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Abstract Third generation terrestrial interferometric gravitational wave detectors
will likely require significant advances in laser and optical technologies to reduce
two of the main limiting noise sources: thermal noise due to mirror coatings and
quantum noise arising from a combination of shot noise and radiation pressure noise.
Increases in laser power and possible changes of the operational wavelength require
new high power laser sources and new electro-optic modulators and Faraday isolators.
Squeezed light can be used to further reduce the quantum noise while nano-structured
optical components can be used to reduce or eliminate mirror coating thermal noise
as well as to implement all-reflective interferometer configurations to avoid thermal
effects in mirror substrates. This paper is intended to give an overview on the current
state-of-the-art and future trends in these areas of ongoing research and development.
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1 Introduction

The next generation of ground-based interferometric gravitational wave detectors such
as Advanced VIRGO and Advanced LIGO will be limited by thermal noise, quantum
noise, and environmental low frequency noise such as seismic and Newtonian noise.
Their ultimate sensitivity will be a compromise between low and high frequency per-
formance [1]. Low power operation (∼20 W) reduces radiation pressure noise and
the optical spring effect, resulting in improved low frequency sensitivity between 10
and 30 Hz while sacrificing high frequency sensitivity above ∼200 Hz. Higher input
power (∼120 W) has the opposite effect—it will improve the shot noise limit at high
frequencies at the expense of increased radiation pressure noise at low frequencies.

From these fundamental considerations, it is likely that 3rd generation detectors
have to compromise as well and that it will be necessary to build multiple detectors
with overlapping frequency regions [2] to effectively cover the entire audio band. The
’xylophone’ concept of co-located detectors could be realized with simple suspension
systems in the current vacuum envelope of the LIGO and VIRGO detectors. In the high
frequency range, more laser power and squeezing [3] are the tools of choice to reduce
the shot noise limit. In addition, narrow-band signal recycling can further improve the
sensitivity at specific frequencies at the expense of other frequencies outside of the
bandwidth of the signal recycling cavity [4]. High frequency interferometers would
improve the sensitivity at high frequencies where thermal noise falls below shot noise,
however this requires more laser power and better power handling capabilities in the
entire interferometer optical chain. Limitations in potential power build up inside the
interferometer can then be overcome by more signal recycling gain (at the expense of
detector bandwidth) and the need for additional narrow-band signal-recycled detectors
and by squeezing. The implementation of squeezing requires the development of low
loss Faraday isolators.

At lower frequencies, the answer is not as simple. Larger test masses will reduce
radiation pressure noise but even the second generation detectors are only limited by
radiation pressure noise in a small bandwidth (∼15–30 Hz). Below ∼10 Hz envi-
ronmental noise sources become the limiting factor; the most fundamental of them,
Newtonian (or gravity gradient) noise, is independent of the masses of the mirrors. Any
increase in the masses requires a decrease in thermal noise to take advantage of the
heavier mass [5], as well as improvements in suspension and seismic isolation systems,
and finally reductions of Newtonian noise [6] by going to seismically quiet under-
ground sites as well as adaptive sensing and cancellation of Newtonian noise. While
improvements in suspension and seismic isolation systems and techniques to reduce or
subtract Newtonian noise are unlikely to impact laser and optics development, substan-
tial reductions in coating thermal noise may require changes in the laser wavelength.

Coating thermal noise is proportional to the thickness of the coatings and inversely
proportional to the beam area. Standard coating layers have a thickness of λ/4n, where
λ is the free space wavelength of the laser. As the index of refraction n of most coating
materials is relatively constant in the near infrared (NIR) and visible spectral regions,
coating thermal noise for a given beamsize is to first order proportional to λ. However,
for the same cavity g-parameters, the beam area also scales as and the thermal noise is
essentially independent of the wavelength. Shorter wavelength would allow to reduce
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the mirror size without increasing the thermal noise. This has potential applications
in a xylophone type arrangement where multiple co-located detectors could cover the
high frequency GW-band. One additional problem for the use of shorter wavelengths is
the increased potential for photochemistry at the coating surfaces. The primary reason
to consider a longer operational wavelength is in conjunction with the use of silicon as
a test mass material. Silicon has very low absorption (<1 ppm/cm at λ > 1.35 µm), has
very low mechanical losses, is available in large sizes (potentially up to 100/kg masses)
and is in principle the ideal test mass material. Silicon can also be used as a coating
material. Its large index of refraction (n = 3.48) would reduce the thickness of each
silicon layer and, paired up with a low index coating material such as Si O2(n = 1.44),
the required total number of layers would also be less than current optical coatings.
Consequently, it is possible that the laser wavelength could either increase or decrease
in third generation detectors.

This paper presents an evaluation of the current state-of-the-art in laser sources and
optical components and discusses their extension to third generation ground-based
detectors. The paper is organized as follows. In the next section, we give an overview
of high power lasers and examine the possibilities for development of high power,
stable sources at different wavelengths. Section 3 focuses on electro-optic modulators
and Faraday isolators, with an emphasis on examining the available electro-optic and
magneto-optic materials for short and long wavelength operation. Section 4 discusses
novel trends in nanostructured optics for high power and low thermal noise operation.
Section 5 presents squeezed light as a possible route to improved high frequency per-
formance and summarizes the current status of squeezing as well as improvements
needed for 3rd generation detectors.

2 Light sources

The current and the next generation of gravitational wave detectors use Nd:YAG lasers
at λ = 1.064 µm with output powers of up to 200 W. The Advanced LIGO laser [7]
consists of a four stage Nd:YVO amplifier system used to increase the 2 W power
of a Nd:YAG non-planar ring-oscillator (NPRO) to 35 W, followed by an injection-
locked Nd:YAG end-pumped rod ring cavity for final high power amplification. An
output power of more than 210 W has been demonstrated in a linear-polarized, nearly
diffraction limited, single-frequency operation [8]. The frequency stabilization of the
laser will be accomplished by nested control loops beginning with a rigid-spacer ref-
erence cavity, followed by a longer mode-cleaner and the recycled interferometer as
frequency references. Spatial filtering of the 200 W beam with a rigid spacer ring
cavity will be used to bring the higher order mode content of the laser beam down to
an acceptable level. The most demanding part of the laser stabilization is the relative
power noise requirement of RPN ≤ 2 × 10−9/

√
Hz at a frequency of 10 Hz. This sta-

bility level has been recently achieved in a demonstration experiment using an NPRO
with a multi-photodiode sensor and a sophisticated optical and electrical design [9].

