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Abstract 

Realized volatility computed from high-frequency data is an important measure for many 

applications in finance. However, its dynamics are not well understood to date. Recent 

notable advances that perform well include the heterogeneous autoregressive (HAR) model 

which is economically interpretable and but still easy to estimate. It also features good out-

of-sample performance and has been extremely well received by the research community. 

We present a data driven approach based on the absolute shrinkage and selection operator 

(lasso) which should identify the aforementioned model. We prove that the lasso indeed 

recovers the HAR model asymptotically if it is the true model, and we present Monte Carlo 

evidence in finite sample. The HAR model is not recovered by the lasso on real data. This, 

together with an empirical out-of-sample analysis that shows equal performance of the HAR 

model and the lasso approach, leads to the conclusion that the HAR model may not be the 

true model but it captures a linear footprint of the true volatility dynamics. 
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1 Introduction

Volatility of financial assets is of great importance to many applications in finance. Reliable

estimates and forecasts are key for risk management and asset allocation. As opposed to re-

turn series, financial volatility is predictable and has received great attention in the financial

econometrics research community. The seminal paper of Bollerslev (1986) introducing the gen-

eralized autoregressive conditional heteroscedasticity (GARCH) model for conditional volatility

has thus sparked an even greater interest in volatility modeling. The GARCH model has become

extremely popular and despite various extensions and modifications the basic GARCH(1,1) fares

well as a prediction device for conditional volatility in an out-of-sample forecast comparison

(Hansen & Lunde 2005). While Bollerslev’s (1986) GARCH model is able to capture stylized

facts of volatility series (e.g., volatility clustering), its estimation still relies on daily observations

and thus potentially discards intraday information. The advent of high-frequency data (with

frequencies as high as tick-by-tick) has ignited a new line of research pioneered by Andersen,

Bollerslev, Diebold & Labys (2001) and Barndorff-Nielsen & Shephard (2002) among others. The

results of their work has rendered the thus far unobservable daily volatility observable by means

of asymptotic arguments:

Suppose that an asset’s log price obeys the dynamics dXt = µtdt + σtdWt where Wt is a

Brownian motion, σt the instantaneous volatility and µt the instantaneous drift term. One

can then show that plimδ→0
∑

ti
(Xti+1 − Xti )

2 =
∫ T

0 σ2
t dt where δ = sup{ti+1 − ti}, i.e., the sum of

squared returns converges to the integrated variance (over a day) as the sampling frequency

increases.1 An estimator of
∫ T

0 σ2
s ds is thus given by

∑N
i=1(Xti+1 − Xti )

2 where t1, . . . , tN is an

appropriate sampling frequency and is denoted RVt, where t refers to the day. RVt is called

realized variance, and its squareroot
√

RVt is referred to as realized volatility. An overview of

variants of the aforementioned estimator and their corresponding assumptions is collected in

McAleer & Medeiros’s (2008) review on realized volatility.

Since the goal of this work is to investigate the dynamics of the realized variance and not the

estimation itself we can thus – with daily realized variance at hand – approach the problem of

1It is known that this naive estimator of
∫ T

0 σ2
t dt is biased under e.g., microstructure noise (the observable return

process Yti = Xti +εti is contaminated with noise) or if the log price process is a jump-diffusion (dXt = µtdt+σtdWt +dJt
where Jt is a finite activity jump process).
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modeling realized variance.

It has been observed that the time series {RVt}1≤t≤T exhibits some distinct features such

as a near log-normal unconditional distribution as well as a slowly decaying autocorrelation

function which is often termed “long memory”: These findings appear to be robust across

different asset classes and evidence has been reported for exchange rates (Andersen, Bollerslev,

Diebold & Labys 2001), index futures (Areal & Taylor 2002, Thomakos & Wang 2003), as well as

for individual stocks (Andersen, Bollerslev, Diebold & Ebens 2001).

To address these characteristics of the realized variance time series, different approaches have

been put forward, most prominently fractionally integrated ARMA models (ARFIMA) and the

heterogeneous autoregressive (HAR) model for realized volatility introduced by Corsi (2009).

