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Abstract

Realized volatility computed from high-frequency data is an important measure for many
applications in finance. However, its dynamics are not well understood to date. Recent
notable advances that perform well include the heterogeneous autoregressive (HAR) model
which is economically interpretable and but still easy to estimate. It also features good out-

of-sample performance and has been extremely well received by the research community.

We present a data driven approach based on the absolute shrinkage and selection operator
(lasso) which should identify the aforementioned model. We prove that the lasso indeed
recovers the HAR model asymptotically if it is the true model, and we present Monte Carlo
evidence in finite sample. The HAR model is not recovered by the lasso on real data. This,
together with an empirical out-of-sample analysis that shows equal performance of the HAR
model and the lasso approach, leads to the conclusion that the HAR model may not be the

true model but it captures a linear footprint of the true volatility dynamics.
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1 Introduction

Volatility of financial assets is of great importance to many applications in finance. Reliable
estimates and forecasts are key for risk management and asset allocation. As opposed to re-
turn series, financial volatility is predictable and has received great attention in the financial
econometrics research community. The seminal paper of Bollerslev (1986) introducing the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) model for conditional volatility
has thus sparked an even greater interest in volatility modeling. The GARCH model has become
extremely popular and despite various extensions and modifications the basic GARCH(1,1) fares
well as a prediction device for conditional volatility in an out-of-sample forecast comparison
(Hansen & Lunde 2005). While Bollerslev’s (1986) GARCH model is able to capture stylized
facts of volatility series (e.g., volatility clustering), its estimation still relies on daily observations
and thus potentially discards intraday information. The advent of high-frequency data (with
frequencies as high as tick-by-tick) has ignited a new line of research pioneered by Andersen,
Bollerslev, Diebold & Labys (2001) and Barndorff-Nielsen & Shephard (2002) among others. The
results of their work has rendered the thus far unobservable daily volatility observable by means
of asymptotic arguments:

Suppose that an asset’s log price obeys the dynamics dX; = u;dt + o,dW; where W; is a
Brownian motion, o; the instantaneous volatility and y; the instantaneous drift term. One
can then show that plim;_, Y, (X, — X;,)* = fOT o2dt where 6 = supf{ti;1 — 1}, i.e., the sum of
squared returns converges to the integrated variance (over a day) as the sampling frequency
increases.! An estimator of fOT 02ds is thus given by YN (X,., — X;)? where f1,...,ty is an
appropriate sampling frequency and is denoted RV;, where ¢ refers to the day. RV, is called
realized variance, and its squareroot VRV, is referred to as realized volatility. An overview of
variants of the aforementioned estimator and their corresponding assumptions is collected in
McAleer & Medeiros’s (2008) review on realized volatility.

Since the goal of this work is to investigate the dynamics of the realized variance and not the

estimation itself we can thus — with daily realized variance at hand — approach the problem of

11t is known that this naive estimator of f atzdt is biased under e.g., microstructure noise (the observable return
process Yy, = X;, + ¢y, is contaminated with noise) or if the log price process is a jump-diffusion (dX; = y;dt +0:dW; +dJ;
where J; is a finite activity jump process).



modeling realized variance.

It has been observed that the time series {RV;};<;<7 exhibits some distinct features such
as a near log-normal unconditional distribution as well as a slowly decaying autocorrelation
function which is often termed “long memory”: These findings appear to be robust across
different asset classes and evidence has been reported for exchange rates (Andersen, Bollerslev,
Diebold & Labys 2001), index futures (Areal & Taylor 2002, Thomakos & Wang 2003), as well as
for individual stocks (Andersen, Bollerslev, Diebold & Ebens 2001).

To address these characteristics of the realized variance time series, different approaches have
been put forward, most prominently fractionally integrated ARMA models (ARFIMA) and the
heterogeneous autoregressive (HAR) model for realized volatility introduced by Corsi (2009).
The HAR model not only allows for an economic interpretation of the proposed dynamics, but
also allows for an easy estimation and is thus highly appreciated and widely used within the
research community.

The contribution of this paper is to shed more light on the underlying dynamics as advocated
by Corsi’s (2009) HAR model which in essence claims tomorrow’s realized variance to be a sum
of daily, weekly, and monthly averages of realized variances that can each be attributed to
specific investment behaviors. The question we are aiming to answer relates to how much these
frequencies (daily, weekly, monthly) are really inherent to the data and if we can identify them
from a model selection perspective.

Model selection plays a crucial role in determining a model for forecasting. Oftentimes
model selection can be extremely costly from a computational perspective and may already
become infeasible within the class of linear models (an exhaustive search over p lags already
requires 2 comparisons and thus grows exponentially). An important contribution in terms
of model selection within the class of linear models was made in Tibshirani (1996) where the
Least Absolute Shrinkage and Selection Operator (lasso) was introduced. The lasso, a shrunk
regression, performs shrinkage and selection at a time and is yet computationally affordable.
Although originally the lasso was mostly noticed by the computational statistics community,
researchers in econometrics are increasingly using it. Most recently, conditions under which the
lasso gives consistent results have also been established in time series econometrics (Nardi &

Rinaldo 2011), and applications of the lasso are also found in Park & Sakaori (2012).



Despite the great popularity and appreciation of the HAR model there has been little work
investigating the validity of the structure as proposed by the HAR model. Although most work
is done in the direction of extending the HAR model (see the recent review of Corsi, Audrino
& Reno (2012)) there is a notable exception: Craioveanu & Hillebrand (2010) investigate the
structure of the HAR model and find no benefit in allowing for a more flexible structure of lag
selection. However, their result is based on an exhaustive search over HAR-like models but
varying aggregation frequencies.

It is along these lines that this paper adds to the literature. We present a methodologically
sound way of recovering the HAR model. We show that under the assumption that HAR model
is the true model, we can apply the lasso and should recover the structure as implied by the HAR
model. To this end we investigate how far Nardi & Rinaldo’s (2011) can be extended for the
special case of the HAR model. Moreover, we investigate if the lasso can be used for forecasting
realized variance from a purely statistical point of view as well as measuring outperformance
from a more economically relevant point of view via a risk management application. We find
no substantial superiority of either the HAR model or the lasso when it comes to out-of-sample
forecasting.

In summary, we have reason to believe that the HAR model might not be the true model.
However, it captures a linear footprint of the true underlying variance dynamics which appear
to change over time, thus casting some doubt on the appropriateness of the HAR as a global
model for realized variance.

The rest of the paper is structured as follows: Section 1 introduces the HAR model in more
detail, relates it to the autoregressive class of time series models and shows how the lasso can be
used in this context. Section 2 features an empirical application of the proposed model selection
approach, a Monte CFarlo study, as well as an out-of-sample comparison of the HAR versus the

lasso. Section 3 discusses the results and further research and then concludes.



2 Theoretical Foundation

2.1 The HAR Model

The HAR model as introduced in Corsi (2009) enjoys great popularity: It allows for an economic
interpretation, has good forecasting performance, and is still easy to estimate. There are numer-
ous variants and modifications of the HAR model (Corsi et al. 2012), however we restrict our
attention to the original model to keep a clear focus on the actual volatility dynamics. We thus
intentionally ignore other transient effects (such as the leverage effect) that may be embedded
in a HAR framework as well.