The laser sources required for third generation detectors depend strongly on
the optical configuration chosen. All-reflective interferometers have much higher
power handling capabilities than current designs with transmissive optics. Sagnac
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interferometers [10] could operate with a laser source having low temporal coherence
whereas configurations with optical cavities require a highly frequency stabilized laser.
As noted above, coating thermal noise considerations might require a shorter wave-
length whereas interferometers with transmissive silicon optics require lasers with
longer wavelength. In addition, the preferred spatial beam profile might not be a fun-
damental Gaussian distribution but rather a flat-top profile or a higher order Laguerre
Gaussian mode [11]. Even though thermal loading of the interferometer might ulti-
mately limit the maximum power level in the interferometer, an increase in the laser
power might eliminate the need for a power recycling mirror or reduce its reflectivity. In
addition to this wide range of possibilities, several types of laser topologies as master-
laser power-amplifiers (MOPA), injection-locked systems or a mixture of both can be
used to accommodate different types of gain-medium geometries such as slabs, rods,
fibers or discs. Hence no definitive statement on the laser source for third generation
detectors can be made and here we will only highlight some design considerations.

At the present time the Nd-doped YAG (Nd:YAG) gain medium is the best choice
for 100 W class lasers. However, if kilowatt-class lasers are required for future detec-
tors Yb-doped YAG, which lases at 1,030 nm, may replace Nd:YAG because of its
higher efficiency, lower quantum defect, better thermal management prospects and
potentially longer-lived laser diode pumps. Its main disadvantages are i) that it is
a quasi-3-level system and thus more sensitive to increased temperatures within the
gain medium, and ii) that it has a much lower pump absorption coefficient.

Different design concepts have been proposed to produce lasers with power levels
of several hundreds of Watts and to amplify these systems into the kilowatt region. The
main concerns are the thermal management in the gain material to avoid stress-fracture
damage and to reduce beam aberrations. A proven method for reducing aberrations
uses a zig-zag beam path to average over the thermal gradient in the laser crystal [12].
Edge-pumped slab geometries can be combined with conduction-cooling techniques
which avoid vibrations introduced by cooling fluids in conventional layouts [13,14].
One of the main challenges in using slabs is to avoid high gain parasitic beam paths.

Efficient birefringence compensation methods can reduce problems caused by
depolarization and by defocusing in the gain medium due to thermal gradients. The
power range in which rod geometries can be compensated can extend to several hun-
dred watts. Besides ’treating’ the effects caused by the thermal gradients there are
several ideas to reduce these gradients. By using multi-segmented laser rods, the
maximum peak temperature of an end-pumped laser rod or slab can be reduced. To
decrease the overall heat load in Nd:YAG laser media, the pump wavelength can be
changed from 807 to 885 nm which reduces the quantum defect and therefore the over-
all heat load by more than 30%. Core-doped rods can be used to achieve an easier and
more stable fundamental mode operation. These rods are comparable to a double clad
fiber [15] where only the inner core of the rod is doped and the outer core is used as
a waveguide for the pump light. As the gain is present only in the doped inner core of
the rod, this concept is similar to mode selective pumping with the added advantage
that a high brightness pump source is not required.

Optical fiber amplifiers have a great potential to offer single-frequency output at
higher efficiencies and at lower cost than solid-state amplifiers at similar power lev-
els (see [16] for an overview of high power fiber lasers). Until several years ago,
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diode-pumped fiber amplifiers were limited to power levels of several Watts due to
the lack of high power single-mode pumps and to nonlinear effects in the fiber such
as stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS). The
introduction of large mode-area double-clad (LMA) fibers and of photonic crystal
fibers (PCF) has enabled output powers of single-mode fiber lasers to exceed 1 kW
while retaining excellent conversion efficiencies [17]. The large effective core of these
fibers decreases the average intensity in the fiber and thereby increases the threshold
of nonlinear processes. The large inner cladding of the double clad fibers allows high
power multi-mode pumps to be coupled into the fiber. Bending losses can be used
to ensure that the output remains single-mode despite the large size of the core. The
limiting factor for narrow-linewidth high-power fiber lasers for future use in gravi-
tational wave detectors is the onset of SBS. A state-of-the art system with 150 W of
output power with a good output beam profile (92% in TEM00) is described in [18].
The optical-to-optical efficiency of this system with respect to incident pump power is
78% for a 195 W pump source. A good polarization ratio of approximately 100 to 1 has
been achieved. Novel ideas to increase the SBS threshold are currently under inves-
tigation. One promising concept is to shift the Brillouin frequency along the fiber to
lower the effective Brillouin gain for each frequency component. This can be achieved
by temperature or strain gradients or varying doping concentrations along the fiber.
In addition to the need to reduce nonlinear scattering, the reliability and noise perfor-
mance of high power fiber lasers need to be further analyzed and possibly improved
to meet the requirements of third generation detectors. One major advantage of fiber
lasers is their compact physical footprint and simple, single stage architecture when
compared with complex solid-state laser systems. Modern fiber splicing techniques
can produce an all-fiber system including the master oscillator, the high power stage
and possibly even a mode-cleaning fiber segment if required.

Considering longer wavelength, Erbium-doped fiber lasers emit around 1.53 µm
where the absorption in silicon is expected to be less than 0.1 ppm/cm [19]. The cur-
rent state-of-the-art Er fiber systems include a master laser and a fiber amplifier and
achieve output powers of 20 W [20] and much higher power levels are expected in the
near future.

With respect to shorter wavelengths, lasers which emit directly in the visible include
gas lasers (e.g. Argon ion) and dye lasers but their efficiency, reliability, controllability
and noise performance rule them out as suitable lasers for gravitational wave detectors.
Frequency-doubled Nd:YVO lasers operating at 532 nm are commercially available to
powers approaching 20 W, but have not been actively stabilized to required levels for
gravitational wave interferometers. In case the interferometer design requires tunabil-
ity or several closely spaced wavelengths Ti–Sapphire lasers could be chosen either
at their fundamental wavelength (650–1,070 nm ) or in a frequency-doubled layout.
Frequency doubling or even tripling of high-power near-infrared lasers are a more
promising option to provide high power sources at shorter wavelength. An attractive
approach is the external second-harmonic-generation (SHG) in quasi-phase-matched
ferroelectric materials such as MgO-doped periodically poled LiNbO3 (MgO:PPLN),
MgO-doped periodically poled stoichiometric LiTaO3 (MgO:sPPLT) and periodically
poled KTiOPO4 (PPKTP). Green power levels of 16 W have been demonstrated by
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the conversion of a solid-state laser [21] and almost 10 W were achieved in a SHG
experiment using an infrared fiber laser [22].