The HAR model not only allows for an economic interpretation of the proposed dynamics, but

also allows for an easy estimation and is thus highly appreciated and widely used within the

research community.

The contribution of this paper is to shed more light on the underlying dynamics as advocated

by Corsi’s (2009) HAR model which in essence claims tomorrow’s realized variance to be a sum

of daily, weekly, and monthly averages of realized variances that can each be attributed to

specific investment behaviors. The question we are aiming to answer relates to how much these

frequencies (daily, weekly, monthly) are really inherent to the data and if we can identify them

from a model selection perspective.

Model selection plays a crucial role in determining a model for forecasting. Oftentimes

model selection can be extremely costly from a computational perspective and may already

become infeasible within the class of linear models (an exhaustive search over p lags already

requires 2p comparisons and thus grows exponentially). An important contribution in terms

of model selection within the class of linear models was made in Tibshirani (1996) where the

Least Absolute Shrinkage and Selection Operator (lasso) was introduced. The lasso, a shrunk

regression, performs shrinkage and selection at a time and is yet computationally affordable.

Although originally the lasso was mostly noticed by the computational statistics community,

researchers in econometrics are increasingly using it. Most recently, conditions under which the

lasso gives consistent results have also been established in time series econometrics (Nardi &

Rinaldo 2011), and applications of the lasso are also found in Park & Sakaori (2012).

4



Despite the great popularity and appreciation of the HAR model there has been little work

investigating the validity of the structure as proposed by the HAR model. Although most work

is done in the direction of extending the HAR model (see the recent review of Corsi, Audrino

& Renò (2012)) there is a notable exception: Craioveanu & Hillebrand (2010) investigate the

structure of the HAR model and find no benefit in allowing for a more flexible structure of lag

selection. However, their result is based on an exhaustive search over HAR-like models but

varying aggregation frequencies.

It is along these lines that this paper adds to the literature. We present a methodologically

sound way of recovering the HAR model. We show that under the assumption that HAR model

is the true model, we can apply the lasso and should recover the structure as implied by the HAR

model. To this end we investigate how far Nardi & Rinaldo’s (2011) can be extended for the

special case of the HAR model. Moreover, we investigate if the lasso can be used for forecasting

realized variance from a purely statistical point of view as well as measuring outperformance

from a more economically relevant point of view via a risk management application. We find

no substantial superiority of either the HAR model or the lasso when it comes to out-of-sample

forecasting.

In summary, we have reason to believe that the HAR model might not be the true model.

However, it captures a linear footprint of the true underlying variance dynamics which appear

to change over time, thus casting some doubt on the appropriateness of the HAR as a global

model for realized variance.

The rest of the paper is structured as follows: Section 1 introduces the HAR model in more

detail, relates it to the autoregressive class of time series models and shows how the lasso can be

used in this context. Section 2 features an empirical application of the proposed model selection

approach, a Monte CFarlo study, as well as an out-of-sample comparison of the HAR versus the

lasso. Section 3 discusses the results and further research and then concludes.
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2 Theoretical Foundation

2.1 The HAR Model

The HAR model as introduced in Corsi (2009) enjoys great popularity: It allows for an economic

interpretation, has good forecasting performance, and is still easy to estimate. There are numer-

ous variants and modifications of the HAR model (Corsi et al. 2012), however we restrict our

attention to the original model to keep a clear focus on the actual volatility dynamics. We thus

intentionally ignore other transient effects (such as the leverage effect) that may be embedded

in a HAR framework as well.

Let for this purpose RV(d)
t be an estimate of daily realized variance. Then, the HAR model

postulates that

log RV(d)
t+1 = c + β(d) log RV(d)

t + β(w) log RV(w)
t + β(m) log RV(m)

t + ωt+1, (1)

where (with a slight abuse of notation) log RV(w)
t = 1

5

∑5
i=1 log RV(d)

t−i+1 and log RV(m)
t = 1

22

∑22
i=1 log RV(d)

t−i+1

are the weekly and monthly averages of daily log realized variances, and ωt+1 is an innovation.

Once these average log-variances are known, the model can be consistently estimated by tradi-

tional least squares to obtain estimates for c, β(d), β(w), and β(m).

