its deduction is trivial.

Fig. 6(c) illustrates the application of the st-K with a cubic
element with size 3 × 3 × 3 pixels and centered in the pixel
(x, y, t) = (i, j, l). This element is displaced in the spatial and
temporal dimensions. Different sizes of elements can be used to
compute st-K. For example, Duncan and Kirkpatrick [85] used
an element size of 3 × 3 × 15 (Nx,Ny,Nt ) pixels. Usually,
anisotropic elements are used in which the spatial dimensions
are equal and the temporal dimension is different. The tempo-
ral dimension of the element is usually larger than the spatial
dimensions to ensure good statistical time evaluation.

Qiu et al. [86] studied the effect of the temporal dimension
of the element. They used elements with spatial dimensions of
3 × 3 and 9 × 9 pixels and a temporal dimension range from
3 to 30 pixels. This study found that the mean value of the
contrast (μst) depends on both the spatial dimensions and the
temporal dimension and, for practical applications, a 3 × 3 × 15
pixels (anisotropic) or a 5 × 5 × 5 (isotropic) pixels elements
are recommended.

Alternatively, Rege et al. [84] proposed a different approach
for anisotropic st-K. Their method uses an element with the same
orientation as the analyzed blood vessel with dimensions of 9 ×
1 × 3 pixels for Nx , Ny, and Nt , respectively. The requirement
of only three temporal frames increases the temporal resolution
of this method compared with the standard elements used in
st-K.

VI. BIOMEDICAL APPLICATIONS

Multiple biomedical applications can be found for LSI. This
section is a short compilation of some practical studies and their
conclusions. A more extensive review on applications can be
found in [1], [30], [31], [36], [77], [88].

A. Microcirculation—Blood Perfusion

Historically, LSI was used to assess blood perfusion and blood
flow, mainly for retinal and cerebral applications (CBF). These

are the perfect applications for LSI because the blood vessels
are close to the tissue surface leading to high SNR.

LSI was used to study the influence of collateral blood flow
during an ischemic stroke in rats [89]. A single-exposure LSI
(T = 15 ms) was used with a spatial speckle contrast computed
from elements of 5 × 5 pixels. The authors reported that, after
the vessel occlusion, extensive anastomatic connections were
formed to augment blood flow. Moreover, it has been shown
that, using single-exposure LSI (T = 20 ms), hyperglycemia
worsens the effect of a cerebral stroke in rats [90]. A LSI system,
with fixed exposure time (T = 5 ms), has been used during
human neurosurgery in order to monitor the CBF. This system
allows to represent online perfusion maps without interference
with the surgery [91]. Additionally, MESI (exposure times 1–
100 ms) was used to study the cortical microcirculation of piglets
during the application of various vasodilators [92]. Finally, a
dual wavelength LSI was used to assess brain hemodynamics
and CBF [93].

Retinal blood analyses is also a major application of an LSI.
A single-exposure LSI (T = 40 ms) has been used to image the
retinal blood flow [94] during light stimulation. It has been found
that flickering light dilated retinal arterioles and increases reti-
nal blood velocity. Furthermore, changes in retinal blood flow
according to the position (sitting or supine) were also studied
using LSI [95]. Change from a sitting position to a supine posi-
tion causes an increase in blood flow during 6 min. Moreover,
Ponticorvo et al. [96] have combined single-exposure LSI (T =
5 ms) with an endoscope to analyze retinal blood flow changes in
rats. They concluded that the blood flow increases during visual
stimulus and hypercapnia while it decreases during hyperoxia.

Skin perfusion assessment represents another research field in
which LSI is widely used. Rege et al. [72] used a single-exposure
LSI (T = 16 ms) to assess the microvascular remodeling during
wound healing. They found that microvessel density increases
in the initial tissue inflammation and returns to baseline during
the remodeling stage. Moreover, others have detected lower lev-
els of peripheral blood perfusion in systemic sclerosis patients
compared with healthy subjects, using single-exposure LSI
(T = 6 ms) [97], [98]. Domsic et al. [99] found that the early
endothelial changes occur in the small arterioles and capillaries
of early systemic sclerosis patients. Furthermore, LSI has been
used to assess the microvascular function in primary Raynaud’s
phenomenon and atherosclerosis [100], [101]. Finally, Cordovil
et al. [102] used LSI to assess the skin of the forearm and
found that, in cardiometabolic disease patients, the vasodilator
responses were significantly reduced.

B. Macrocirculation—Blood Pressure

Apart from the original applications of LSI in blood flow
measurements, new applications in the assessment of macro-
circulation begin to emerge. LSI has been used to remotely
estimate the blood pulse pressure waveform in the radial artery
[2], [103], [104], carotid artery [105], and tooth [106]. Addi-
tionally, LSI was used to detect the blood pulsation in pres-
ence of motion artifacts [107]. Measurements were performed
in the finger and images were processed using contrast and
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correlation. Finally, CBF in rats was synchronized with cardiac
cycle using LSI [66]. This synchronization allows the correction
of pulsation-modulated speckle contrast signals.

VII. LIMITATIONS

Laser speckle has proven to be a simple and very versatile tool
that can be applied in many fields of investigation and clinical
studies. However, two major limitations of LSI systems need to
be addressed.

A. Absolute Velocity Estimation

Interstudies evaluation is impossible to perform when quali-
tative laser speckle methods are used. This occurs because LSI
acquisition protocols do not follow a standard and only arbitrary
perfusion units or percentage variations are analyzed.