As many different applications drive the laser development worldwide, many laser
concepts at different wavelength and power levels are available. Depending on the
requirements of third generation gravitational wave detectors one of these designs
can be chosen as the baseline for the light source. However, there is currently no
application which has similar stringent requirements on the temporal and spatial sta-
bility as gravitational wave detectors. Hence a specific laser development program
for third generation detectors will be required to design and build a reliable laser
with sufficiently low free-running noise, an appropriate spatial beam profile and good
controllability.

3 Electro- and magneto-optical components

The development of high power lasers at different wavelengths must be accompanied
by the development of electro- and magneto-optical components capable of operating
reliably at the increased powers. In current and next-generation gravitational wave
detectors, electro-optical modulators are used to modulate the phase of the laser field
with frequencies in the 5–100 MHz range. The generated RF-sidebands are used to
sense the various longitudinal and angular degrees of freedom of the interferome-
ter. In current interferometers, the modulators are placed in air before the in-vacuum
suspended mode cleaner(s). Therefore any distortions in the spatial profile or in the
polarization will be filtered by the mode cleaner. This relaxes some of the requirements
on the modulators significantly.

Faraday isolators are four-port optical components which use the Faraday effect
to allow for non-reciprocal polarization switching of laser beams. They are used in
current gravitational wave detectors in between amplifier stages of laser systems to
suppress the backward propagation of light from high power stages into low power
stages. These isolators transmit the power from the low power stages and are not as
critical as Faraday isolators which operate in-vacuum. The in-vacuum isolators limit
the amount of backward propagating light returning from the interferometer to pre-
vent coupling into the source laser and back into the interferometer through secondary
scattering. In addition, the returning light from the interferometer is routed to pho-
todiodes and position sensors to provide diagnostic signals for length and alignment
sensing and control. Faraday isolators have also been proposed for injecting squeezed
light into the output port of interferometers to achieve sensing noise reduction [23].

3.1 Electro-optical modulators

In gravitational wave detectors, electro-optic modulators (EOMs) must be able to
withstand the high laser powers without degrading the beam quality significantly. The
main problems encountered in high power applications are photorefractive damage and
variations in optical path length across the beam profile caused by the residual absorp-
tion of the laser beam. Photorefractive damage has a fairly well defined threshold in
specific nonlinear crystals and can be increased by doping the crystals. Variations of
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Table 1 Material parameters at 1,064 nm for four widely used electro-optical materials

LiNbO3 KTP RTP BBO
Uniaxial Biaxial Biaxial Uniaxial

ri j (max) (pm/V) 32 37 39 2.7

n j 2.16 1.84 1.85 1.66

β = dn j /dT (ppm/K) 39 15 11 −9.3

α j j (ppm/K) 15 9 13 4

κaa ( min) (W/mK) 5.6 2 3 1.2

γ (1/cm) 1.5 × 10−3 1.2 × 10−4 10−4 10−3

FOM (Wm/V) 2.7 × 10−3 2.1 × 10−2 4.1 × 10−2 2.7 × 10−4

The thermal properties of MgO:LiNbO3 are similar to the properties of LiNbO3 with the exception of the
photorefractive damage threshold. BBO is a potential candidate for shorter wavelength. These parameters
were extracted from several different references (see text and references) and should be used with caution as
several of these values depend also on the specific composition of the crystal. For example r33 of stoichiom-
etric (mole ratio Li/Nb = 1)LiNbO3 is 30% higher than of congruent (mole ratio Li/Nb = 0.946)LiNbO3
[26]

the optical path length (or equivalently short thermal lensing) are proportional to the
length of the crystal and can be used to define a preliminary figure of merit (FOM) for
various crystals:

FOM = 4πκ

α(ni − 1) + β

ri j n3
i

γ
(1)

For a given applied RF-electric field polarized in the j-direction and a laser field
polarized in the i-direction, the modulation index is proportional to the electro-optical
coefficient ri j and the index of refraction ni . The thermal lensing increases with the
thermal expansion coefficient α, the thermo-optical coefficient β = ∂n/∂T , and the
absorption coefficient γ . A large thermal conductivity κ helps to diffuse the absorbed
heat and reduces the thermal gradient [24].

This FOM does not incorporate damage threshold considerations (such as photo-
refractive damage) which limit the maximum allowed intensity in the crystals. An
additional complication in some crystals arises from different thermal conductivities
in the directions perpendicular to the propagation direction, creating a non-symmetric
or cylindrical gradient index lens which is more difficult to compensate. Many of the
material parameters even for widely used crystals vary in the open literature. Table 1
lists typical parameters for four types of crystals and also the derived FOM based
on these parameters. A discussion of nonlinear crystals for use in EOMs and their
potential application in high laser power interferometric gravitational wave detectors
as well as references to the material parameters follows.

LiNbO3

Lithium niobate (LiNbO3) is the most commonly used electro-optic material used in
phase modulators in the near infrared and is used in the first generation of gravitational
wave interferometers LIGO, VIRGO, GEO600, and TAMA. It is characterized by
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a fairly large electro-optical coefficient r33 and index of refraction. Estimates for the
thermal material parameters α and κ of LiNbO3 are listed in Table 1. It should be noted
that the values available in the open literature vary [25]1 and depend also on the Li/Nb
ratio [26]. Values for β can be calculated from the temperature-dependent Sellmeier
equation; coefficients for LiNbO3 can be found in Refs. [25,27]. Upper limits for the
absorption in LiNbO3 crystals are also given in Ref. [27].

Photo refractive damage thresholds for LiNbO3 crystals are usually too low for any
application involving high intensity laser beams. However, doping can increase the
threshold for the onset of photorefractivity in LiNbO3 crystals by several orders of
magnitude [28,29] without changing the electro-optical and thermal material param-
eters significantly. The most common dopant is magnesium oxide. Vendors quote
damage thresholds of 400 kW/cm2 for their MgO:LiNbO3 crystals [30]. Thus doped
LiNbO3 crystals such as MgO:LiNbO3 are potential candidates for medium power
detectors (20–200 W) although their FOM is still a factor 20 below the FOM of rubid-
ium titanyl phosphate, RTP (described in the next section). The transmittance of doped
and undoped LiNbO3 at shorter wavelengths decreases slowly until the UV absorption
edge of LiNbO3 near 310 nm [29]. The increased absorption will limit the potential
for applications of even doped LiNbO3 in the visible in interferometric gravitational
wave detectors.