In other words, the conditional expectation of tomorrow’s log-realized variance is the

weighted sum (plus an intercept) of daily, weekly, and monthly log-realized volatilities.2 For

the remainder of the paper we assume the HAR model to be causal as well as β(d), β(w), β(m) to

be positive. These assumptions are by no means restrictive: First they comply with the view

put forward in the original work as outlined below, second, if estimating the HAR on empirical

data, the coefficients are always found to be positive.

The different aggregation frequency can then be seen as a heterogeneous agent model where

heterogeneity is induced by the different time horizons and can be casted into an information

cascade view. Hence, the weighted average perspective appears reasonable and positiveness of

the coefficients follows.

Clearly, the HAR model is simply a constrained AR(22) model, as it has already been noted

2We comment further on the use of log-realized volatilities in Section 3.1.
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by Corsi (2009), i.e., we can write

log RV(d)
t+1 = φHAR +

22∑
i=1

φHAR
i log RV(d)

t−i+1 + ωt+1 (2)

where the restrictions as imposed by (1) require

φHAR
i =


β(d) + 1

5β
(w) + 1

22β
(m) for i = 1

1
5β

(w) + 1
22β

(m) for i = 2, . . . , 5

1
22β

(m) for i = 6, . . . , 22.

(3)

A direct specification test is obviously testing the restrictions as collected by (3). Given the high

number of restrictions a rejection of these is not surprising. However, in the original work Corsi

argues that this can well be attributed to specific properties of the time series. However, there is

already some preliminary indication that indeed the HAR model may fail to fully capture the

effects present in the data.

2.2 The lasso as model selection device

The lasso was introduced in Tibshirani (1996) and is frequently used in the field of computational

statistics and machine learning. In recent years, the lasso in general as well as the lasso as model

selection device has also been found in Econometrics (Kock 2012, Leeb & Pötscher 2005). The

lasso is computationally very efficient and renders model selection with a high number of

predictors feasible. As opposed to the 2p comparisons that are required in an exhaustive search

over p predictors, the lasso employs a highly efficient algorithm which provides estimates and

model selection jointly (Friedman, Hastie & Tibshirani 2010) at affordable computational costs.

The lasso as originally introduced by Tibshirani covered the cross-sectional case: Let xi =

(xi1, . . . , xip)′ be predictor variables and yi responses. Under the assumption that the predictors

are standardized, the lasso estimator of the model

yi = α + φ′ · xi + εi (4)
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is obtained as

(α̂lasso, φ̂lasso) = arg min
α,φ


n∑

i=1

yi − α −

p∑
j=1

φ jxi j


2 subject to

p∑
j=1

|φ j| ≤ t (5)

where t is a tuning parameter. Since α̂ is independent of t it will always be equal to ȳ and it

is thus generally assumed that ȳ = 0 and α is dropped from the minimization. It can be seen

(Tibshirani 1996) that (5) is equivalent to the Lagrangian form given as

φ̂lasso = arg min
φ


n∑

i=1

yi −

p∑
j=1

φ jxi j


2

+ λ

p∑
j=1

|φ j|

 (6)

with a one-to-one correspondence between λ in (6) and t in (5). The powerful feature of the lasso

is now induced by the L1-norm of the penalty. The lasso solution will be sparse, since some φ js

will be set exactly to zero (as opposed to for instance ridge regularization in Hastie, Tibshirani

& Friedman (2009) where sparsity of the solution is lost due to the L2-geometry of ridge).

A question of utmost importance is how reliable is the lasso in the sense that it sets the true

zero coefficients to zero. Typically, this is what is captured by model selection consistency. The

following definition adopts the view of Nardi & Rinaldo (2011). For an overview and weaker

form of this, the reader is referred to Bühlmann & Van De Geer (2011).

Definition 1. Let yi = φ′ · xi + εi with φ0 = [φ0
1, . . . , φ

0
p]′, sgn : R→ {−1, 0, 1} and define sgn(φ) =

(sgn(φ1), . . . , sgn(φp))′. Then an estimator φ̂n is said to be model selection consistent if

P(sgn(φ̂n) = sgn(φ0))→ 1 for n→∞. (7)

The above model selection consistency definition meets our requirement that if there is an

estimator producing φ̂n which is model selection consistent it will eventually only retain the true

non-zero coefficients suppφ0.