Let for this purpose Rng) be an estimate of daily realized variance. Then, the HAR model

postulates that
@ _ (d) @  pw) () | p(m) (m)
logRV/,| = c+ B 1ogRV,” + B log RV, + " 1og RV, + w;41, 1)

where (withaslight abuse of notation) log RV = 1 ¥'2 | log RV@Z. ,,andlog RV™ = L ¥2 log RVﬁ)i -
are the weekly and monthly averages of daily log realized variances, and w;, is an innovation.
Once these average log-variances are known, the model can be consistently estimated by tradi-
tional least squares to obtain estimates for ¢, @, @, and ™.

In other words, the conditional expectation of tomorrow’s log-realized variance is the
weighted sum (plus an intercept) of daily, weekly, and monthly log-realized volatilities.? For
the remainder of the paper we assume the HAR model to be causal as well as @, @, g™ to
be positive. These assumptions are by no means restrictive: First they comply with the view
put forward in the original work as outlined below, second, if estimating the HAR on empirical
data, the coefficients are always found to be positive.

The different aggregation frequency can then be seen as a heterogeneous agent model where
heterogeneity is induced by the different time horizons and can be casted into an information
cascade view. Hence, the weighted average perspective appears reasonable and positiveness of

the coefficients follows.

Clearly, the HAR model is simply a constrained AR(22) model, as it has already been noted

2We comment further on the use of log-realized volatilities in Section 3.1.



by Corsi (2009), i.e., we can write

22
log RV?, = AR 1+ )" pHAR 10 RVI?, |+ iy @)

t+1 7 t—i+1
i=1
where the restrictions as imposed by (1) require

D + 1@ + LB fori=1

GFAR = { Lp@ 4 Lgon) fori=2,...,5 3)

21_2,6("1) fori=6,...,22.

A direct specification test is obviously testing the restrictions as collected by (3). Given the high
number of restrictions a rejection of these is not surprising. However, in the original work Corsi
argues that this can well be attributed to specific properties of the time series. However, there is
already some preliminary indication that indeed the HAR model may fail to fully capture the

effects present in the data.

2.2 The lasso as model selection device

The lasso was introduced in Tibshirani (1996) and is frequently used in the field of computational
statistics and machine learning. In recent years, the lasso in general as well as the lasso as model
selection device has also been found in Econometrics (Kock 2012, Leeb & Potscher 2005). The
lasso is computationally very efficient and renders model selection with a high number of
predictors feasible. As opposed to the 27 comparisons that are required in an exhaustive search
over p predictors, the lasso employs a highly efficient algorithm which provides estimates and
model selection jointly (Friedman, Hastie & Tibshirani 2010) at affordable computational costs.

The lasso as originally introduced by Tibshirani covered the cross-sectional case: Let x; =
(xi1,...,xip)" be predictor variables and y; responses. Under the assumption that the predictors

are standardized, the lasso estimator of the model

y,-=a+qb’-x,-+e,- (4)



is obtained as

2
n p p
(@hsso, quasso) = arg min Z Vi—a-— Z ixij subject to Z lpil <t 5)
ap i=1 j=1 =1
where ¢ is a tuning parameter. Since & is independent of f it will always be equal to 7 and it
is thus generally assumed that # = 0 and «a is dropped from the minimization. It can be seen

(Tibshirani 1996) that (5) is equivalent to the Lagrangian form given as

n 2 4
¢l = argmin, )| [yi - Zp: ¢1xii] +A) 1o (6)
¢ i=1 j=1 j=1
with a one-to-one correspondence between A in (6) and ¢ in (5). The powerful feature of the lasso
is now induced by the L'-norm of the penalty. The lasso solution will be sparse, since some ¢s
will be set exactly to zero (as opposed to for instance ridge regularization in Hastie, Tibshirani
& Friedman (2009) where sparsity of the solution is lost due to the L>-geometry of ridge).

A question of utmost importance is how reliable is the lasso in the sense that it sets the true
zero coefficients to zero. Typically, this is what is captured by model selection consistency. The
following definition adopts the view of Nardi & Rinaldo (2011). For an overview and weaker

form of this, the reader is referred to Biihlmann & Van De Geer (2011).

Definition 1. Let y; = ¢ - x; + €; with ¢° = [¢Y, ..., $)’, sgn: R — {~1,0,1} and define sgn(¢) =

(sgn(¢p1), ..., sgn(¢py))’. Then an estimator ®y, is said to be model selection consistent if

P(sgn(dn) = sgn(¢p®)) — 1 for n — oo. (7)

The above model selection consistency definition meets our requirement that if there is an
estimator producing ¢, which is model selection consistent it will eventually only retain the true
non-zero coefficients supp ¢°.

An extension of the lasso as well as proof for which conditions the lasso is model selection

consistent is given in Zou (2006). Zou introduces the adaptive lasso which allows for a more



flexible penalization, i.e.,

n p 2 P
p= arg;nin Z [yi - (ijij] + /\Z Ajlp;l (8)
=1

i=1 =1

where A; are adaptive weights. It can be shown (Zou 2006, Biihlmann & Van De Geer 2011)
that in fact the adaptive lasso relaxes the assumptions for the model selection consistency of the
lasso.

An important extension of this strand of literature has been made by Nardi & Rinaldo (2011):
Nardi & Rinaldo show that properties already well-established in the cross sectional case carry
over to the time series case of an AR(p) process.> More precisely, they establish that under some
assumptions, a version of the adaptive lasso is model selection consistent. Suppose that X; is a

causal Gaussian AR(p) process, i.e.,
4
Xt = Z (P]Xt_] + €
j=1

where ¢ is i.i. N(0,0?)-distributed. Define S = {j, ¢; # 0} c {1,...,p} the active set, S° =
{1,...,p} \ S the non-active set, and I'xy = Cov(X,Y) the covariance matrix of a vector X and
Y. Consequently, I'ss is the square covariance matrix of the active predictors and I'ss is the
covariance matrix of the predictors in the non-active set (given as {X;_j, j € §}) with the
predictors in the active set (given as {X;_j, j € S}). They then proceed and prove the following

theorem (Nardi & Rinaldo 2011, Theorem 3.1):
Theorem 1. Consider the AR(p) settings described above. Assume that

(i) there exists a finite positive constant Cmay such that IIFE; < Crax;

I,

(ii) there exists a 6 € (0,1] such that |[TsesTgg]| <1 = 6.

I,

Further assume that the asymptotic properties for A, and A, ; as given in Nardi & Rinaldo (2011, Theorem
3.1) hold.

Then, the lasso estimator is model selection consistent in the sense of Definition 1.

3Note that Definition 1 is by no means limited to the cross-sectional case and translates directly to the time series
regression variant.



Condition (ii) of the above theorem is found throughout the model consistency literature for
the lasso. Typically this condition is called the irrepresentable condition as introduced in Zhao &
Yu (2006). Nardi & Rinaldo show that a causal Gaussian process satisfies the assumptions of

Theorem 1 and the lasso is thus model selection consistent for this class of models.

2.3 Lassoing the HAR model

Theorem 1 states that the lasso is indeed model selection consistent for causal AR(p) processes
with Gaussian innovations. If we assume that €; in (1) is Gaussian we can readily use the lasso
to try to recover the HAR model embedded in an AR(p) process with p > 22. The lasso should
then detect* S = {1,2,...,22} and S¢ = {23,24,...,p} since any other lagged value should be
irrelevant if the HAR model is the true data generating process (DGP).