The MTiOXO4-family

The MTiOXO4-family of nonlinear crystals (where the metal M can be K, Rb, or Cs
and X can be P or As) have fairly similar optical properties [31]. They have very
low absorption coefficients in the 1 to 2 µm region making them ideal for lasers and
interferometers working in this wavelength region. The first absorption band is typi-
cally around λ = 2.8 µm, likely caused by ionized O−H-molecules inside the crystal.
Additional absorption bands are caused by overtones of vibrational modes in the XO4
tetrahedra starting above 3 µm [32]. The UV-absorption edge of all crystals within the
MTiOXO4 family is near 350 nm [32]. Similar to LiNbO3, the largest electro-optical
coefficient in all MTiOXO4 crystals is r33. The MTiOXO4 crystals are all character-
ized by a very high damage threshold, including photorefractive damage which greatly
exceeds the damage threshold of LiNbO3 [33].

The most common crystal within this family is KTP. It has been commercially avail-
able for decades and has been extensively studied. Still, the thermal and thermo-optical
parameters available in the literature vary by ∼50% between different sources [34–
36], possibly due to difference in growth techniques. An absorption coefficient of γ =
1.21×10−4/cm was measured using laser calorimetry at 1.08 µm [37], although most
vendors quote higher absorption coefficients between 6 and 10 × 10−3/cm [36,38] at
1,064 nm.

An even higher optical damage threshold was reported for RTP [39]. It has also a
slightly larger electro-optical parameter and lower electrical loss angle as the mobil-
ity of the weakly coupled larger Rb-ions is smaller than the mobility of the weakly

1 Some values are within ∼20% of each other and others are vastly different. http://www.hilger-crystals.
co.uk/properties.asp?material=17.
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coupled K-ions [31]. The thermo-optical parameters found in the literature are also
not completely consistent [40–44]. The main advantage of RTP is its very low absorp-
tion coefficient. Raicol, the vendor which produces the Advanced LIGO RTP crystals,
gives an upper limit for the optical absorption of γ < 10−4/cm [45].

Scaling measurements of thermal lensing in RTP made at 100 W powers [44], RTP
crystals can safely be used below 1 kW laser powers at 1,064 nm. Beyond 1 kW fur-
ther reductions in the heat-generating absorption of RTP or the use of active thermal
compensation or passive thermal correction systems (see Sect. 3 below) might be
necessary. MTiOXO4-based modulators can probably be used at similar power levels
at 1.5 µm as the absorption in RTP (and also in KTP) is expected to be as low if not
lower than at 1.064 nm [45]. However, detailed thermal lensing and mode deformation
measurements for any of these crystals at high power levels at this wavelength have
not yet been performed to our knowledge.

The other isomorphs of the MTiOXO4-family such as KTA and RTA have also
fairly high optical damage thresholds and similar electro-optical, thermal, and thermo-
optical parameters when compared to KTP and RTP [31]. [46] quotes an absorption
coefficient of <500 ppm/cm for KTA identical to their absorption coefficient for RTP.
The absorption of all crystals in the MTiOXO4-family appears to be small enough
such that they can potentially be used between 1 and 1.5 µm possibly up to 1 kW
power levels.

Like most materials, optical absorption in the MTiOXO4-family increases when
the wavelength is reduced. Raicol measured absorption values of 2–4 × 10−3/cm at
532 nm for their RTP crystals [45]. This would limit the laser power to ∼50 W for
gravitational wave detectors assuming the same crystal length.

BBO

For wavelengths in the visible and near-UV regions, β-barium borate (BBO) and
its derivatives are often used. BBO is uniaxial and has a very high damage thresh-
old. Values larger than 3 kW/cm2 for cw-light have been quoted by multiple vendors
[47]. BBO has a negative thermo-optical coefficient which prevents self-focusing.
Its UV-absorption edge is around 190 nm. The main disadvantage is that its largest
electro-optical coefficient r11 is small compared to the other crystals. Unfortunately,
thermal and thermo-optic crystal parameters also vary in the literature. Sources quote
a factor of 10 difference in the thermal conductivities in the two directions parallel to
the beam propagation direction [35,48], which would cause substantial asymmetric
thermal lensing at kilowatt powers. However, other vendors quote larger and fairly
identical conductivities [49]. [48] gives an absorption coefficient of γ < 0.1%/cm for
λ = 1.064 µm. Optical absorption at shorter wavelength is also increasing to 1%/cm
at λ = 532 nm [26]. Based on this information, RTP appears to have a larger FOM at
λ = 532 nm than BBO mainly due to its much higher electro-optical coefficient. Only
at wavelengths near and obviously below the UV absorption edge of RTP will BBO
have a better figure of merit.

Obviously, there are many more non-linear crystals commercially available and
several promising types that are not commercially available yet. For the near infra-
red region, RTP and potentially its isomorphs KTP, KTA, RTA, or even CTA may
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present a very good choice for power levels maybe even beyond 1 kW. And as noted
previously, MgO:LiNbO3 might be a potential alternative at kilowatt powers. The key
parameter for all these crystals is the absorption coefficient. At shorter wavelengths,
the absorption in RTP and MgO:LiNbO3 increases rapidly and will limit their use to
fairly low power levels, perhaps in the 50 W range. At wavelengths below 450 nm,
BBO might be a better choice although its relatively low electro-optical coefficient
would reduce the possible modulation indices significantly. While several good can-
didate materials have been identified, extensive experimental tests will be necessary
to develop electro-optical modulators in the near infrared for laser powers exceed-
ing ∼1 kW. More difficult will be the development of electro-optical modulators for
the visible range which can operate at laser power levels exceeding 100 W. All these
power levels can potentially be further increased using thermal compensation tech-
niques. These have been developed for Faraday rotators and will be described in the
next section.

3.2 Faraday rotators

Traditional Faraday rotators make use of the Faraday effect to induce a non-reciprocal
linear polarization rotation which depends on the direction of the applied magnetic
field B relative to the axis of the crystal. The polarization rotation angle is given by
θ = BV Loptical where V is the Verdet constant and Loptical is the optical path length.

Ideally, Faraday isolators should have high isolation ratios (>30 dB) that are
independent of input power, high forward-going and backward-going transmission
(approaching 100%), minimal thermal lensing and thermal beam deflection. How-
ever, spatially non-uniform fields B = B(r) as well as the temperature and spa-
tial dependence of the Verdet constant V = V (T (r)) and optical path Loptical =
L physical · n(T (r)) compromise the performance of Faraday isolators with respect to
all of these functions.