An extension of the lasso as well as proof for which conditions the lasso is model selection

consistent is given in Zou (2006). Zou introduces the adaptive lasso which allows for a more
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flexible penalization, i.e.,

β̂ = arg min
β


n∑

i=1

yi −

p∑
j=1

φ jxi j


2

+ λ

p∑
j=1

λ j|φ j|

 (8)

where λ j are adaptive weights. It can be shown (Zou 2006, Bühlmann & Van De Geer 2011)

that in fact the adaptive lasso relaxes the assumptions for the model selection consistency of the

lasso.

An important extension of this strand of literature has been made by Nardi & Rinaldo (2011):

Nardi & Rinaldo show that properties already well-established in the cross sectional case carry

over to the time series case of an AR(p) process.3 More precisely, they establish that under some

assumptions, a version of the adaptive lasso is model selection consistent. Suppose that Xt is a

causal Gaussian AR(p) process, i.e.,

Xt =

p∑
j=1

φ jXt− j + εt

where εt is i.i. N(0, σ2)-distributed. Define S = { j, φ j , 0} ⊂ {1, . . . , p} the active set, Sc =

{1, . . . , p} \ S the non-active set, and ΓXY = Cov(X,Y) the covariance matrix of a vector X and

Y. Consequently, ΓSS is the square covariance matrix of the active predictors and ΓScS is the

covariance matrix of the predictors in the non-active set (given as {Xt− j, j ∈ Sc
}) with the

predictors in the active set (given as {Xt− j, j ∈ S}). They then proceed and prove the following

theorem (Nardi & Rinaldo 2011, Theorem 3.1):

Theorem 1. Consider the AR(p) settings described above. Assume that

(i) there exists a finite positive constant Cmax such that ‖Γ−1
SS‖∞ ≤ Cmax;

(ii) there exists a δ ∈ (0, 1] such that ‖ΓScSΓ−1
SS‖∞ ≤ 1 − δ.

Further assume that the asymptotic properties forλn andλn, j as given in Nardi & Rinaldo (2011, Theorem

3.1) hold.

Then, the lasso estimator is model selection consistent in the sense of Definition 1.

3Note that Definition 1 is by no means limited to the cross-sectional case and translates directly to the time series
regression variant.

9



Condition (ii) of the above theorem is found throughout the model consistency literature for

the lasso. Typically this condition is called the irrepresentable condition as introduced in Zhao &

Yu (2006). Nardi & Rinaldo show that a causal Gaussian process satisfies the assumptions of

Theorem 1 and the lasso is thus model selection consistent for this class of models.

2.3 Lassoing the HAR model

Theorem 1 states that the lasso is indeed model selection consistent for causal AR(p) processes

with Gaussian innovations. If we assume that εt in (1) is Gaussian we can readily use the lasso

to try to recover the HAR model embedded in an AR(p) process with p > 22. The lasso should

then detect4 S = {1, 2, . . . , 22} and Sc = {23, 24, . . . , p} since any other lagged value should be

irrelevant if the HAR model is the true data generating process (DGP).

The assumption of Gaussianity of the error may appear strong at first sight. However, the

HAR model is usually estimated using quasi-likelihood which in turn also assumes Gaussianity.

An even stronger argument is given below and proved in the appendix. Under the assumption

that the HAR model is the true DGP, we precisely know the dynamics and can prove (ii) of

Theorem 1 directly without relying on Gaussianity. This can then be used in Zhao & Yu’s (2006)

result which relaxes the assumptions of Gaussianity of the innovations. The relaxation on the

distribution of the error term comes at the price of keeping S and Sc fixed; the lasso literature

generally differentiates between a p = |S| growing with n or p fixed. Theorem 1 above addresses

the case where p is allowed to grow, our contribution below however requires p to be fix:

Theorem 2. Under the assumptions that the DGP is as given in (1) is causal and the innovation has a

finite fourth moment, Sc is held fixed, then lasso is model selection consistent in the sense of Definition 1.

The complete argument and proof is given in Appendix A.