The assumption of Gaussianity of the error may appear strong at first sight. However, the
HAR model is usually estimated using quasi-likelihood which in turn also assumes Gaussianity.
An even stronger argument is given below and proved in the appendix. Under the assumption
that the HAR model is the true DGP, we precisely know the dynamics and can prove (ii) of
Theorem 1 directly without relying on Gaussianity. This can then be used in Zhao & Yu’s (2006)
result which relaxes the assumptions of Gaussianity of the innovations. The relaxation on the
distribution of the error term comes at the price of keeping S and S fixed; the lasso literature
generally differentiates between a p = |S| growing with 1 or p fixed. Theorem 1 above addresses

the case where p is allowed to grow, our contribution below however requires p to be fix:

Theorem 2. Under the assumptions that the DGP is as given in (1) is causal and the innovation has a

finite fourth moment, S¢ is held fixed, then lasso is model selection consistent in the sense of Definition 1.

The complete argument and proof is given in Appendix A.

3 Empirical Application

In this section we illustrate our approach of identifying the HAR model via the lasso using nine

assets traded on the New York Stock Exchange. For each of these stocks we compute a realized

“4In the sense of setting the non-active coefficients to zero.
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variance measure using Zhang, Mykland & Ait-Sahalia’s (2005) two-time scales estimator (using
a frequency of 10 minutes) to obtain a series of daily realized variance measures. These measures
are then used to estimate the HAR model in-sample and contrast it with estimates as obtained by
the lasso procedure described in Section 2. We also compare the lasso’s forecasting performance
to the performance of the HAR out-of-sample. To rule out any doubt that these findings are
dependent on a specific realized variance estimator we also report a summary of results using
Andersen, Dobrev & Schaumburg’s (2009) MedRYV estimator in Appendix C. The key descriptive
properties of the data are summarized in Fig. 1 and Tab. 1.

Note that we obviously only forecast one day ahead realized variance since our argument is
based on the original specification of the HAR model. One could of course address the question
whether the lasso is also well suited to forecast realized variance at longer horizons (weekly,

monthly); this however would be a purely empirical exercise and is beyond the scope of this

paper.

3.1 Data Description

We use intraday data of Alcoa, Inc. (AA), Citigroup, Inc. (C), Hasbro Inc. (HAS), The Home
Depot, Inc. (HDI), Intel Corporation (INTC), Microsoft Corporation (MSFT), Nike Inc. (NKE),
Pfizer Inc. (PFE), and Exxon Mobil Corporation (XOM) from Jan 2, 2001 to Nov 15, 2010. These
intraday data are then used to compute an estimator of daily realized variance using Zhang
et al.’s (2005) two-time scales estimator. In total we have 2483 observations of realized variance

measures.

11
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Figure 1: Panel (a) shows the autocorrelation function for the 9 log RV, series. Panel (b)

shows a violin plot (Hintze & Nelson 1998) of the unconditional log RV

Table 1: Descriptive Statistics of log RV, series
AA C HAS HDI INTC MSFT NKE PFE XOM

Mean 680 696 636 642 6.90 6.37 610 630 5.90
SD 095 198 093 098 0.78 089 090 0.85 0.89
Kurtosis 406 261 3.06 3.32 3.82 440 3.06 4.18 6.15
Skewness 092 078 046 0.69 0.58 058 058 0.83 1.19
Median 6.67 643 623 6.30 6.81 633 597 618 578

25%-quantile 6.07 533 570 5.65 6.40 576 541 5.68 5.30
75%-quantile 7.30 821 699 7.01 7.35 690 6.70 6.82 6.35

Although using the log to transform the realized variance is standard in the literature, we
briefly comment explicitly on this in Appendix B for the HAR model. In what follows we always
assume the use of log realized variance when speaking of realized variance unless otherwise
stated.

Consistent with the existing literature we witness slowly decaying autocorrelation functions
in Fig. 1 (a) for all assets. This is most pronounced for Citigroup, Inc. The same stock also

exhibits particularities in the unconditional distribution of log RV, as can be seen from Tab. 1

12



and Fig. 1 (b): While all other stocks show excess kurtosis, Citigroup Inc. only has a kurtosis of
2.61. We suspect the market turmoil of the financial crisis to be the root of this abnormal picture.
Following this train of thought, we also report the actual returns in Fig. 10 in the appendix

where an extremely high excess kurtosis for the log returns of Citigroup Inc. can be observed.

3.2 In-sample Evaluation

To address the question whether the HAR model is identified by the lasso procedure we define
S¢ = {x;_23,...,X_100}.> Since A in (6) is a tuning parameter and the results of Theorem 1 only
hold asymptotically we proceed as suggested in the literature (Nardi & Rinaldo 2011, Section
4.1.) and choose A; = 1forall jand A = 4/ w and can thus expect S as obtained by G to
be sparse in {1, ..., 100}.

Two important points should be noted here: First, the lasso does not recover all of the
coefficients implied to be non-zero by the HAR as can be inferred from Tab. 2. Although near
lags are recovered for most assets, lags beyond x;_¢ rarely get selected by the lasso. Note at this
point that a comparison of coefficients in magnitude of the lasso estimates to the HAR estimates
cannot be made since the lasso, as a penalized estimator, is biased. Second, sometimes lags far
beyond x;_5, are selected in the active set as can be seen in Fig. 2. Clearly, these lags are zero
under the assumption that the HAR model is true.

At this stage it is alaredy apparent that the lasso does not fully recover the HAR model, i.e.
S # {1,...,22}. To provide further evidence supporting this statement, we conduct analyses
which attempt to answer the following two questions: 1. How reliable is the lasso as a model
selection device in this specific finite sample setting? 2. How stable are these regressors over

time? A thorough answer to these questions is provided in the two subsequent paragraphs.

3.2.1 Monte Carlo Study

To assess the model selection consistency of the lasso in the case of the HAR model in finite
sample we include a Monte Carlo simulation in this section. Since the lasso’s model selection

results depend on the signal-to-noise ratio (Bithlmann & Van De Geer 2011), it is important

5The choice of S running up to 100 is arbitrary. However, the results are not sensitive to the choice of the maximal
lag, as for instance the results remain almost identical for a maximal lag of 50

13
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to have a comparable setting to assess the finite sample performance of the lasso as a model
selection device. We conducted the Monte Carlo study under the assumption that the HAR
model was true, in order to answer the question how effective the lasso would be if the HAR

model were true. To this end, we proceeded as follows in a parametric bootstrap manner:

1. Forassetj=1,...,9 estimate the HAR model on the full sample of 2483 data points, which

includes

(a) Obtainc, ¥, 3™, B and compute Va\r((—:t) as well as the derived estimates qAbgHAR) HUHAR)

oo Qo
via (3).

(b) Compute the unconditional mean I (as yo/(1 — 212:21 cZ)i)) and the unconditional vari-
ance § (as @(et) /A-Y2 $i7;) where y; is the autocovariance at lag 7, see Brockwell

& Davis (1986))
2. Resample the HAR model.

(a) Sample xy, ..., x from the stationary distribution N(f1, 5)
(b) Compute x33, ..., X483 recursively based on (3).

(c) Apply the lasso as specified in Section 3.2 and record the lasso estimates

Step 2is repeated 1,000 times and the results are reported in Tab. 3.The results clearly indicate that
the HAR structure is well recovered by the lasso in this synthetic HAR setting. Although small
coefficients (the monthly coefficients) are selected less often, the daily and weekly coefficients
are almost always estimated to be non-zero and thus considered active. Note at this point that
there is indeed some contradiction with what has been reported in Tab. 2: The lasso does not
select 1, ..., ys for all assets and selection of lags beyond 22 is rare.®

We thus conclude from this Monte-Carlo application that indeed the lasso does recover the

HAR model reasonably well if it is the true model, i.e., if we simulate from this DGP.

