LLAsso: A Tool for Surfing the Answer Net

Dan Moldovan, Sanda Harabagiu,
Marius Pasca, Rada Mihalcea, Richard Goodrum, Roxana Girju and Vasile Rus
Department of Computer Science and Engineering
Southern Methodist University
Dallas, TX 75275-0122

{moldovan ,sanda,mars,rada,goodrum,roxana, rus}@seas .smu.edu

Abstract

This paper presents the architecture, operation and
results obtained with the LASsO system developed in
the Natural Language Processing Laboratory at SMU.
The system relies on a combination of syntactic and
semantic techniques, and lightweight abductive infer-
ence to find answers. The search for the answer is
based on a novel form of indexing called paragraph in-
dexing. A score of 55.5% for short answers and 64.5%
for long answers was achieved.

Background

Finding the answer to a question by returning a small
fragment of a text, where the answer actually lies, is
profoundly different from the task of information re-
trieval (IR) or information extraction (IE). Current IR
systems allow us to locate full documents that might
contain the pertinent information, leaving it to the user
to extract the answer from a ranked list of texts. In
contrast, IE systems extract the information of inter-
est, provided it has been presented in a predefined, tar-
get representation, known as template. The immediate
solution of combining IR and IE techniques for ques-
tion/answering (Q/A) is impractical, since IE systems
are known to be highly dependent on domain knowl-
edge, and furthermore, the generation of templates is
not performed automatically.

Our methodology of finding answers in large collec-
tions of documents relies on natural language process-
ing (NLP) techniques in novel ways. First, we perform
a processing of the question by combining syntactic in-
formation, resulting from a shallow parse, with seman-
tic information that characterizes the question (e.g.
question type, question focus). Secondly, the search for
the answer is based on a novel form of indexing, called
paragraph indexing and new related retrieval methods.
Finally, in order to extract the answers and to eval-
uate their correctness, we use a battery of abductive
techniques, some based on empirical methods, some on
lexico-semantic information. The principles that have

guided our paragraph indexing and the abductive in-
ference of the answers are reported in (Harabagiu and
Maiorano 1999).

When designing Lasso, the Q/A system developed
by the NLP group at SMU, our goal was not to em-
ploy NLP techniques just for enhancing the IR results.
Instead, we developed a Q/A model that retains the
elegance of IR systems, by using shallow processing,
and adds the exactness of IE systems, by providing
with methods of finding and extracting answers with-
out deep NLP. Furthermore, to comply with the open-
domain constraints of the TREC Q/A task, we relied
only on lexico-semantic resources that are of general
nature. This design allows the escalation to Q/A sys-
tems capable of handling questions that impose high-
level reasoning techniques (e.g. questions used in the
evaluations of the High Performance Knowledge Bases
(HPKB) program (Cohen et al.1998).

Overview of the LLAsso Q/A System

The architecture of LASSO comprises three modules:
Question Processing module, Paragraph Indexing mod-
ule and Answer Processing module. Given a question,
of open-ended nature, expressed in natural language,
we first process the question by creating a represen-
tation of the information requested. Thus we auto-
matically find (a) what type of question it is, from the
taxonomy of questions at hand, (b) what type of an-
swer is expected, and most importantly, (c¢) what is the
question focus defined as the main information required
by the interrogation. Furthermore, the Question Pro-
cessing also identifies the keywords from the question,
which are passed to the Paragraph Indexing module,
as illustrated by Figure 1.

In LASSO, documents are indexed by a modified
Zprise IR system available from NIST. Our search en-
gine incorporates a set of Boolean operators (e.g. AND,
OR, NOT, NEAR). We post-process the results of the IR
search engine by filtering out the returns that do not
contain all keywords in the same paragraph. This op-

Question

Question Processing

Documents

Paragraph Indexing

Question Type
V
Answer Type

Collection
Index

IR Search Engine

[Paragraph Filtering

V
VY

\ Question Keywords %

ol

/

Paragraph Ordering
4

V
Paragraph Quality

Answer (s)
A
Answer Processing
—>1 Parse
V

\ Answer Identification \

\ Answer Extraction \

‘ Answer Correctness ‘

Figure 1: Architecture of the LASSO Q/A System

eration allows for on-the-fly generation of a paragraph
index. The second important feature of the Paragraph
Indexing module comes from the evaluation of the qual-
ity of the paragraphs. When the quality is satisfac-
tory, we order the paragraphs according with a plau-
sibility degree of containing the answer. Otherwise,
we add/drop keywords and resume the paragraph re-
trieval. This loop generates a feed-back retrieval con-
text that enables only a reasonable number of para-
graphs to be passed to the Answer Processing module.