3 Empirical Application

In this section we illustrate our approach of identifying the HAR model via the lasso using nine

assets traded on the New York Stock Exchange. For each of these stocks we compute a realized

4In the sense of setting the non-active coefficients to zero.
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variance measure using Zhang, Mykland & Aït-Sahalia’s (2005) two-time scales estimator (using

a frequency of 10 minutes) to obtain a series of daily realized variance measures. These measures

are then used to estimate the HAR model in-sample and contrast it with estimates as obtained by

the lasso procedure described in Section 2. We also compare the lasso’s forecasting performance

to the performance of the HAR out-of-sample. To rule out any doubt that these findings are

dependent on a specific realized variance estimator we also report a summary of results using

Andersen, Dobrev & Schaumburg’s (2009) MedRV estimator in Appendix C. The key descriptive

properties of the data are summarized in Fig. 1 and Tab. 1.

Note that we obviously only forecast one day ahead realized variance since our argument is

based on the original specification of the HAR model. One could of course address the question

whether the lasso is also well suited to forecast realized variance at longer horizons (weekly,

monthly); this however would be a purely empirical exercise and is beyond the scope of this

paper.

3.1 Data Description

We use intraday data of Alcoa, Inc. (AA), Citigroup, Inc. (C), Hasbro Inc. (HAS), The Home

Depot, Inc. (HDI), Intel Corporation (INTC), Microsoft Corporation (MSFT), Nike Inc. (NKE),

Pfizer Inc. (PFE), and Exxon Mobil Corporation (XOM) from Jan 2, 2001 to Nov 15, 2010. These

intraday data are then used to compute an estimator of daily realized variance using Zhang

et al.’s (2005) two-time scales estimator. In total we have 2483 observations of realized variance

measures.
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Figure 1: Panel (a) shows the autocorrelation function for the 9 log RVt series. Panel (b)

shows a violin plot (Hintze & Nelson 1998) of the unconditional log RVt

Table 1: Descriptive Statistics of log RVt series

AA C HAS HDI INTC MSFT NKE PFE XOM

Mean 6.80 6.96 6.36 6.42 6.90 6.37 6.10 6.30 5.90
SD 0.95 1.98 0.93 0.98 0.78 0.89 0.90 0.85 0.89
Kurtosis 4.06 2.61 3.06 3.32 3.82 4.40 3.06 4.18 6.15
Skewness 0.92 0.78 0.46 0.69 0.58 0.58 0.58 0.83 1.19
Median 6.67 6.43 6.23 6.30 6.81 6.33 5.97 6.18 5.78
25%-quantile 6.07 5.33 5.70 5.65 6.40 5.76 5.41 5.68 5.30
75%-quantile 7.30 8.21 6.99 7.01 7.35 6.90 6.70 6.82 6.35

Although using the log to transform the realized variance is standard in the literature, we

briefly comment explicitly on this in Appendix B for the HAR model. In what follows we always

assume the use of log realized variance when speaking of realized variance unless otherwise

stated.

Consistent with the existing literature we witness slowly decaying autocorrelation functions

in Fig. 1 (a) for all assets. This is most pronounced for Citigroup, Inc. The same stock also

exhibits particularities in the unconditional distribution of log RVt as can be seen from Tab. 1
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and Fig. 1 (b): While all other stocks show excess kurtosis, Citigroup Inc. only has a kurtosis of

2.61. We suspect the market turmoil of the financial crisis to be the root of this abnormal picture.

Following this train of thought, we also report the actual returns in Fig. 10 in the appendix

where an extremely high excess kurtosis for the log returns of Citigroup Inc. can be observed.

3.2 In-sample Evaluation

To address the question whether the HAR model is identified by the lasso procedure we define

Sc = {xt−23, . . . , xt−100}.5 Since λ in (6) is a tuning parameter and the results of Theorem 1 only

hold asymptotically we proceed as suggested in the literature (Nardi & Rinaldo 2011, Section

4.1.) and choose λ j = 1 for all j and λ =

√
log n log p

n and can thus expect Ŝ as obtained by φ̂lasso to

be sparse in {1, . . . , 100}.