6Based on the percentage of times recovered we may conclude that for instance lag x;_15 is non-active across all nine
assets (as found in Tab. 2) has a chance of occurring of 6.7% based on the occurrences in Tab. 3.
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Table 3: Percentage of HAR coefficients recovered
Lag AA C HAS HDI INTC MSFT NKE PFE XOM
Xp-1 100 100 100 100 100 100 100 100 100

X2 100 100 100 100 100 100 100 97 100

X-3 100 100 100 100 100 100 100 98 100
Xi—4 100 100 100 100 100 100 100 97 100
Xt-5 100 100 100 100 99 99 100 96 100
Xt—6 42 43 61 54 18 21 52 23 12
Xp-7 37 39 59 53 17 18 50 21 9
X8 36 37 61 54 15 16 50 20 6
Xt—9 32 32 54 49 9 10 44 15 2
Xt-10 34 34 56 50 9 10 45 16 1
X1 31 31 54 45 7 9 42 14 1
X¢-12 28 30 56 48 7 9 44 15 1
X113 27 28 55 47 5 7 43 14 1
Xt-14 28 29 58 51 6 7 46 13 0
Xi-15 25 24 55 46 4 4 42 10 0
Xt-16 25 25 53 44 4 5 40 12 0
Xi-17 19 20 51 42 2 2 36 8 0
Xt-18 20 20 51 43 2 2 38 8 0
Xt-19 16 17 46 36 1 2 31 6 0
Xt-20 12 12 42 31 1 1 27 3 0
Xioo1 10 12 41 29 0 0 25 3 0
Xt-22 8 9 34 25 0 0 20 2 0
Xt-23 3 6 13 8 0 0 6 1 0
Xi—na 2 4 8 6 0 0 4 0 0
Xt-25 1 4 8 5 0 0 3 0 0
Xt-26 1 3 5 4 0 0 3 0 0
Xt-27 0 2 4 2 0 0 2 0 0
Xt-28 0 2 4 3 0 0 1 0 0
Xt-29 1 2 4 2 0 0 2 0 0
X¢-30 0 1 3 2 0 0 1 0 0
Xt-31 0 2 3 2 0 0 1 0 0
Xp-32 0 1 3 1 0 0 1 0 0
Xi—33 0 1 2 1 0 0 1 0 0
Xt-34 0 1 2 1 0 0 0 0 0
X35 0 1 1 0 0 0 0 0 0
Xt-36 0 1 2 1 0 0 1 0 0
Xt-37 0 1 2 1 0 0 1 0 0
Xt-38 0 1 2 1 0 0 0 0 0
Xt-39 0 1 1 0 0 0 0 0 0
Xi—40 0 0 1 0 0 0 0 0 0
Xp-41 0 0 1 0 0 0 0 0 0
Xia2 0 0 1 0 0 0 0 0 0
Xt-43 0 0 1 0 0 0 0 0 0
Xt—44 0 1 1 0 0 0 0 0 0
X100 0 0 0 0 0 0 0 0 0

Number of times (out 1,000 replications) a lag has been selected
(estimated as non-zero) by the lasso in percent. Omitted rows
contain zero only.
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3.2.2 Rolling Window

To address the question whether all of the observed in-sample selected regressors are constant
over time we apply the lasso procedure in a rolling window manner. We stack our data for each

asset as follows

X101 X100 - -- X1

X102 X101 .- X2
X =

| Xn Xp-1 .- xn—lOOA

We then estimate the lasso on the first 1,000 rows of X and roll this window of length 1,000
down to the last row of X. Pursuing this procedure we obtain 1,384 lasso estimates and record
them. Fig. 3 contains this analysis for Citigroup, Inc. The abscissa reports the last date of the
current window (the first window thus corresponds to the date of x1990 which in this case is May
19, 2005 and continues through Nov 15, 2010), the ordinate indicates whether or not a regressor

was selected (estimated to be different from zero).
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Figure 3: Stability of lasso selected regressors for Home Depot, Inc. Diagonal gray lines have
slope 1, i.e., if a regressor moves along these lines then its effect is lagged by one day as the

rolling window proceeds by one row (1 day)

Groups of regressors moving along the diagonal lines are likely to be noise (they are one-off
events that move through the sampling window). It is also apparent from Fig. 3 that there
is a clear break in structure during the financial crisis. The only lag which is selected during

the crisis is the x;_; indicating that the variance process prevailing in the data is actually an
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Figure 4: Stability of Lasso selected Regressors for all assets

AR(1)-process.

Fig. 4 draws the same picture for the remaining eight assets. Although there are minor
differences among assets we observe a clear pattern of a “dependence breakdown” during the
financial crisis. Most assets indeed also have components that can be explained by one-off events,
however, we also find for HAS, HD], and C lags that constantly get selected and remain (beyond
the training window length of 1,000 observations). This may be an indication of longer-range
dependence that warrants further research. As can clearly be inferred from Fig. 4 the dependence
breakdown during the financial crisis is for some assets even more pronounced than it is for
Citigroup, Inc. For these, the optimal lag structure as chosen by the lasso, sometimes reduces to
a constant (e.g., HDF in Fig. 4). Also, there are assets that exhibit a dependence structure (i.e.,

by lags beyond x;_»2) which is not accounted for by the HAR model.

3.3 Out-of-sample prediction

So far we have only considered the lasso results in-sample. But the HAR has also garnered
prais for its for out-of-sample prediction. In a next step we thus compare the HAR’s and the

lasso’s out-of-sample performance. We estimate the HAR model with data up to time t and
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compute an estimate for f + 1 which is labeled l@fﬁ tR ). We do the same for the lasso to obtain
lo/gﬁlilfj: ). We proceed again in a rolling window manner but also vary the training window
length (the length on which we estimate the lasso and the HAR model). To render the results
comparable we report the out-of-sample prediction for different training window length but the
same evaluation window (from May 12, 2009 to Nov 15, 2010 as implied by the longest training
window length and resulting in 383 observations) in Tab. 4. To have an objective comparison
we also include the random walk in our analysis. Although there is theoretical guidance for
choosing A in (6) we pursue a different approach. The theoretical guidance is optimal in the
sense of asymptotic model selection consistency; however, this is not necessarily the best penalty
for prediction. Thus, we employ the common approach of estimating the expected prediction
error using cross validation.

Cross-validation in the cross sectional case is a statistically sound way of estimating the
expected out-of-sample prediction error and thus determining the optimal penalty parameter
(Arlot & Celisse 2010, Hastie et al. 2009). Although cross-validation (typically K-fold) is often
used in practice to determine the optimal penalty parameter in a penalized regression setting (for
instance in Nardi & Rinaldo (2011) and Park & Sakaori (2012)) we adopt the view of Bergmeir &
Benitez (2012) and use blocked cross validation” to account for the time series nature of the data.
When comparing the estimates of f\opt obtained by using the regular K-fold cross validation
(/A\g;)t) to the estimates obtained used a K-fold blocked cross-validation ()A\g?t), we observed that
)A\g;)t < ;\g;)t' From a conceptual point of view, this observation is in accordance with the result that
for kernel regression the bandwidth is smaller for positively correlated errors when compared
to uncorrelated errors (Hart & Wehrly 1986). Even if kernel regression and the lasso may at first
appear as different approaches they can be related, exploiting the linearity of both approaches,
by looking at the trace of their smoother matrix (the generalized cross-validation, GCV) which
again is an estimate of the prediction error (Hastie et al. 2009).