The advantage of processing paragraphs instead of
full documents determines a faster syntactic parsing.
Our parses also involve Named Entity recognitions and
use of lexico-semantic resources that are valuable in the
extraction of the answer. The extraction and evalua-
tion of the answer correctness is based on empirical
abduction.

Question Processing

The role of the question processing module is to: (1)
determine the type of question, (2) determine the type
of answer expected, (3) build a focus for the answer,
and (4) transform the question into queries for the
search engine.

In order to find the right answer to a question from
a large collection of texts, first we have to know what
we should look for. The answer type can usually be

determined from the question. For a better detection
of the answer, the questions are first classified by their
type: what, why, who, how, where questions, etc. A
further classification follows to better identify the ques-
tion type. Table 1 shows the classification for the 200
TREC-8 questions. ”

We further realized that the question type was not
sufficient for finding answers. For the questions like
Who was the first American in space?, the answer type
is obvious: PERSON. However, this does not apply
for example to the questions of type what, as what is
ambiguous and it says nothing about the information
asked by the question. The same applies to many other
question types. The problem was solved by defining a
concept named focus.

A focus is a word or a sequence of words which de-
fine the question and disambiguate it in the sense that
it indicates what the question is looking for, or what
the question is all about. For example, for the ques-
tion What is the largest city in Germany?, the focus
is largest city. Knowing the focus and the question
type it becomes easier to determine the type of the an-
swer sought, namely: the name of the largest city in
Germany.

The focus is also important in determining the list of
keywords for query formation. We noticed that some

Q-class Nr. Q Nr. Q Answer type Example of question Focus
H Q-subclass ‘ ‘ answered ‘ H H
what 64 54
basic what 40 34 MONEY /NUMBER/ What was the monetary value of monetary value
DEFINITION/TITLE/ the Nobel Peace Prize in 1989%
NNP/UNDEFINED
what-who 7 7 | PERSON What costume designer dectded costume designer
ORGANIZATION that Michael Jackson should only
wear one glove?
what-when 3 2 DATE In what year did Ireland elect year
its first woman president?
what-where 14 12 LOCATION What is the capital of Uruguay? capital
who 47 37 | PERSON/ Who is the author of the book author
ORGANIZATION “The Iron Lady: A Biography
of Margaret Thatcher”?
how 31 21
basic how 1 0 | MANER How did Socrates die? Socrates
how-many 18 13 NUMBER How many people died when people
the Estonia sank in 19942
how-long 2 2 | TIME/DISTANCE How long does it take to travel —
from Tokyo to Niigata?
how-much 3 2 MONEY /PRICE How much did Mercury spend Mercury
on advertising in 1993%
how-much- 1 0 UNDEFINED How much stronger is the new vitreous new vitreous
<modifier> carbon material invented by the Tokyo carbon material
Institute of Technology compared with
the material made from cellulose?
how-far 1 1 DISTANCE How far is Yaroslavl from Moscow? Yaroslavl
how-tall 3 3 | NUMBER How tall ts Mt. Everest? Mt. Everest
how-rich 1 0 | UNDEFINED How rich is Bill Gates? Bill Gates
how-large 1 0 | NUMBER How large is the Arctic refuge to
preserve unique wildlife and wilderness | Arctic refuge
value on Alaska’s north coast?
[[where] [22] 16 | LOCATION [[Where is Taj Mahal? [Taj Mahal I
|| when | | 19 | 13 | DATE || When did the Jurassic Period end? | Jurassic Period ||
which 10 8
which-who 1 1 PERSON Which former Klu Kluz Klan former Klu Klux Klan
member won an elected office member
in the U.S.?
which-where 4 3 LOCATION Which city has the oldest relationship city
as sister-city with Los Angeles?
which-when 1 1 DATE In which year was New Zealand year
excluded from the ANZUS alliance?
which-what 4 3 NNP Which Japanese car maker had Japanese
ORGANIZATION its biggest percentage of sale in car maker
the domestic market?
name 4 4
name-who 2 2 PERSON/ Name the designer of the show
ORGANIZATION that spawned millions of plastic designer
imitations, known as “jellies”?
name-where 1 1 LOCATION Name a country that is developing
a magnetic levitation railway system? country
name-what 1 1 TITLE/NNP Name a film that has won
the Golden Bear in the Berlin film
Film Festival?
why 2 0 REASON Why did David Koresh ask for a David Koresh
word processor?
whom 1 0 | PERsON/ Whom did the Chicago Bulls beat in
ORGANIZATION the 1993 championship? Chicago Bulls
Total 200 153
H . [™]