Materials for 1,064 nm operation: TGG, GGG, YAG

Faraday isolators in current and second generation detectors operating at 1,064 nm
are based on terbium gallium garnet (TGG) magneto-optical crystals. Isolation ratios
approaching 50 dB (power) have been demonstrated with laser powers of 200 W with-
out significant degradation of the spatial laser mode [50]. To achieve this performance,
high average power Faraday isolators make use of a dual crystal compensated Faraday
rotators [51] and negative dn/dT thermal lens compensating elements [52] to increase
the isolation ratio and minimize thermally induced modal distortions.

A figure of merit for the power handling capabilities of magneto-optic crystals and
glasses can be defined as μ ≡ V κ/γ Q where Q is the thermo-optical constant (related
to the photo-elastic strain tensor) [51]. Larger Verdet constants result in shorter crys-
tal lengths and less absorption. Similarly, reducing the intrinsic optical absorption
minimizes the temperature rise in the magneto-optic material. High thermal conduc-
tivity leads to smaller temperature gradients, improving thermal self-focusing. Large
thermo-optical constants couple to the temperature gradient and lead to both linear and
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circular birefringence within the medium resulting in inhomogeneous polarization in
the transmitted beam.

There are several routes to scaling TGG to kilowatt-class average power operation
in the near infrared, including i) the use of thin-disk geometries, ii) cryogenic cooling
of the magneto-optical material, iii) designing higher compact magnetic fields, and
iv) the use of novel magneto-optical materials. The use of thin-disk geometries similar
to that used in high power lasers [53] instead of currently employed rod geometries
can significantly reduce transverse temperature gradients. Theoretical studies have
predicted and experiments have subsequently confirmed that the thermally induced
depolarization is proportional to (Ddisk/Ldisk)

−4, where Ddisk and Ldisk are the disk
diameter and length [54].

Cryogenic cooling of magneto-optical materials results in a large increase in V and
improved thermo-optical parameters and is another possible route. Experiments have
shown that reducing the temperature of TGG to 77 K results in a fourfold increase in
the Verdet constant [from 40 rad/(T m) to 160 rad /(T m)] [55], a factor of 5 reduction
in L physical , and a factor of 3 reduction of the product γ Q [56,57]. In flux-grown TGG
crystals, cooling to 77 K also increases κ twofold. (Remarkably, operation at liquid He
temperatures produces an 87× increase in V over its room temperature value [55]).

Increasing the magnetic field strength B proportionally reduces the physical path
length L physical needed for a desired rotation angle. Thus another approach is to utilize
compact, high field magnets for Faraday rotators. Mukhin et al. have demonstrated
the operation of a Faraday isolator using a specially designed 2.1 T magnet capable of
30 dB isolation for 330 W incident powers using a single [001] orientation TGG crystal
[58], however the design of the magnet configuration is complicated and cumbersome
to implement.

An alternative approach to high power operation is the use of other magneto-optical
crystals with lower absorption and higher thermal conductivities. Examples include
Yttrium Aluminum Garnet (YAG) and gadolinium gallium oxide (GGG). Absorption
in YAG in the near infrared is 0.0015/cm, approximately four times less than TGG
absorption (which can vary depending on supplier). GGG is also reported to have low
absorption in the 0.3–7 µm spectral window [59]. Although the Verdet constant of
GGG is 6 times lower than in TGG (6.5 rad/(T m))—the thermal conductivity κ in
GGG (9 W/K m) is twice as large as TGG, and when cooled to 70 K, κ increases
by a factor of approximately 7. Because GGG is paramagnetic, its Verdet constant
changes inversely with temperature. Thus, cooling of a GGG magneto-optical ele-
ment to 77 K will provide a 2.3-fold increase in maximal power with the isolation
ratio being unchanged. The same calculation for Nd:YAG results a fourfold increase
in laser power at nitrogen temperatures. Another possibility is the use of TGG ceramics,
which have been shown to have the Verdet constants essentially identical to crystalline
TGG at all temperatures [55]).

Materials for 1.3–1.6 µm: rare earth iron garnets and derivatives

For detectors operating at longer wavelengths, increased absorption in TGG due to
Tb3+ makes these materials unlikely candidates for Faraday isolators. Fortunately,
the 1.3–1.6µm wavelength range benefits from significant technology development
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related to the telecommunications sector. The development of Faraday isolators in this
range has been primarily centered around rare earth iron garnets (RIGs) and their deriv-
atives [60]. Original efforts centered on yttrium iron garnet (Y3Fe5O12 or (YIG) but
more recently {BiRE}3(FeGaAl)5O12 have been used because of their much greater
intrinsic Faraday rotation. Unlike paramagnetic magneto-optic materials (eg., TGG) in
which saturated magnetization is achieved using an external magnetic field, the doped
RIGs are ferrimagnetic; individual domains in the films are grown in a saturated state.
The net Faraday rotation arises from the integrated contributions of all domains in the
material. Thus, RIGs have the advantage that external magnetic fields are not needed.

RIG materials are typically grown in thin films via liquid phase epitaxy on lattice-
matched substrates. GGG is typically used as the substrate for most RIG films, although
bismuth-substituted RIG (Bi:RIG) is grown on calcium magnesium zirconium-substi-
tuted GGG for optimal lattice matching. For operation using large mode sizes, the
laser beam impinges on the face film and is transmitted through the substrate. Typical
films thicknesses needed for 45◦ rotation are in the range 300–500 µm.

Absorption in RIG is typically in the 1–10/cm range in 1,300–1,550 nm range
[60,61], corresponding to an internal transmission in the range of 30–90%. Currently,
these levels of absorption would prove very problematic at high laser powers. Excess
absorption is dominated by the lack of stoichiometry of garnet, although precise con-
trol of growth conditions can improve the absorption characteristics [62]. Internal
transmissions in excess of 99% have been achieved for Bi:RIG materials, compara-
ble to that obtained with TGG at 1,064 nm. Isolation ratios as high as 37 dB have
been achieved using YIG in a waveguide geometry on a GGG substrate [63], but
are typically less than 30 dB for thick film conventional geometries. All RIG-based
materials exhibit wavelength-dependent Faraday rotation, problematic for telecom-
munications applications but not for gravitational wave detectors which operate at
single wavelengths. Optical birefringence is inherent in thin film RIG-based materi-
als, arising from anisotropies in the growth of the film (RIG films are uniaxial), from
stress induced by lattice-mismatch between the film and the substrate, and via shape-
birefringence inherent in thin film geometries. Anisotropies and lattice mismatch can
be controlled by careful growth techniques.