Summarizing, we use blocked cross validation for both, empirically and theoretically founded

reasons, to obtain an optimal A in our out-of-sample procedure. We use 10 blocks to find an

estimate of the optimal A.

7Instead of building K blocks by randomly assigning any number in {1,...,K} to each observation and collecting
the observations having the same number we use blocks with contiguous observations, such that the blocks are
{1,...,KL{K+1,...,2K},... . {(ln/K] - DK +1,...,n}
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Table 4: Out-of-sample comparison

200 400 1,000 2,000

Asset RW HAR lasso RW HAR lasso RW HAR lasso RW HAR lasso

AA 0.160 0129 0.142 0.160 0.126 0.126 0.160 0.125 0123 0.160 0.124 0.121
C 0.132 0.115 0.127 0.132 0115 0120 0132 0.115 0119 0.132 0.116 0.116
HAS 0240 0201 0219 0240 0197 0204 0240 0.193 0197 0240 0.197 0.200
HDI 0231 0184 0207 0231 0181 018 0231 0.179 0181 0231 0179 0.178
INTC 0.113 0.094 0.100 0.113 0.091 0.091 0.113 0.089 0.088 0.113 0.089 0.087
MSFT 0153 0128 0.137 0153 0.125 0127 0.153 0.123 0124 0.153 0123 0.121
NKE 0176 0144 0158 0.176 0.142 0.146 0176 0.139 0.140 0.176 0.138 0.140
PFE 0.130 0.107 0.112 0.130 0.104 0.105 0.130 0.102 0.101 0.130 0.102 0.099
XOM 0221 0182 0192 0221 0179 0179 0221 0178 0175 0221 0176 0.174

MSPE for all nine assets across training window length of 200, 400, 1,000, and 2,000 obser-
vations (rolling window). In addition to the lasso and the HAR the random walk (RW) is
included.

We measure the out-of-sample performance using the mean squared prediction error (MSPE)
which is computed as MSPE = 1 Zt":l(l%R\Vt 1~ log RV.1)? where lo/gi\/t 111 18 the prediction
obtained by either the HAR model or the lasso and # is the total number of out-of-sample
predictions. Tab. 4 shows two points: First, both the lasso and the HAR need a certain window
length to attain reasonably low mean squared prediction errors (MSPEs), although the HAR
model is markedly better for small training window sizes. Second, for longer training windows,
the lasso and the HAR are almost equal in terms of MSPE.

To better understand these results we further report the evaluation over different out-of-
sample periods: Pre-crisis, post-crisis, and full sample. The date for the beginning of the
financial crisis was set to Sep 1, 2007. For the relevant training window lengths (i.e., 1,000
days and 2,000 days) we kept the maximal out-of-sample period which, unlike Tab. 4, results
in evaluation windows of different lengths. The difference in MSPE is then tested using the

Diebold-Mariano test (Diebold & Mariano 1995). These results are reported in Tab. 5.
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Table 5: Diebold-Mariano (Diebold & Mariano 1995) tests of equal predictive ability

AA C HAS HDI INTC MSFT NKE PFE XOM

Total Mean Diff. 0.002 -0.001 0.001 -0.003 -0.001 -0.002 -0.006 -0.007 -0.001
(n=1"383)  p-value 0.38 0.86 0.85 0.34 0.49 0.35 0.18 0.00 0.48

§ PreCrisis  Mean Diff. 0.002 0.000 0.002 -0.006 0.001 -0.001 -0.012 -0.008 0.000
—  (n=575) p-value 0.57 1.00 0.78 0.22 0.50 0.55 0.17 0.01 1.00
PostCrisis Mean Diff. 0.002 -0.001 0.000 0.000 -0.003 -0.003 -0.001 -0.006 -0.003
(n=808) p-value 0.49 0.84 0.96 0.94 0.26 0.44 0.69 0.05 0.39
Total Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.92 0.44 0.72 0.09 0.62 0.30 0.18 0.33

§ PreCrisis Mean Diff. — — — — — — — — —
o p-value — — — — — — — — —
PostCrisis Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.91 0.44 0.72 0.09 0.62 0.29 0.18 0.33

Difference in MSPE (MSPEpaR — MSPE|,ss,) are reported together with p-values from the Diebold-
Mariano (Newey-West (Newey & West 1987) adjusted). The differences and p-values are reported for
different training windows (1,000, 2,000) and before/after the financial crisis. Differences significant at

0.1 are typeset in boldface

Although there are a small number of rejections of the null we find no consistent pattern,
(lasso)

neither in favor of the HAR nor in favor of the lasso. Investigating the predictions lo/gEVt Tt

—— (HAR)
and log RV, in the sense of Mincer & Zarnowitz (1969) we find no evidence of either of the
models (reported in Appendix E) being more often unbiased.

To be retained at this stage is that there is no clear evidence that either of the two models is

genuinely better suited to forecast realized variance out-of-sample.
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3.4 Risk Management Application

To test the predictions obtained from the lasso and the HAR model from a different angle, we

include a risk management application. The value at risk of an asset to the level « is given as
VaR!, = —inf{x € R|P(X; <x) > 1—a} )

where X; is the daily log-return of an asset.® Under the assumption, which also underlies the

computation of realized variance, that an asset’s return X; is given as’

Xy =y +or-Zs

we can readily compute (assuming a scale-location family with continuous distribution function)
as

VaRy(X) = ut + 0141-a (10)

where g1, is the 1 — a quantile of the standardized distribution Z;, pi; the conditional mean, and
o; the conditional volatility of X.

As the distribution for Z; we use the standard normal distribution as well as the empirical
distribution after (quasi-)standardizing X; with y; and estimates of o; as obtained by the RV;
estimates. Since we are aiming for a realistic benchmark we do not employ backtesting for the

value at risk but conduct an out-of-sample analysis and predict
VaR; ™M = i + o110 (11)

where 0,1 is again obtained based on RV}, estimates by either the lasso or the HAR model.
To do so, we estimate both models on window lengths of n = 200, 400, 1, 000, 2,000 obser-

vations to obtain a forecast lgR\V To get an optimal forecast (in the sense of Proietti &

410t

8We define the value-at-risk compliant to the risk management literature: Instead of working with the usual dis-
tribution, we premultipliy with —1 such that losses are positive resulting in the mnemonic that a greater VaR means
greater risk.

9Strictly speaking the assumptions of computing realized variance also allow for jumps (depending on the estimator)
to contribute to the return X;. For reasons of simplicity, we exclude this component.
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Liitkepohl (2011) and Appendix B) of the actual volatility we compute 6.1 as

. — &
Ol = \/eXP(IOg RVt+1|t - ?) (12)

where 37 is the variance of log RV, and is computed as the empirical variance of {l@t_n e l@t}

(HAR) and 6(lusso)

which produces &, TS

The same transformation is used to obtain the quantiles of
the (quasi-)standardized residuals in (10).

The hit ratios are then defined as

#xr41 < — VaR,")
n

HRY ® = (13)

where ‘M’ can either be ‘HAR’ or ‘lasso’” depending on how o1y of (12) is computed (either
by the HAR-model or our lasso approach), and ‘D’ is either ‘Norm” or ‘Emp” depending on
how g1, in (11) is computed (quantiles of a N'(0, 1) distribution or quantiles of the standardized
empirical distribution). In all cases we compute the conditional mean as u; = % Yoy Tientie

To contrast these estimates we also implement a naive estimator of the value at risk by simply

taking the empirical a-quantile of the distribution of the log-returns, i.e.