Table 1: Types of questions and statistics.

answer was among top five ranked long answers.

In this table we considered that a question was answered correctly if its

words in the questions never occur in the answer, and
that is because their role is just to disambiguate the
question. For example, in the question In 1990, what
day of the week did Christmas fall on?, the focus is
day of the week, a concept that is unlikely to occur in
the answer. In such situations, the focus should not be
included in the list of keywords considered for detecting
the answer.

The process of extracting keywords is based on a set
of ordered heuristics. Each heuristic returns a set of
keywords, that is added in the same order to the ques-
tion keywords. We have implemented eight different
heuristics. Initially, only the keywords returned by the
first six heuristics are considered. If further keywords
are needed in the retrieval loop, keywords provided by
the other two heuristics are added. When keywords
define an exceedingly specific query, they are dropped
in the reversed order in which they have been entered.
The heuristics are:

o Keyword-Heuristic 1: Whenever quoted expressions
are recognized in a question, all non-stop words of the
quotation became keywords.

e Keyword-Heuristic 2: All named entities, recognized
as proper nouns, are selected as keywords.

e Keyword-Heuristic 3: All complex nominals and their
adjectival modifiers are selected as keywords.

o Keyword-Heuristic 4: All other complex nominals
are selected as keywords.

e Keyword-Heuristic 5: All nouns and their adjectival
modifiers are selected as keywords.

o Keyword-Heuristic 6: All the other nouns recognized
in the question are selected as keywords.

o Keyword-Heuristic 7. All verbs from the question are
selected as keywords.

e Keyword-Heuristic 8: The question focus is added to
the keywords .

Table 2 lists two questions from the TREC-8 competi-
tion together with their associated keywords. The Ta-
ble also illustrates the trace of keywords until the para-
graphs containing the answer were found. For question
26, the paragraphs containing the answers could not be
found before dropping many of the initial keywords. In
contrast, the answer for question 13 was found when
the verb rent was added to the Boolean query.

Paragraph Indexing

Search engine

The Information Retrieval Engine for LASSO is related
to the Zprise IR search engine available from NIST.
There were several features of the Zprise IR engine
which were not conducive to working within the de-
sign of LASSO. Because of this, a new IR engine was
generated to support LASSO without the encumbrance

Q-26 | What is the name of the “female”
counterpart to El Nino, which results in
cooling temperatures and

very dry weather ?

Keys | female El Nino dry weather cooling temperatures
female El Nino dry weather cooling

female El Nino dry weather

female El Nino dry

female El Nino

female El

Q-13 | How much could you rent a Volkswagen
bug for in 1966 ?

Keys | Volkswagen bug

Volkswagen bug rent

Table 2: Examples of TREC-8 Question Keywords

of these features. The index creation was, however,
kept in its entirety.

The Zprise IR engine was built using a cosine vector
space model. This model does not allow for extrac-
tion of those documents which include all of the key-
words, but extracts documents according to the sim-
ilarity measure between the document and the query
as computed by the cosine of the angle between the
vectors represented by the document and the query.
This permits documents to be retrieved when only one
of the keywords is present. Additionally, the keywords
present in one retrieved document may not be present
in another retrieved document.