The best prospects for high power operation seem to lie with Bi-doped RIG materials
not employing Tb or Er, which both contribute to increased absorption in the 1,300–
1,600 nm range. However, not much is known concerning high power operation of
RIG-based Faraday isolators. Reasonably large (11 mm) aperture RIG isolators have
been demonstrated at 10 W power levels [62]. The magnitude of the polarization rota-
tion angle typically increases as the temperature is decreased, i.e., dθrot/dT < 0. As
with paramagnetic crystals and glasses, decreasing the operating temperature results
in shorter path lengths for a specific rotation angle. Temperature derivatives have been
measured for many RIG materials at T = 300 K [60,64,65], but not at cryogenic tem-
peratures to our knowledge. In addition, absorption can decrease as the temperature
decreases due to shifts in the absorption edge of the material provided mid-infrared
absorption bands lie far away from the desired operation wavelength. Finally, differ-
ential thermal expansion between the lattice and substrate can lead to increased stress
birefringence and degradation of the wavefront via film ‘bowing’.
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Materials for short wavelength operation

The prospects for designing short wavelength Faraday isolators are considerably less
obvious at the present time. Optical absorption is more severe at short wavelengths,
and thermal effects are correspondingly more pronounced. Absorption in TGG begins
to rise at wavelengths below 900 nm, with γ = 0.15/cm at 532 nm (30 times greater
than at 1,064 nm). The absorption edge of TGG occurs at 390 nm [62]. Faraday isola-
tors using potassium dihydrogen phosphate (KDP) isomorphs have been developed for
ultraviolet wavelengths [66]. KDP and its isomorphs (DKDP, ADA, ADP, DKDA) have
room temperature Verdet constants in range 12.1–27.3 rad/(T m) at 351 nm, slightly
less than TGG. The absorption edge occurs in the 200–300 nm range is approximately
depending on isomorph. Residual absorption at a level of γ < 0.01/cm has been
observed to 350 nm. In addition, Nd-doped fluorozirconate glasses have been shown
to exhibit the Faraday effect [67], however there are no commercial sources available
for this material, thus a significant material development effort would be needed.

Vacuum operation of faraday isolators

Operation in vacuum requires special considerations - convective cooling at the faces
of the optical components is no longer an effective heat removal channel and efficient
heat sinking is essential to minimize thermal lensing and depolarization. Faraday iso-
lators carefully aligned in air can experience a dramatic reduction in isolation ratio
(>10–15 dB) when placed in vacuum [68]. In addition, long term operation of the
Faraday isolators in LIGO have shown that the rejected beam experiences a deflec-
tion as the input power changes [69]. Because the rejected beam is sensed for both
length and alignment control in the interferometer, thermal steering leads to offsets in
the length and alignment controls. Minimization of this drift is important for future
GW interferometers. Experiments have shown that for powers up to 100 W, most of
the effects come from thermal loading in the polarizers. The use of commercial thin
film polarizers (TFPs) results in a 50–100 fold reduction in the angular steering of
the beam over alternative polarizers, albeit at the expense of the isolation ratio. For
kilowatt operation at long wavelengths, polarizers made of ultralow loss fused silica
(<10 ppm/cm absorption losses at 1,064 nm) will be required with optical coatings that
have less than 2–3 ppm absorption.

4 Nano-structured optics

Thermal noise of test mass mirrors will be one of the dominating noise sources in future
gravitational wave detectors. Thermal noise arises from thermally driven motions of
test mass mirror surfaces and thermally driven changes of optical path lengths through
mirrors. Cryogenic cooling is a straightforward approach to reduce thermal noise.
However, nano-structured optical components have the potential to significantly sup-
port the effort of thermal noise reduction, at room temperature as well as cryogenic
temperatures. Here, we consider two different approaches of how nano-structured
optics might be useful in future gravitational wave detectors.
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All-reflective gratings

Gravitational wave detectors currently use not only reflective optics but also trans-
missive optics, for example as beam splitters and cavity couplers. In transmissive
optics thermal noise arises from statistical temperature fluctuations and the tempera-
ture dependent refractive index. A significant problem affecting transmissive optics
is the absorption of laser light which result in additional local temperature variations,
and may also result in heating. The latter effect is expected to be substantial for future
gravitational wave detectors with cooled test masses since high arm cavity circulating
laser powers (∼1MW) will be used. In recent table-top experiments, building on ear-
lier work by Sun and Byer [70], it was demonstrated that diffractive grating structures
on mirror surfaces can be used to realize high-quality all-reflective beam splitters and
cavity couplers.

An all-reflective alternative to a transmissive 50/50 beam-splitter can be realized
by a dielectric reflection grating with two diffraction orders (0th and 1st) that splits
the incoming light field in two equal parts (see Fig. 1a). Since for the 1st order dif-
fracted beam the angle of incidence and the diffraction angle are not equal, the beam
is deformed in horizontal direction. Despite this additional complication it is possible
to build an all-reflective Michelson interferometer with a very high fringe contrast
(>0.9997) based on diffractive beam-splitters [71].

Conventional Fabry–Perot cavities require a partly transmissive mirror to couple
light into the resonator. Two different concepts have been demonstrated that allow for
an all-reflective coupling of Fabry–Perot resonators. First, a grating in a 1st order Lit-
trow arrangement can be used. Here, the 1st order diffracted beam counter propagates
the input beam (see Fig. 1b) and the specular 0th order is used to couple light into
the cavity. In this configuration the finesse of the cavity is limited by the 1st order
diffraction efficiency of the grating. The first demonstration was done in [70] where
a cavity finesse of 53 was achieved. More recently, finesse values of up to ≈1,450
have been demonstrated [72]. The second concepts uses a so-called 2nd order Littrow
arrangement. Here, the 1st diffraction order is used to couple light into the cavity and
the 2nd order is sent towards the laser input (Fig. 1c). In this configuration the finesse
of the resulting Fabry–Perot cavity is limited by the specular reflectivity of the grating
for normal incidence. Therefore a grating that unites low diffraction efficiency and
a high reflectivity for normal incidence is optimal to realize a high finesse cavity.
Unlike a partly transmissive mirror this coupler splits the incoming light field not

Fig. 1 a Reflection grating with two existing orders can be used as a 50/50 beam splitter in a Michelson
interferometer; b Grating coupled Fabry–Perot cavity in 1st order Littrow mount; c 2nd order Littrow mount
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in two but in three partial beams. This additional port leads to more complex phase
relations between the fields yielding different cavity properties and allow for the reali-
zation of completely new interferometer concepts [73,74]. The concept of coupling to
a cavity with such 3-port devices was successfully demonstrated with a cavity finesse
of 400 [75].
In comparison to a standard reflective component (mirror or beam splitter) the dif-
fractive nature of the gratings causes an additional coupling of geometry changes into
alignment and phase noise [76]. Therefore different read-out techniques [77] and inter-
ferometer topologies are currently under investigation in order to reduce the coupling
of this noise source.