HRimp — #{xt+1 ; 671—11},

where §;_, is the empirical 1 — a quantile of {x;—,+1, ..., x¢}.
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Figure 5: Actual hit ratios.The columns show the different estimators of HR,, the rows show the
levels of @ = 99, 95, 90%. The horizontal lines are the theoretical levels (1 — &) of the VaR. The

color indicates the p value of Kupiec’s (1995) test against the theoretical level.

Fig. 5 clearly shows that there is again no systematic difference between the HRYXP and
HR*P_ Both are too aggressive (producing a VaR which is too low and thus is violated more
often than theoretically specified) when the N(0, 1)-distribution is used for the standardized
innovations, and less so when the standardized empirical distribution is used. However, what
becomes apparent from Fig. 5 is that the influence of the assumption on the distribution is
much more crucial than the model used to forecast volatility. Compared to the simple model
of estimating the VaR by simply taking the empirical quantiles the results are disappointing:
There is no apparent outperformance of computing the VaR with volatility forecasts obtained
by either the HAR or the lasso over simple (but effective) historical quantiles. This is all the
more so, when looking at the rejections of Hj under Kupiec’s (1995) test (assuming the correct
level for the VaR). It is less often rejected for the ‘Emp’ than for any realized variance model.

The poor performance of all VaR forecasts for Citigroup, Inc. is related to the turbulent times
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the stock went through during the financial crisis resulting in pronounced non-normality of the

log RV; as reported in Fig. 1 (b) as well as non-normality of the log-returns reported in Fig. 10.

4 Conclusions and Further Research

We conclude that the lasso does not recover the HAR model. We consider this as evidence
against the presumption that HAR model is the true DGP since, first, we have theoretically
founded reason to believe that the lasso should detect the HAR model, and, second, we provided
empirical evidence on synthetic data that the lasso does recover the HAR model if the data stem
from this DGP.

In addition, the lasso and the HAR model appear to be indistinguishable from an out-of-
sample performance point of view: Neither the HAR nor the lasso excels in an out-of-sample
prediction exercise. When we look at a more economically meaningful comparison using value
at risk prediction, both models fare equally poorly with no noticeable differences in favor of
either of the two.

The argument above and the selection of only near-lags (in the whole sample, and even more
pronouncedly during the crisis) leads us to the hypothesis that in fact the realized variance
dynamics are much better explained by shorter horizon models. Our results are in line withe
empirical evidence shown in Chen, Hérdle & Pigorsch (2010), eventually hinting at the possi-
bility that the seemingly long-memory dynamics of the realized variance time series are in fact
spurious. Arguments against this view are the lags which are selected and persist: This actually
indicates that there might be some long range dependence which warrants further research.

We thus conclude that the HAR model may not be the true model. However, it captures — as
does the lasso — a linear footprint of the possibly non-linear volatility dynamics that can be used
for volatility forecasting. Given the equal out-of-sample performance of the two approaches
we see potential for further research in this domain: Although adding additional predictors
other than the lagged values of the realized volatilities themselves expels us from the thorough
theoretical model selection framework established in this paper, we anticipate further insights
with regard to e.g., volatility spillovers (including other assets, markets, etc. as predictors) or

calendar effects (adding day-of-week dummies to the lasso regression).
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A Proof of Theorem 2

This proof is structured as follows. We first show in Lemma 1 that the irrepresantable condition
is satisfied for the HAR model. Based on this we invoke a theorem of Zhao & Yu (2006) which
relaxes the assumptions on the innovation term for the lasso to be model consistent. Finally we
show that the HAR model satisfies the assumptions of the aforementioned theorem and we can
thus expect the lasso to be model selection consistent without the assumption Gaussianity for

the error term.
Lemma 1. Under the assumption that HAR model is true, condition (ii) of Theorem 1 is satisfied.

Lemma 1 states that if the true DGP indeed obeys the law of motion as specified by the
HAR model one can apply the results of Nardi & Rinaldo (2011) who establish that the lasso
is a valid model selection device under two assumption, namely, that (i) IInglllm < C and (ii)
||1"5551"§51||00 < 1. T denotes the autocovariance matrix, S is the true active set of predictors, S¢
is the true non-active set of predictors. When embedding the HAR model in this specification
we have that S consists of the lagged values up to order 22 and 5S¢ is any other lagged values
beyond 22. Since (i) holds trivially as by (1) none of variables is a linear combination of another,

we only collect the proof of (ii) in the Lemma below.

Proof. The proof is split into two parts. First we show that the infinity norm of I's:sT's¢ can be
seen as the sum of the absolute values of the regression coefficients of the usual HAR estimates,
second, we show that it is sufficient to consider one specific non-active regressor.

Moreover, consider the following equivalent notations:

Cov(S¢,S) Var(S)™! = Cov(S°,S) Cov(S,5)! = Fscsfgsl.

To rule out any possible confusion we re-state the definition of the infinity norm of a matrix.
If [|€]l for & € R™ is defined as ||E]|l = maxi<i<y |€il, then the corresponding matrix norm is given
as

lAlleo := max [|A&]le
lelle=1
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where it can be shown (Lewis 1991, Proposition 3.4.1) for A = [a;;]1<i<n,1<j<m that

m
ANl = max ) lag.
1<i<n =

In what follows we consider a row-vector & = [&1,...,&,] as 1 X n matrix such that [|&]|c = |1&’]]1-
Throughout the proof we assume without loss of generality the HAR model to contain no
intercept. Moreover, for the sake of notational simplicity we assume the AR process to be labeled

as

2
Xt = Z Qix—i + €. (14)
i=1

Assume that |S¢| = 1 with S¢ = {x;_23}1° and that the true model is in fact the HAR model, i.e.
S| = 22 with S = {x;—1,X¢—2, ..., X—2}. In other words, the active set consists of the first 22 lagged

values and the first non-active predictor is x;_3. We then find that

Cov(xi_23, [Xt-1, Xt=2, - . ., Xe—2])Var([xe—1, X;—2, . . ., xt—22])_1 = [(i)l/ ceey ézz], (15)

where [q?)l, L, (f)zz] is the usual representation of regression coefficients of x;_p3 onx¢_1, X4, ..., Xt—2
(note that the previously introduced superscript “HAR” is omitted to alleviate notation).
Since we are only interested in the sum of the absolute values of these regression coefficients,

ie. I[P, ..., Panlllo, we may as well reorder the regressors since
I[P, .- .. P22llleo = N Poqy, - - - » Poe2)lleo (16)
is true for any permutation 0. With o(i) = 22 — i + 1 we find that
I Poy, - - » Do)l = ICOV(X1_23, [Xt—22, X¢-21, - - ., Xe—1])Var([Xe—nz, Xe—21, - - -, X=1]) oo

A closer look at the second term (exploiting covariance stationarity and thus, the fact that the

100bserve that we slightly deviate from the notation used previously where S ¢ N; we use S and S¢ to denote the
corresponding lags variables rather than their indices.
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autocovariance is an even function, (see for instance Brockwell & Davis (1986)) shows that

Cov(xt-23, [x¢-22, Xt-21, - - - , Xt-1] = [Cov(xt_23, xt—(23—i))]1sis22
= [Cov(xt, xt-i)]1<i<22