L ASSO’s requirements are much more rigid. LASSO
requires that documents be retrieved only when all
of the keywords are present in the document. Thus,
it became necessary to implement a more precise de-
terminant for extraction. For the early work, it was
determined that a Boolean discriminate would suffice
provided that the operators AND and OR were imple-
mented. It was also necessary to provide the ability to
organize queries through the use of parentheses.

We opted for the Boolean indexing as opposed to
vector indexing because Boolean indexing increases the
recall at the expense of precision. That works well
for us since we control the retrieval precision with the
PARAGRAPH operator which provides document filter-
ing. In addition, the Boolean indexing requires less
processing time than vector indexing, and this becomes
important when the collection size increases.

To facilitate the identification of the document
sources, the engine was required to put the document
id in front of each line in the document.

The index creation includes the following steps: nor-
malize the SGML tags, eliminate extraneous charac-
ters, identify the words within each document, stem
the terms (words) using the Porter stemming algo-
rithm, calculate the local (document) and global (col-

lection) weights, build a comprehensive dictionary of
the collection, and create the inverted index file.

The index generation process for LASSO is the same
process as used by Zprise, however, several minor
changes were necessary for the inclusion of the data
presented.

It was observed that while the Zprise index process
should work for multiple databases, it did not. Since
there are four distinct sources of data present in the
collection, four unique indices were created (one for
each source). The fact that L.ASSO uses a Boolean dis-
criminate versus a cosine vector space similarity mea-
sure makes this permissible. Furthermore, it became
necessary to expand the number of SGML tags that
are included in the index creation process. This was
necessary since each source chose to use a different, but
overlapping, set of SGML tags.

Paragraph filtering

The number of documents that contain the keywords
returned by the Search Engine may be large since only
weak Boolean operators were used. A new, more re-
strictive operator was introduced: PARAGRAPH n. This
operator searches like an AND operator for the words
in the query with the constraint that the words belong
only to some n consecutive paragraphs, where n is a
controllable positive integer.

The parameter n selects the number of paragraphs,
thus controlling the size of the text retrieved from a
document considered relevant. The rationale is that
most likely the information requested is found in a few
paragraphs rather than being dispersed over an entire
document.

In order to apply this new operator, the documents
retrieved by the search engine have to be segmented
into sentences and paragraphs. Separating a text into
sentences proves to be an easy task, one could just
make use of the punctuation to solve this problem.
However, the paragraph segmentation is much more
difficult, and this is due to the highly unstructured
texts that can be found in a collection. Thus, we had
to use a method that covers almost all the possible
paragraph separators that can occur in the texts. The
paragraph separators that were implemented so far are:
(1) HTML tags, (2) empty lines and (3) paragraph in-
dentations.

Paragraph ordering

Paragraph ordering is performed by a radix sort
that involves three different scores: the largest
Same_word_sequence-score, the largest Distance-score
and the smallest Missing_keyword-score. The defini-
tion of these scores is based on the notion of paragraph-
window. Paragraph-windows are determined by the
need to consider separately each match of the same

keyword in the same paragraph. For example, if we
have a set of keyword {kI, k2, k3, k4} and in a para-
graph kI and k2 are matched each twice, whereas k3
is matched only once, and k4 is not matched, we are
going to have four different windows, defined by the
keywords: [kI-matchl, k2-matchl, k3], [k1-match2,k2-
matchl, k3|, [k1-matchl, k2-match?2, k3], and [kI-
match?, k2-match2, k3. A window comprises all the
text between the lowest positioned keyword in the win-
dow and the highest position keyword in the window.
Figure 2 illustrates the four windows for our example.

Paragraph-window 1 Paragraph-window 2

kl-matchl k2-matchl kl-matchl k2-matchl
k3 k3
k2-match2 k2-match2
k1-match2 k1-match2
Paragraph-window 3 Paragraph-window 4
kl-matchl k2-matchl kl-matchl k2-matchl
k3 k3
k2-match2 k2-match2
k1-match2 k1-match2

Figure 2: Four windows defined on the same paragraph

For each paragraph window we compute the follow-
ing scores:
o Same_word_sequence-score: computes the number of
words from the question that are recognized in the
same sequence in the current paragraph-window.
e Distance-score: represents the number of words that
separate the most distant keywords in the window.
o Missing_keywords-score: computes the number of un-
matched keywords. This measure is identical for all
windows from the same paragraph, but varies for win-
dows from different paragraphs.
The radix sorting takes place across all the window
scores for all paragraphs.