Waveguide mirrors

The dominant thermal noise source in current gravitational wave detectors comes
from dielectric mirror coatings[78]. Conventional schemes for high reflectivity (HR)
mirrors require up to 40 layers of Ta2O5 and SiO2 each having an optical thickness
of a quarter wavelength. The coating thermal noise is due to the mechanical loss of
the layers with a dominant contribution of Ta2O5. One approach to this problem is to
design alternative multilayer stacks deviating from the classical quarter wavelength
design aiming for less Ta2O5 [79]. Also doping Ta2O5 with TiO2 has been investigated
with an achieved reduction of the mechanical loss angle of 1.5 [80].

Concepts avoiding HR-multilayer stacks but providing high reflectivity have been
proposed, namely corner reflectors [81], coating-free mirrors [82]. Both are based on
total internal reflection, which is connected with additional optical paths inside sub-
strates, which give rise to absorption and increased thermo-refractive noise resulting
from a temperature dependent refractive index.

Another possibility of avoiding multilayer stacks are nanostructured waveguide
layers. Single layer as well as monolithic grating waveguide structures have been pro-
posed [83,84] as low thermal noise alternative to conventional multilayer stacks for
high reflectivity test mass mirrors in future gravitational wave detectors. The principle
is shown in Fig. 2 using the ray picture [85].

The nanostructured surface can be designed in order to allow for the 0th order in
reflection and 0th and ±1st orders in transmission. The ±1st orders are guided in

Fig. 2 Principle of single layer (left) and monolithic (right) waveguide mirrors in the ray picture. The
incoupled ±1st transmitted orders are totaly reflected at the substrate or thin ridges, respectively, and cou-
pled out at the grating structure. For proper chosen dimensions of the nanostructured surface and waveguide
one can achieve constructive interference and thus 100% reflectivity
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d=690 nm

fbottom =0.744 nm

ftop =0.322 nm 200 nm

Fig. 3 Top (top left) and cross-sectional view (bottom left) of a fabricated waveguide mirror. Right spectral
transmittance under normal incidence of a fabricated waveguide mirror that had reflectivity of >99% at
a wavelength of 1,064 nm, [87]

a waveguide layer and partly coupled out. The waveguide mirror dimensions can be
adjusted to achieve constructive interference of the outcoupled and specular reflected
light and thus 100% reflectivity. The exact optical properties of such a device can be
found with rigorous coupled wave analysis (RCWA) [86]. We experimentally real-
ized grating waveguide structures and demonstrated a reflectivity >99% in a cavity
setup[87], which was in good agreement with RCWA calculations (see Fig. 3).

Further design optimizations and precise characterization of the optical and
mechanical properties of microstructured surfaces are of great interest. Higher order
beams are under discussion for reducing coating thermal noise [88]. Since this seems
to be compatible with gratings, one could in principle benefit from both techniques.

To conclude, currently used lithography techniques allow for large area structures,
but are limited to substrate thicknesses of a few millimeters, which is far below the
values that are required in gravitational wave detection. One idea to fabricate massive
nanostructured test masses is to use bonding techniques to connect a structured wafer
with a thick substrate, which in principle could provide a high mechanical quality
factor for the entire component.

5 Squeezed light

Squeezed states of light belong to the class of so-called nonclassical states of light
[89]. Quantum noise limited laser light occurs in a coherent state, where the inde-
pendent arrival times of photons leads to Poisson counting statistics. In contrast with
coherent states, for squeezed states the detection events of photons are not indepen-
dent of one another, but rather show quantum correlations. These correlations can be
used to squeeze the interferometer output below the shot noise limit. Caves first pro-
posed that injection of squeezed states of light into the output port of an interferometer
operated close to a dark fringe can be used to improve the measurement sensitivity
[3]. Caves envisioned injection of squeezed states as a way of increasing the detector
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sensitivity beyond the shot noise limit of the most powerful lasers available at the
time. Three decades later, with approximately 100 times more laser power available,
but with significant technical challenges to maintaining high circulating power in the
interferometer, squeezed states allow for improvement of the quantum-noise-limited
sensitivity without further increasing the circulating laser power. High circulating laser
power, and concomitant residual absorption in the test masses, poses a serious chal-
lenge for future detectors with cryogenically cooled test mass, in particular. The same
quantum fluctuations of the light that give rise to shot noise also introduce radiation
pressure (back-action) noise on the test masses. Radiation pressure noise dominates
at low detection frequencies, while shot noise dominates at higher frequencies, and
when these two noises are equal (for a given power level), we get the standard quan-
tum limit (SQL). In 1990 Jaeckel and Renault [90] showed that squeezed states can
be used to simultaneously reduce the shot noise and radiation pressure noise, and that
the SQL of a test mass position measurement can be beaten. Measurement sensitiv-
ity beyond the SQL corresponds to a quantum non-demolition (QND) measurement
[91,92]. Practically a broadband nonclassical noise reduction beyond the SQL can be
achieved if the injection of squeezed light is combined with additional narrowband
optical filter cavities at the interferometer dark port [92,93]. However, the realization
of such filter cavities is technically challenging. In all experiments to date the quantum
radiation pressure noise regime has been dominated by technical noise and thermal
noise, so squeezed state injection will first be used to exclusively reduce the shot noise
in gravitational wave detectors.

A gravitational wave signal at frequency f appears as a modulation of the (weak)
interferometer output field. The strength of this modulation signal and its (quantum)
noise can be described by two quadrature operators X̂1,2( f,
 f, t). Here, the subscripts
1 and 2 correspond to the non-commuting amplitude and phase quadratures, respec-
tively, and 
 f to the resolution bandwidth (RBW). For coherent states the variances
of the quadrature operators are identical and typically normalized to unity. With this
normalization, the Heisenberg uncertainty relation (HUR) sets the following lower
bound for the product of the quadrature variances for both coherent states, and for
vacuum states:


2 X̂1( f,
 f, t) · 
2 X̂2( f,
 f, t) ≥ 1. (2)

According to Caves [3], the quantum noise at the output of the interferometer is due
to the beat between the (weak) coherent signal field and the vacuum field. Squeezed
vacuum states can be injected into the output port to improve the interferometer sensi-
tivity beyond the shot noise limit, provided the squeezed quadrature is adjusted to the
quadrature of the signal modulation field being detected. In case of an interferometer
with carrier tuned signal-recycling and homodyne (DC) read out, for example, this
would be the amplitude quadrature of the interferometer’s output field. In this case we
simply require a broadband amplitude squeezed field where 
2 X̂1( f,
 f, t) is always
below the unity vacuum noise reference for all sideband frequencies f within the
detection band.
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Generation of squeezed light