= COV(xt/ [xf—llxt—Z/ e /xt—zz])

and

Var([x¢-22, Xt-21, - .., Xi-11) = Var([xi-1, X2, . .., X;-22])

such that

[Pot), Po), - - - » Po@z)] = Cov(xi—oz, [Xi—22, Xi-21, - . . , Xe—1]) Var([xi—22, X121 - . ., X1-1)

= Cov(xy, [xi-1, X2, . . ., Xe=22]) Var([xi—1, Xi—2, . . ., Xe—22]) ™"

=[¢1, P2, ..., P2l (17)

Combining (16) and (17) shows that (15) is indeed simply the sum of the absolute values of the

coefficients of (14), i.e., we conclude for S° = {x;_»3} that we have
ITsesTgelleo = B9 + B + . (18)
When extending the set of non-active predictors to S€ = {Xt—22+i)}1<i<k One can Verify11 that

COV([xt7(22+l)/ ooy Xt—(224K)]/ (X1, xt-2, ..., X-22])Var([xi-1, X2, . . ., xt—22])_1

@ g@ 0 g0
1 2

22 (19)
20 2k 7 (k)
¢1 qbz e 22

IThis can either be seen by establishing the usual AR(p) moment conditions or recalling the fact that the OLS estimates
of an AR(p) process are consistent.Note that the consistency of the AR(p) estimates only gives results a.s. by asymptotic
equivalence. However, basing the argument on theoretical moments and the fact that for appropriate random matrices
X and Y we have [Cov(Y, X) Var(X)~']’ = Var(X)~! Cov(X, Y) yields (19) directly.
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Hence,

22
c -1 _ 7 (j)
ICov(S*, $)Var($) "l = {“?’;Z; ;"

In a next step we show that Y., |¢)l(,1)| <YZ |¢§k)| for I > k by induction. The conclusion then
follows since it holds for k = 1, i.e. for S° = x;_3 which has already been proved in (18).

Given the argument which shows that reversing the order has no effect on the sum of the
coefficients we present the argument in the usual AR(22) representation as given in (14) and

thus drop the tilde, i.e.
2
Xit+j = Z ¢§])xt+j—i + &4
i=1

Now, consider the induction basis for j =1 — 2:

1
Xp1 = Z <Z>f Xp1i + €1
2 2
1 1
[Z <P§ Jxii + €t] + Z (Pf X1 + €

=1 i=2
21

Z ¢(1) + (Pf}_)l)xt—z’ + ¢(11)q§(212)xt 20 + €141
i=1
22

= ¢( Xii+ €1,
=1

~ 1
where &1 = (pg )et + €;,1 and

0P = Mo + o fori=1,...,21and ¢ = ¢Vl (20)

By the assumptions put forward in (1) we have that qbfz) >0 Vi=1,...,22 and taking the

difference of the sum of absolute values thus yields

22 22 22

2 1 1 1 1
2 0f1-2 ol = i’(2¢5)‘1]:¢§>(ﬁ<d>+ﬁ““>+ﬁ<"”—1)-
i=1 i=1 i=1
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By (20) and (3) we have the induction basis qbgz) >0 VYi=1...22and also we find by the fact!?
B0+ 00+ g0 <1 that £ 6 < 2, o)

Reapplying the same argument for the induction step j — j + 1 yields
2
Xpyj = Z (Pl(-])xtﬂ—i + Eptj

(]) (Z d)(l)xt ite J + Z qb X1+ Ettj

21
1) (OFR0) &
Z + ¢1+1) Xii+ Ppy P Xt-22 + &t
i=1
2
(j+1) ~
= ¢i] Xp—i t Etsj

i=1

where again &;,; = gi)gl)st + &y and ¢§j+1) = (])gb(l) + qi)(]) fori=1,...,21and ¢(]+1) cp(l)(p(])

Taking the difference between the sum of ¢i Y and the sum of gi)f] ) yields

qu(]ﬂ) qu(]) [Z ¢(1) ] (11')_

By the induction basis we have (j)l(.j) >0Vi=1,...,22 such that qbf] DS ovi= 1,...,22 and thus

2 2
- .
2= Y e <o
i=1 i=1
such that the claim
2 2
" .
2ol M< ) lo)
i=1 i=1
follows. Summarizing we conclude that for the HAR model it holds that ||[T'sesI'sslle < 1 — 6 if
B + B 4 g < 1 — 6. o

Having proven the above we look at a theorem provided by Zhao & Yu (2006) which shows
that the lasso is model selection consistent under some assumptions. Later we will prove that

these assumptions hold if the HAR model is assumed to be true and we can thus safely relax

2This follows directly from the causality assumption: Since all roots lie outside the unit circle and the P(z), the
characteristic polynomial, is continous on R it follows that P(1) > 0 and thus that @ + g + g™ < 1.
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the assumption of normally distributed errors if we are willing to accept a fixed S and 5¢ (as
opposed to Nardi & Rinaldo’s (2011) results where p = |S| is allowed to grow as the sample size

increases.
Theorem A (Zhao & Yu (2006)). Under the assumptions of S and S° fixed and

(A1) |TgesTga sgn(supp ¢°)| "C 1 where 1 is a vector of ones and the inequality is understood compo-

nentwise
(A2) Tfg ooy 5.0 225 T(s 50),(5,57) Where T (s,se) is the autocovariance matrix and I's 5.y its sample analogon

l . Y4 2 a.s.
(A3) - maxo<i<n—p Z].:1 X 0

the lasso is model selection consistent in the sense of Definition 1 if the innovation term has finite second

moment and A,, is chosen such that A,/n — 0 and }L,,/n% —oowith0<c<1.

Proof of Theorem 2. We prove that the assumptions of Theorem A above are satisfied if one
assumes the dynamics of the HAR model as put forward in (1) to hold as well as the existence

of a finite fourth moment of the innovation term.

(A1) IT Scsl"gé sgn(supp ¢°)| Z1in (A1) of Theorem A holds since the argument in the proof
of Lemma 1 can be made in terms of sample moments. Knowing that the least squares
estimates converge a.s. to the true values (Brockwell & Davis 1986, Theorem 10.8.1) the
conclusion follows since [[gcsT'cs sgn(supp ¢°)| 2 1 is weaker than ICsesTgglle <10 as

all components of supp ¢ are greater than zero by (3).

(A2) Under the assumption of a finite fourth moment of the innovations we have by a result
of Hong-Zhi, Zhao-Guo & Hannan (1982) the convergence almost surely. The positive
definiteness follows from the fact that I'ssq is positive semi-definite iff a variable is a
linear combination of the others which is ruled out by the assumption of the HAR model

as given in (3).13

(A3) Assuming that x; is finite almost surely gives that % maxo<i<n—p 2?:1 xtz_i_]. is of class 0,.(n).

The condition on the innovation follows from Hélder’s inequality since we have that L* c L?

such that it suffices to require a finite fourth moment of the error term. o

131t is semi-definite since it is a covariance matrix.
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Summarizing we have that the lasso should detect the HAR model if we assume a finite

fourth moment.