Two important points should be noted here: First, the lasso does not recover all of the

coefficients implied to be non-zero by the HAR as can be inferred from Tab. 2. Although near

lags are recovered for most assets, lags beyond xt−6 rarely get selected by the lasso. Note at this

point that a comparison of coefficients in magnitude of the lasso estimates to the HAR estimates

cannot be made since the lasso, as a penalized estimator, is biased. Second, sometimes lags far

beyond xt−22 are selected in the active set as can be seen in Fig. 2. Clearly, these lags are zero

under the assumption that the HAR model is true.

At this stage it is alaredy apparent that the lasso does not fully recover the HAR model, i.e.

Ŝ , {1, . . . , 22}. To provide further evidence supporting this statement, we conduct analyses

which attempt to answer the following two questions: 1. How reliable is the lasso as a model

selection device in this specific finite sample setting? 2. How stable are these regressors over

time? A thorough answer to these questions is provided in the two subsequent paragraphs.

3.2.1 Monte Carlo Study

To assess the model selection consistency of the lasso in the case of the HAR model in finite

sample we include a Monte Carlo simulation in this section. Since the lasso’s model selection

results depend on the signal-to-noise ratio (Bühlmann & Van De Geer 2011), it is important

5The choice of S running up to 100 is arbitrary. However, the results are not sensitive to the choice of the maximal
lag, as for instance the results remain almost identical for a maximal lag of 50
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Figure 2: HAR versus lasso coefficients with all predictors
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to have a comparable setting to assess the finite sample performance of the lasso as a model

selection device. We conducted the Monte Carlo study under the assumption that the HAR

model was true, in order to answer the question how effective the lasso would be if the HAR

model were true. To this end, we proceeded as follows in a parametric bootstrap manner:

1. For asset j = 1, . . . , 9 estimate the HAR model on the full sample of 2483 data points, which

includes

(a) Obtain c, β̂(d), β̂(m), β̂(w) and compute V̂ar(εt) as well as the derived estimates φ̂(HAR)
1 , . . . , φ̂(HAR)

22

via (3).

(b) Compute the unconditional mean µ̂ (as γ̂0/(1 −
∑22

i=1 φ̂i)) and the unconditional vari-

ance σ̂ (as V̂ar(εt)/(1−
∑22

i=1 φ̂iγ̂i) where γ̂i is the autocovariance at lag i, see Brockwell

& Davis (1986))

2. Resample the HAR model.

(a) Sample x1, . . . , x22 from the stationary distributionN(µ̂, σ̂)

(b) Compute x23, . . . , x2483 recursively based on (3).

(c) Apply the lasso as specified in Section 3.2 and record the lasso estimates

Step 2 is repeated 1,000 times and the results are reported in Tab. 3.The results clearly indicate that

the HAR structure is well recovered by the lasso in this synthetic HAR setting. Although small

coefficients (the monthly coefficients) are selected less often, the daily and weekly coefficients

are almost always estimated to be non-zero and thus considered active. Note at this point that

there is indeed some contradiction with what has been reported in Tab. 2: The lasso does not

select γ1, . . . , γ5 for all assets and selection of lags beyond 22 is rare.6

We thus conclude from this Monte-Carlo application that indeed the lasso does recover the

HAR model reasonably well if it is the true model, i.e., if we simulate from this DGP.

6Based on the percentage of times recovered we may conclude that for instance lag xt−15 is non-active across all nine
assets (as found in Tab. 2) has a chance of occurring of 6.7% based on the occurrences in Tab. 3.
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Table 3: Percentage of HAR coefficients recovered
Lag AA C HAS HDI INTC MSFT NKE PFE XOM

xt−1 100 100 100 100 100 100 100 100 100

xt−2 100 100 100 100 100 100 100 97 100
xt−3 100 100 100 100 100 100 100 98 100
xt−4 100 100 100 100 100 100 100 97 100
xt−5 100 100 100 100 99 99 100 96 100