The first observation of squeezed states was by Slusher et al. [94] in 1985. Since then
different techniques for the generation of squeezed light have evolved. A schematic
setup for one of the most successful approaches to squeezed light generation—optical
parametric oscillation (OPO)—is shown in Fig. 4. A second-order nonlinear mate-
rial like MgO:LiNbO3 or periodically poled potassium titanyl phosphate (PPKTP)
can be used to produce broadband squeezing at the carrier wavelength of present day
gravitational wave detectors (1,064 nm). In order to do so a continuous-wave second
harmonic light field (green light at 532 nm) is focussed into the nonlinear crystal, which
is placed inside a cavity [95]. Multiple passes in the cavity increases the strength of
the parametric process, i.e., the parametric down conversion of green photons into
correlated pairs of infrared photons. The quantum correlations lead to production of
squeezed states at 1,064 nm. The squeezed states can be detected by balanced homo-
dyne detection, where the squeezed field is overlapped with an optical local oscillator
field on a 50%/50% beam splitter (Fig. 4). Note that for squeezed light injection into
an interferometer, the local oscillator may also be provided by the weak laser field
exiting the interferometer’s antisymmetric port.

In recent years, several table-top experiments at the Australian National Univer-
sity in Canberra [96], and at the Albert-Einstein-Institute in Hannover [97–99], along
with a test of injecting squeezed states into a suspended-mirror prototype interferom-
eter, carried out at MIT and Caltech [100], have paved the way for a first application
of squeezed light in gravitational wave detectors. These experiments together have
demonstrated (i) that the shot noise reduction through squeezed states is compatible
with a variety of interferometer topologies [100,101]; (ii) that high levels of squeez-
ing can efficiently be produced; and (iii) that they can be stably controlled [97,98]

Fig. 4 Generation and detection of squeezed light at 1,064 nm. A second-order nonlinear crystal made from
MgO:LiNbO3 or PPKTP is pumped with continuous wave light at 532 nm. Optical parametric oscillation
(OPO), also called parametric down-conversion, produces a squeezed quantum noise of the reflected (vac-
uum) mode of light at 1,064 nm. DBS dichroic beam splitter, PD photo diode, PZT piezo-electric transducer
for positioning of mirrors
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for application in the detection band of gravitational wave detectors with suspended
mirror dynamics [100].

The strongest squeezing observed so far provides a nonclassically reduced shot
noise by a factor of ten (10 dB) [99]. Injected into the output port of an interferometer,
this level of squeezing increases the interferometer sensitivity by exactly the same fac-
tor as an equivalent increase in laser power. Note, that optical power (photon) loss (t2)

increases the value for the squeezed variance according to 
2 X̂ ′ = 
2 X̂(1− t2)+ t2.
For future gravitational wave detectors the reduction of optical loss will, therefore, be
increasingly important.

Squeezing light at audio frequencies

A necessary requirement for the application of squeezed states of light in gravitational
wave detectors is the ability to generate squeezed states at audio-band Fourier fre-
quencies. The first such demonstration was achieved in 2004 by McKenzie et al. [96]
where a broadband squeezed field down to a few hundreds of Hertz was generated. In
an improved experiment in 2007, Vahlbruch et al. [101] observed squeezing down to
1 Hz, as shown in Fig. 5. Scattered and frequency shifted photons were identified to
be a major noise source at low frequencies in previous and also current experiments
with squeezed light.

Gravitational wave detectors require a long-term stable phase control of the injected
squeezed states in relation to the interferometer’s main laser field. This requirement is
in particular difficult to realize for squeezing at low frequencies, because coherent con-
trol fields may introduce classical noise. A highly stable coherent control scheme was
demonstrated in [97,98]. It relies on a coherent control field that is frequency shifted
by several megahertz with respect to the squeezed field and is also parametrically
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Fig. 5 Trace a shows the (theoretical) vacuum noise level of our homodyne detector. Trace b shows the
noise powers of squeezed states measured with the same detector setting. Trace c shows the electronic (dark)
noise floor. Squeezed vacuum noise was observed throughout the complete spectrum from 1 Hz to above
3 kHz. A nonclassical noise suppression of up to 6.5 dB below vacuum noise was observed here [101]
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amplified by the squeezed light source, thereby giving a phase reference for the para-
metric process.

An alternative approach, termed quantum noise locking [102], was used in the 2004
ANU experiment [96]. In this technique, the asymmetry in the quadrature variances is
directly used to obtain a phase-sensitive readout and to lock the phase of the squeezed
vacuum state. Whilst not as stable as coherent control schemes, it is adequate for
moderately squeezed states and is simple to implement.

Compatibility of squeezed light injection with detector topologies

To gain significant and broadband sensitivity improvement when a broadband
amplitude squeezed field is injected into the interferometer’s output port, (ideally)
lossless reflection of the squeezed states without frequency-dependent rotations in
quadrature phase space must be ensured. However, gravitational wave detectors are
not just Michelson interferometers, but involve dispersive optical cavities and non-
perfect optical components. In [103] it was experimentally shown that the technique of
power-recycling is not only compatible with squeezed light injection but also mitigates
losses associated with an imperfect dark fringe. In [104] a squeezed light enhanced
power-recycled and detuned signal-recycling interferometer was realized. It was suc-
cessfully demonstrated that a detuned filter cavity in the interferometer’s dark port
can compensate for the dispersion of the detuned signal recycling cavity. Goda et al.
injected squeezed states into the output port of the 40 m prototype gravitational wave
detector at Caltech, and showed that a system consisting of a squeezed light source
and an interferometer with suspended mirror can be sufficiently controlled to realize
nonclassical sensitivity improvement [100].

The tremendous progress on the generation and control of squeezed states of light
made in recent years has demonstrated that this technology is now mature (see also
[105]). It is likely that squeezed light injection will play a central role in achieving the
sensitivity improvements envisioned for the third generation.

6 Conclusion

The enhanced performance of third generation gravitational wave interferometers will
rely on a variety of advances in laser sources and optical technologies. Kilowatt-class
lasers, electro-optic modulators, and Faraday isolators potentially operating at wave-
lengths shorter (in the UV or visible spectral regions) or longer (in the near infrared
region out to 1.6 µm) will be needed as sources, coupled with techniques for squeezing
of the laser field to improve shot noise sensitivity. The development of novel interfer-
ometer optics including diffractive optics and waveguide high reflectors will improve
the power handling capability and reduce thermal noise.
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