B Log-Transformed Volatilities

Although it is common to use the log-transform to model realized variance for reasons of
positiveness, lower skewness and lower kurtosis, the case of the HAR model even allows for
additional arguments to justify the use of log-transformed realized volatilities. These are not
solely related to the realized volatility series as such (as for instance in Martens, van Dijk &
de Pooter (2009, Table 1)) but also to how realized volatility is modeled. Extending the approach
of Box & Cox (1964) where only the dependent variable is transformed we employ the Box-Cox

transform

£l ifA#0

falx) = xW =

log(x) otherwise.
to series of realized volatility. Consequently, the Box-Cox transform not only affects the de-
pendent variable but also predictor variables in the HAR model. As in the original work of
Box & Cox we then compute the (quasi-)likelihood for each A. Since the (quasi-)likelihood is

equivalent to the R? we report the R? for different values of A in Fig. 6.
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Figure 6: R? for different values of A for the HAR model estimated on RV;A) on the whole
sample as described in Section 3.1. The green line indicates the maximal R? and the dotted
lines indicate common transformations for realized volatilities ( VRV; with A = -1, log RV;

with A =0, and RV; with A = 1)

Clearly, following again Box & Cox and choosing a rational A it follows that A = 0 is a sensitive
choice and thus justifies the use of log-transformed volatilities. A further argument for using A =
0 may be found in the fact that for the case of A = 0 we can construct unbiased estimates (under

the assumption of normality of the log-transformed realized volatilities) explicitly without
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resorting to the median (Pankratz & Dudley 1987, Proietti & Liitkepohl 2011).

38




C Robustness

This section shows the key results in graphical form as presented in the main paper if the
realized volatility is estimated by Andersen et al.’s (2009) MedRV estimator instead of Zhang
et al.’s (2005) two-time-scale estimator. MedRV is not only computationally attractive but also
robust to zero returns and outliers induced by jumps. Figures 7 to 9 and Tab. 6 are found below
and are otherwise identical to the corresponding figures in the main text. There are marginal
differences, but, the conclusions made in the main text remain valid such that we abstain from

further discussion of these results.

AA

-~ HAS

-~ HDI

N INTC
[=~o- . - MSFT

X NKE

06- A PFE
- XOM

ACF
Log Realized Volatility

| | | i | i | | | | i i | i i
[ 10 20 30 40 50 A c HAS HDI INTC  MSFT  NKE PFE  XOM
Lag Asset

Figure 7 (a) Figure 7 (b)

Figure 7: Panel (a) shows the autocorrelation function for the 9 log RV, series. Panel (b)
shows a violin plot (Hintze & Nelson 1998) of the unconditional log RV;. Both use the
MedRV estimator.

39



Coeff

Coeff

Coeff

01 02 03 04 05 06

0.0

01 02 03 04 05 06

0.0

0.6

0.5

02 03 04

0.1

0.0

~— Lasso
—— HAR

0 10 30 50 70 920

Lag
HDI

~ Lasso
= HAR

0 10 30 50 70 90

Lag
NKE

~ Lasso
—— HAR

0 10 30 50 70 90

Coeff

Coeff

Coeff

01 02 03 04 05 06

0.0

01 02 03 04 05 06

0.0

02 03 04 05 06

0.1

0.0

C
—— Lasso
- HAR
I » ]
T L T T T T
0 10 30 50 70 90
Lag
INTC
~ Lasso
- HAR
T T T T T T T T T
0 10 30 50 70 90
Lag
PFE
~—— Lasso
—— HAR
T T T T T T T T T
0 10 30 50 70 90
Lag

Coeff

Coeff

Coeff

01 02 03 04 05 06

0.0

01 02 03 04 05 06

0.0

02 03 04 05 06

0.1

0.0

HAS
—— Lasso
- HAR
ol '
T T T T T T T T
0 10 30 50 70 90
Lag
MSFT
~— Lasso
= HAR
T T T T T T T T T
0 10 30 50 70 90
Lag
XOM
~—— Lasso
—— HAR
T T T T T T T T T
0 10 30 50 70 90
Lag

Figure 8: HAR versus lasso coefficients with all predictors using MedRV estimator

40




40 60 80

20

40 80 80

20

40 60 80 100

20

AA c HAS

[=1 [=1
S o S o
o <
< <
o _] <o
o ©
(= o
= =
o ] o
~ ~
! T T T I T T T T I I T T T I
2008 2008 2010 20086 2008 2010 2008 2008 2010
HDI INTC MSFT
o [=1
S A S
2 2
8 8 -
(=2 o
=3 =
o o |
3 34
I I I I I I I I I | I I ) I I
2006 2008 2010 2006 2008 2010 2006 2008 2010
NKE PFE XOM
3
<
<
(=g
1]
2 3
o
2] (=
=
o
~
(S
o 34
I I I I I I I I I | | I ) I |
2006 2008 2010 2006 2008 2010 2006 2008 2010
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Table 6: Diebold-Mariano (Diebold & Mariano 1995) tests of equal predictive ability

AA C HAS HDI INTC MSFT NKE PFE XOM

Total Mean Diff.  0.000 0.000 -0.005 -0.001 -0.001 -0.002 -0.004 -0.003 0.000
(n=1"383)  p-value 1.00 0.86 0.03 0.66 0.52 0.05 0.25 0.01 0.91
PreCrisis  Mean Diff. -0.001 -0.003 -0.006 -0.002 0.000 -0.001 -0.005 -0.003 0.000

1,000 (n=575) p-value 0.87 0.25 0.13 0.71 0.89 0.32 0.51 0.11 0.90
PostCrisis Mean Diff.  0.000 0.003 -0.004 -0.001 -0.001 -0.003 -0.004 -0.003 0.000
(n=808) p-value 0.88 0.48 0.13 0.81 0.40 0.08 0.29 0.06 0.96

Total Mean Diff.  0.001 -0.001 -0.003 0.002 0.000 0.001 0.000 0.001 0.003
(n=383) p-value 0.70 0.21 0.39 0.57 0.82 0.61 0.95 0.56 0.31
PreCrisis Mean Diff. — — — — — — — — —

2,000 (n=—) p-value — — — — — — — — —
PostCrisis Mean Diff.  0.001 -0.001 -0.003 0.002 0.000 0.001 0.000 0.001 0.003
(n=383) p-value 0.70 0.21 0.39 0.57 0.82 0.61 0.95 0.56 0.31

Difference in MSPE (MSPEpar — MSPE|.ss,) are reported together with p-values from the Diebold-Mariano
(Newey-West (Newey & West 1987) adjusted). The differences and p-values are reported for different

training windows (1,000, 2,000) and before/after the financial crisis using the MedRV estimator.

D Risk Management Application

This section contains the actual violations of the value at risk visualized in Fig. 5 collected in

Tab. 8. Moreover, we have added summary statistics for the distribution of returns in Fig. 10.
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Figure 10: Kernel density estimates of standardized log-returns for pre-crisis (PC) and full sample

(FS) against normal distribution.

E Mincer Zarnowitz Regressions

In this paragraph we present the Mincer-Zarnowitz (Mincer & Zarnowitz 1969) regressions for
the lasso as well as the HAR model for the different training window lengths as well as split into
pre-crisis (PrC), post-crisis (PoC), and full-sample (FS). Instead of reporting tables we include
three figures: Fig. 11 contains the estimated intercept with 95% confidence intervals, Fig. 12

contains the estimated slope parameter with 95% confidence intervals, and Fig. 13 contains the
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p-value of the joint hypothesis that the intercept equals 0 and the slope equals 1. Horizontal

lines show the 5% and 10% level. In total the lasso is rejected 38 times (48 times) at the 5% level

(10% level) whereas the HAR is rejected 50 times in both cases (out of 99 tests for each model).

We account for dependence of the error term by using HAC consistent standard errors (Newey

& West 1987).
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Figure 11: Estimate of & in logRV; = a + - log RV + ¢;
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