Answer Processing

The Answer Processing module identifies and extracts
the answer from the paragraphs that contain the ques-
tion keywords. Crucial to the identification of the an-
swer is the recognition of the answer type. Since almost
always the answer type is not explicit in the question,
nor in the answer, we need to rely on lexico-semantic
information, provided by a parser that identifies named
entities (e.g. names of people or organizations), mone-
tary units, dates and temporal/locative expressions, as
well as products. The recognition of the answer type,
through the semantic tag returned by the parser, cre-
ates a candidate answer. The extraction of the answer
and its evaluation are based on a set of heuristics.

The Parser

The parser combines information from broad cover-
age lexical dictionaries with semantic information that
contributes to the identification of the named entities.
Since part-of-speech tagging is an intrinsic component
of a parser, we have extended Brill’s part-of-speech tag-
ger in two ways. First, we have acquired new tagging
rules and secondly, we have unified the dictionaries of
the tagger with semantic dictionaries derived from the
Gazetteers and from WordNet (Miller 1995). In addi-
tion to the implementation of grammar rules, we have
implemented heuristics capable of recognizing names of
persons, organizations, locations, dates, currencies and
products. Similar heuristics recognize named entities
successfully in IE systems. Having these capabilities
proved to be useful for locating the possible answers
within a set of candidate paragraphs.

Answer Extraction

The parser enables the recognition of the answer
candidates in the paragraph. Each expression tagged
by the parser with the answer type becomes one of
the answer candidates for a paragraph. Similar to the
paragraph-windows used in ordering the paragraphs,
we establish an answer-window for each answer candi-
date. To evaluate the correctness of each answer can-
didate, a new evaluation is computed for each answer-
window. We use the following scores:

e Same_word_sequence-score: it is computed in the
same way as for paragraph-windows.

e Punctuation_sign-score: is a flag set when the an-
swer candidate is immediately followed by a punctua-
tion sign.

e Comma_3_words-score: measures the number of ques-
tion words the follow the answer candidate, when the
latter is succeeded by a comma. A maximum of three
words are sought.

o Same_parse_subtree-score: computes the number of
question words found in the same parse sub-tree as
the answer candidate.

e Same_sentence-score: computes the number of ques-
tion words found in the same sentence as the answer
candidate.

e Matched_keywords-score: computes the number of
keywords matched in the answer-window.

e Distance-score: adds the distances (measured in
number of words) between the answer candidate and
the other question words in the same window.

The overall score for a given answer candidate is com-
puted by:

Combined-score= 16xSame_word_sequence-score +
+16x Punctuation_sign-score +

+32x Comma_3_words-score +
+16%Same_parse_subtree-score +
+16xSame_sentence-score +
+16% Matched_keywords-score —
—4 % +/Distance — score

Currently the combined score represents an un-
normalized measure of answer correctness. The an-
swer extraction is performed by choosing the an-
swer candidate with the highest score. Some of the
scores approximate very simple abductions. For ex-
ample, the recognition of keywords or other ques-
tion words in an apposition determines the Punc-
tuation_sign-score, the Same_parse_subtree-score, the
Comma_3_words-score and the Same_sentence-score to
go up. Moreover, the same sequence score gives higher
plausibility to answer candidates that contain in their
window sequences of question words that follow the
same orders in the question. This score approximates
the assumption that concepts are lexicalized in the
same manner in the question and in the answer. How-
ever, the combined score allows for keywords and ques-
tion words to be matched in the same order.

Table 3 illustrates some of the scores that were at-
tributed to the candidate answers LASSO has extracted
successfully. Currently we compute the same score for
both short and long answers, as we analyze in the same
way the answer windows.

Question-8 What is the name of the rare neurological
disease with symptoms such as : involuntary
movements (tics), swearing, and incoherent
vocalizations (grunts, shouts, etc)?

Answer Score: 284.40 who said she has both

(short) Tourette’s Syndrome and

Question-34 Where is the actress Marion Davies,

buried ?
Answer Score: 142.56 from the fountain inside
(short) Hollywood Cemetery

Question-73 Where is the Taj Mahal ?