The absolute velocity of scatterers is extremely difficult to
measure and depends on several factors [16], [30], [108]. These
factors have been discussed above and include the nonperfect
light polarization, multiple scattering, static scatterers, speckle
spatial averaging, approximated velocity models, and the rela-
tion between velocity, and decorrelation time. However, Li et al.
[62] claim to achieve direct measurements of the scatterers ve-
locity with a frequency domain LSI (FDLSI) technique. This
technique is based on the determination of τc using the Fourier
transform of the intensity, similarly to the laser Doppler tech-
nique. The results from FDLSI are promising and should be
followed.

The influence of the blood vessel caliber in the τc determi-
nation is also a major issue in the absolute velocity estimation
and it has been studied by some authors [34]. The probability
of having multiple scattering is higher with large caliber blood
vessels compared with small caliber blood vessels [109]. The
occurrence of different scattering degrees may cause a poor es-
timation of τc . In Kazmi et al. work [34], they suggest that τc is
proportional to the product between the blood velocity and the
blood vessel diameter. Moreover, the scatterers concentration
has impact on the estimated contrast, but only in lower ranges
[110].

Based on these grounds, LSI is represented in arbitrary units
which can have different definitions. These arbitrary units can be
expressed as the contrast value, the decorrelation time (τc ) [36],
the speckle flow index [67], the inverse correlation time [34], the
relative flow volume [111], and the percentage of the baseline
[76]. Different techniques to achieve an estimation of red blood
cells velocities have been proposed by using calibration with
phantoms [62], [112] or other systems [22], [113], [114].

To solve this issue, future works should be focused on the
improvement of theoretical models. Accounting for the mul-
tiple scattering that occurs in biological tissues, clarifying the
relation between decorrelation time and scatterers velocity, and
approaching the experimental conditions to the theoretical as-
sumptions are essential subjects to be studied [77].

B. Deep Assessment

The second limitation of LSI is related with the maxi-
mum depth that produces laser speckle contrast information.

According to some authors [115], the penetration of the pho-
tons in LSI standard techniques is about 300 μm. Alternative
techniques, like LDF, can achieve assessment depths up to about
900 μm [116].

To improve the penetration depth of LSI several studies have
been performed recently [65], [109], [117]–[120]. These studies
present novel LSI techniques, in most of the cases with hardware
changes. For example, He et al. [118] used a linear laser scan-
ning system to collect speckle images. In each image, only the
zones distant from the laser illumination are used to compute
the contrast image. The light that is refracted in areas farther
from the penetration zone reaches deeper tissues. This is the so-
called “banana path” [65], [121]. This technique takes advantage
of the same principle as diffuse correlation spectroscopy [122].
Bi et al. [117] have used the same principle but with a point-like
laser light source that illuminates the tissue outside the imaging
system field of view. The pixels, in the imaging system, farther
from the illumination point record photon arising from deeper
tissues. Finally, Varma et al. [65] proposed a speckle contrast
optical tomography that can render 3-D volumes of flow infor-
mation.

These types of techniques work in a complete multiscattering
regime, which, in our opinion, may limit the use of the theoret-
ical analysis presented in Section II because it assumes a single
dynamic scattering regime. More studies should be conducted
to conclude if the single scattering approximations performed
in the laser speckle contrast theory are valid even in these new
LSI techniques.

VIII. CONCLUSIONS AND FUTURE TRENDS

LSI is a powerful technique that is evolving fast both in
the application of new theories and the development of new
instruments. This review presented a critical analysis of the
LSI principles and a clarification of some ideas, that we be-
lieve, are not well explained nor compiled in the available
literature.

The resolution of the limitations presented in Section VII are
two of the future trends in LSI. Additionally, Humeau-Heurtier
et al. [77] point the possibility to perform blood perfusion mea-
surements in moving subjects. This could be a major advance
because vascular diseases are often displayed during exercise
and in patients having involuntary movements, e.g., Parkinson
disease.

Furthermore, the combination of LSI data with other mi-
cro/macro circulation assessment techniques could improve the
diagnosis of vascular diseases. The application of automatic
classifiers like neural network or support vector machine to fea-
tures extracted from multiple information sources have been
applied in other areas [123]. This could help improving diagno-
sis and the SNR of LSI.

Moreover, MESI is a recent technique (2008) which is only
available in prototypes. Several questions and improvements,
which were detailed in this review, are still possible for MESI.
Among them we can cite the establishment of standards in order
to make possible the comparison of results in studies performed
with different laser speckle systems [77].
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The clarification of subjects like: 1) the approximations be-
hind the laser speckle theory, 2) the differences between the
Lorentzian and Gaussian motion models, 3) the optimal speckle
size for each processing algorithms, 4) the experimental pro-
cesses to compute the normalization constant β and the static
scatterers coefficient ρ, and (5) the influence of the exposure
time, was performed in this review.

The technical advantages of LSI improve the realization of
clinical studies in microcirculation. The possibility to obtain 2-D
perfusion maps with high frame rates and at reasonable cost is
a key factor to make this assessment technique highly competi-
tive. Because of these advantages, LSI has been widely used in
biomedical applications but much more fields will certainly be
explored in the future.
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[76] G. Mahé, A. Humeau-Heurtier, S. Durand, G. Leftheriotis, and P. Abra-
ham, “Assessment of skin microvascular function and dysfunction with
laser speckle contrast imaging,” Circ. Cardiovasc. Imag., vol. 5, no. 1,
pp. 155–63, Jan. 2012.

[77] A. Humeau-Heurtier, E. Guerreschi, P. Abraham, and G. Mahé, “Rele-
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