xt−6 42 43 61 54 18 21 52 23 12
xt−7 37 39 59 53 17 18 50 21 9
xt−8 36 37 61 54 15 16 50 20 6
xt−9 32 32 54 49 9 10 44 15 2
xt−10 34 34 56 50 9 10 45 16 1
xt−11 31 31 54 45 7 9 42 14 1
xt−12 28 30 56 48 7 9 44 15 1
xt−13 27 28 55 47 5 7 43 14 1
xt−14 28 29 58 51 6 7 46 13 0
xt−15 25 24 55 46 4 4 42 10 0
xt−16 25 25 53 44 4 5 40 12 0
xt−17 19 20 51 42 2 2 36 8 0
xt−18 20 20 51 43 2 2 38 8 0
xt−19 16 17 46 36 1 2 31 6 0
xt−20 12 12 42 31 1 1 27 3 0
xt−21 10 12 41 29 0 0 25 3 0
xt−22 8 9 34 25 0 0 20 2 0

xt−23 3 6 13 8 0 0 6 1 0
xt−24 2 4 8 6 0 0 4 0 0
xt−25 1 4 8 5 0 0 3 0 0
xt−26 1 3 5 4 0 0 3 0 0
xt−27 0 2 4 2 0 0 2 0 0
xt−28 0 2 4 3 0 0 1 0 0
xt−29 1 2 4 2 0 0 2 0 0
xt−30 0 1 3 2 0 0 1 0 0
xt−31 0 2 3 2 0 0 1 0 0
xt−32 0 1 3 1 0 0 1 0 0
xt−33 0 1 2 1 0 0 1 0 0
xt−34 0 1 2 1 0 0 0 0 0
xt−35 0 1 1 0 0 0 0 0 0
xt−36 0 1 2 1 0 0 1 0 0
xt−37 0 1 2 1 0 0 1 0 0
xt−38 0 1 2 1 0 0 0 0 0
xt−39 0 1 1 0 0 0 0 0 0
xt−40 0 0 1 0 0 0 0 0 0
xt−41 0 0 1 0 0 0 0 0 0
xt−42 0 0 1 0 0 0 0 0 0
xt−43 0 0 1 0 0 0 0 0 0
xt−44 0 1 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
xt−100 0 0 0 0 0 0 0 0 0

Number of times (out 1,000 replications) a lag has been selected
(estimated as non-zero) by the lasso in percent. Omitted rows
contain zero only.
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3.2.2 Rolling Window

To address the question whether all of the observed in-sample selected regressors are constant

over time we apply the lasso procedure in a rolling window manner. We stack our data for each

asset as follows

X =



x101 x100 . . . x1

x102 x101 . . . x2

...
...

...

xn xn−1 . . . xn−100


We then estimate the lasso on the first 1,000 rows of X and roll this window of length 1,000

down to the last row of X. Pursuing this procedure we obtain 1,384 lasso estimates and record

them. Fig. 3 contains this analysis for Citigroup, Inc. The abscissa reports the last date of the

current window (the first window thus corresponds to the date of x1000 which in this case is May

19, 2005 and continues through Nov 15, 2010), the ordinate indicates whether or not a regressor

was selected (estimated to be different from zero).

18



Figure 3: Stability of lasso selected regressors for Home Depot, Inc. Diagonal gray lines have

slope 1, i.e., if a regressor moves along these lines then its effect is lagged by one day as the

rolling window proceeds by one row (1 day)

Groups of regressors moving along the diagonal lines are likely to be noise (they are one-off

events that move through the sampling window). It is also apparent from Fig. 3 that there

is a clear break in structure during the financial crisis. The only lag which is selected during

the crisis is the xt−1 indicating that the variance process prevailing in the data is actually an
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Figure 4: Stability of Lasso selected Regressors for all assets

AR(1)-process.

Fig. 4 draws the same picture for the remaining eight assets. Although there are minor

differences among assets we observe a clear pattern of a “dependence breakdown” during the

financial crisis. Most assets indeed also have components that can be explained by one-off events,

however, we also find for HAS, HDI, and C lags that constantly get selected and remain (beyond

the training window length of 1,000 observations). This may be an indication of longer-range

dependence that warrants further research. As can clearly be inferred from Fig. 4 the dependence

breakdown during the financial crisis is for some assets even more pronounced than it is for

Citigroup, Inc. For these, the optimal lag structure as chosen by the lasso, sometimes reduces to

a constant (e.g., HDF in Fig. 4). Also, there are assets that exhibit a dependence structure (i.e.,

by lags beyond xt−22) which is not accounted for by the HAR model.