Answer Score: 408.00 list of more than 360 cities
(long) throughout the world includes the Great
Reef in Australia, the Taj Mahal in India,
Chartre’s Cathedral in France, and
Seregenti National Park in Tanzania. The
four sites Japan has listed include

Question-176 | What is the nationality of Pope John

Paul IT ?
Answer Score: 407.06 stabilize the country with its
(long) help, the Catholic hierarchy stoutly held out

for pluralism, in large part at the urging of
Polish-born Pope John Paul II. When the
Pope emphatically defended the Solidarity

trade union during a 1987 tour of the

Table 3: Examples of LASSO’s correctness scores.

Performance evaluation

Table 4 summarizes the scores provided by NIST for
our system.

Percentage of | NIST score
questions in top 5
Short answer 68.1% 55.5%
Long answer 77.7% 64.5%

Table 4: Accuracy performance

Another important performance parameter is the
processing time to answer a question. On the aver-
age, the processing time per question is 6 sec., and the
time ranges from 1 sec. to 540 sec. There are four main
components of the overall time: (1) paragraph search
time, (2) paragraph ordering time, (3) answer extrac-
tion time, and (4) question processing time. Compared
with the rest, the question processing time is negligible.
Figure 3 shows the relative percentage (represented on
the vertical axis) of the first three components, for the
entire range of overall question processing time. The
horizontal axis ranks the questions according with their
processing time, from the shortest time of 1 sec. to 540
sec.

It can be seen that as the overall time increases,
the answer extraction time (including parsing) tends to
represent a higher percentage then the rest, meaning
that answer extraction is the module where most of
the time is spent. This is important as it indicates a
bottleneck in the time performance of the system.

Lessons learned

In principle, the problem of finding one or more an-
swers to a question from a very large set of documents
can be addressed by creating a context for the ques-
tion and a knowledge representation of each document
and then match the question context against each doc-
ument representations. This approach is not practi-
cal yet since involves advanced techniques in knowl-
edge representation of open text, reasoning, natural
language processing, and indexing that currently are
beyond the technology state of the art. On the other
hand, traditional information retrieval and extraction
techniques alone can not be used for question answer-
ing due to the need to pinpoint exactly an answer in
large collections of open domain texts. Thus, a mix-
ture of natural language processing and information
retrieval methods may be the solution for now.

In order to better understand the nature of the QA
task and put this into perspective, we offer in Table 5
a taxonomy of question answering systems. It is not
sufficient to classify only the types of questions alone,

since for the same question the answer may be easier or
more difficult to extract depending on how the answer
is phrased in the text. Thus we classify the QA sys-
tems, not the questions. We provide a taxonomy based
on three criteria that we consider important for build-
ing question answering systems: (1) knowledge base,
(2) reasoning, and (3) natural language processing and
indexing techniques. Knowledge bases and reasoning
provide the medium for building question contexts and
matching them against text documents. Indexing iden-
tifies the text passages where answers may lie, and nat-
ural language processing provides a framework for an-
swer extraction.

Out of the 153 questions that our system has an-
swered, 136 belong to Class 1, and 17 to Class 2. Ob-
viously, the questions in Class 2 are more difficult as
they require more powerful natural language and rea-
soning techniques.

As we look for the future, in order to address ques-
tions of higher classes we need to handle real-time
knowledge acquisition and classification from different
domains, coreference, metonymy, special-purpose rea-
soning, semantic indexing and other advanced tech-
niques.

References

Sergey Brin and Lawrence Page. The anatomy of a
Large-Scale Hypertextual Web Search Engine. In the
Proceedings of the Seventh International World Wide
Web Conference, 1998.

Chris Buckley, Mandar Mitra, Janet Walz and Claire
Cardie. SMART Hight Precision: TREC 7. In the
Proceedings of the Text Retrieval Conference TREC-
7, 1998.

Paul Cohen, Robert Schrag, Eric Jones, Adam Pease,
Albert Lin, Barbara Starr, David Gunning and Mur-
ray Burke. The DARPA High Performance Knowl-
edge Bases Project. In AI Magazine, Vol 18, No 4,
pages 25—49, 1998.

Paul Cohen, Vinay Chaudhri, Adam Pease and
Robert Schrag. Does Prior Knowledge Facilitate the
Development of Knowledge-Based Systems? In the
Proceedings of AAAI-99, 1999.

Sanda Harabagiu and Dan Moldovan. A Parallel Sys-
tem for Text Inference Using Marker Propagations.
IEEE Transactions in Parallel and Distributed Sys-
tems, Vol 9, no 8, pages 729-748, 1998.

Sanda Harabagiu and Dan Moldovan. Knowledge
Processing on Extended WordNet. In WordNet: An
Electronic Lezical Database and Some of its Applica-
tions, editor Fellbaum, C., MIT Press, Cambridge,
MA, 1998.

1.2

0.8

0.6

Percentage

0.4

02 H

10 13

TO T T T o T

TP T T T T T T

26 39

T T OF TT I TR T T T T

49 64

TP T T

18 74

Questions ranked by processing time in seconds

Paragraph search with feedback
Paragraph Ordering
Answer Extraction

Figure 3: Performance Analysis

Sanda Harabagiu and Steven Maiorano. Finding an-
swers in large collections of texts: paragraph index-
ing + abductive inference. Working Notes of the Fall
AAAI Symposium on Question Answering, November
1999.

Marti Hearst. Automated Discovery of WordNet Re-
lations. In WordNet: An Electronic Lezical Database
and Some of its Applications, editor Fellbaum, C.,
MIT Press, Cambridge, MA, 1998.

Lynette Hirschman, Marc Light, Eric Breck and John
D. Burger. Deep Read: A Reading Comprehension
System. In the Proceedings of the 37th Meeting of the
Association for Computational Linguistics (ACL-99),
pages 325-332, University of Maryland, 1999.

Jerry Hobbs, Mark Stickel, Doug Appelt, and Paul
Martin. Interpretation as abduction. Artificial Intel-
ligence, 63, pages 69-142, 1993.

Boris Katz. From Sentence Processing to Information

Access on the World Wide Web. Proceedings of the

AAAI Spring Symposium, pages 77-86, 1997.

Julian Kupiec. MURAX: A Robust Linguistic Ap-
proach for Question Answering Using an On-line En-
In the Proceedings of the 16th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR-93),

cyclopedia.

pages 181-190, Pittsburg, PA, 1993.
G.A. Miller. WordNet: A Lexical Database.

November 1995.

Dan Moldovan and Rada Mihalcea. A WordNet-based
Interface to Internet Search Engines. In Proceedings

of the FLAIRS-98, pages 275-279, 1998.

Gerard A. Salton. Automatic Text Processing: The
transformation, analysis and retrieval of information

by computer. Addison-Wesley, 1989.
William A. Woods.

Com-
munication of the ACM, vol 38: Noll, pages 39-41,

Conceptual Indexing: A Better

H Class KB Reasoning | NLP /Indexing Examples and Comments H
dictionaries simple complex noun, Q33: What is the largest city in Germany?
1 heuristics, apposition, A: .. Berlin, the largest city in Germany..
pattern simple
matching semantics, Answer is: simple datum or list of items found verbatim in a sentence
keyword or paragraph.
indexing
2 ontologies low verb Q198: How did Socrates die?
level nominalization, A: .. Socrates poisoned himself..
semantics,
coherence, Answer is contained in multiple sentences, scattered throughout
discourse a document.
3 very large medium advanced nlp, Q: What are the arguments for and against prayer in school?
KB level semantic
indexing Answer across several texts.
4 Domain KA high Q: Should Fed raise interest rates at their next meeting?
and level
Classification, Answer across large number of documents, domain specific
HPKB knowledge acquired automatically.
5 World very high Q: What should be the US foreign policy in the Balkans now?
Knowledge level,
special Answer is a solution to a complex, possible developing scenario.
purpose

Table 5: A taxonomy of Question Answering Systems. The degree of complexity increases from Class 1 to Class 5,

and it is assumed that the features of a lower class are also available at a higher class.

way to Organize Knowledge. Technical Report of Sun

Microsystems Inc., 1997.