3.3 Out-of-sample prediction

So far we have only considered the lasso results in-sample. But the HAR has also garnered

prais for its for out-of-sample prediction. In a next step we thus compare the HAR’s and the

lasso’s out-of-sample performance. We estimate the HAR model with data up to time t and
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compute an estimate for t+1 which is labeled ̂log RV
(HAR)

t+1|t . We do the same for the lasso to obtain

̂log RV
(lasso)

t+1|t . We proceed again in a rolling window manner but also vary the training window

length (the length on which we estimate the lasso and the HAR model). To render the results

comparable we report the out-of-sample prediction for different training window length but the

same evaluation window (from May 12, 2009 to Nov 15, 2010 as implied by the longest training

window length and resulting in 383 observations) in Tab. 4. To have an objective comparison

we also include the random walk in our analysis. Although there is theoretical guidance for

choosing λ in (6) we pursue a different approach. The theoretical guidance is optimal in the

sense of asymptotic model selection consistency; however, this is not necessarily the best penalty

for prediction. Thus, we employ the common approach of estimating the expected prediction

error using cross validation.

Cross-validation in the cross sectional case is a statistically sound way of estimating the

expected out-of-sample prediction error and thus determining the optimal penalty parameter

(Arlot & Celisse 2010, Hastie et al. 2009). Although cross-validation (typically K-fold) is often

used in practice to determine the optimal penalty parameter in a penalized regression setting (for

instance in Nardi & Rinaldo (2011) and Park & Sakaori (2012)) we adopt the view of Bergmeir &

Benítez (2012) and use blocked cross validation7 to account for the time series nature of the data.

When comparing the estimates of λ̂opt obtained by using the regular K-fold cross validation

(λ̂(R)
opt) to the estimates obtained used a K-fold blocked cross-validation (λ̂(B)

opt), we observed that

λ̂(R)
opt < λ̂

(B)
opt. From a conceptual point of view, this observation is in accordance with the result that

for kernel regression the bandwidth is smaller for positively correlated errors when compared

to uncorrelated errors (Hart & Wehrly 1986). Even if kernel regression and the lasso may at first

appear as different approaches they can be related, exploiting the linearity of both approaches,

by looking at the trace of their smoother matrix (the generalized cross-validation, GCV) which

again is an estimate of the prediction error (Hastie et al. 2009).

Summarizing, we use blocked cross validation for both, empirically and theoretically founded

reasons, to obtain an optimal λ in our out-of-sample procedure. We use 10 blocks to find an

estimate of the optimal λ.

7Instead of building K blocks by randomly assigning any number in {1, . . . ,K} to each observation and collecting
the observations having the same number we use blocks with contiguous observations, such that the blocks are
{1, . . . ,K}, {K + 1, . . . , 2K}, . . . , {(bn/Kc − 1)K + 1, . . . ,n}
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Table 4: Out-of-sample comparison

200 400 1,000 2,000

Asset RW HAR lasso RW HAR lasso RW HAR lasso RW HAR lasso

AA 0.160 0.129 0.142 0.160 0.126 0.126 0.160 0.125 0.123 0.160 0.124 0.121
C 0.132 0.115 0.127 0.132 0.115 0.120 0.132 0.115 0.119 0.132 0.116 0.116
HAS 0.240 0.201 0.219 0.240 0.197 0.204 0.240 0.193 0.197 0.240 0.197 0.200
HDI 0.231 0.184 0.207 0.231 0.181 0.186 0.231 0.179 0.181 0.231 0.179 0.178
INTC 0.113 0.094 0.100 0.113 0.091 0.091 0.113 0.089 0.088 0.113 0.089 0.087
MSFT 0.153 0.128 0.137 0.153 0.125 0.127 0.153 0.123 0.124 0.153 0.123 0.121
NKE 0.176 0.144 0.158 0.176 0.142 0.146 0.176 0.139 0.140 0.176 0.138 0.140
PFE 0.130 0.107 0.112 0.130 0.104 0.105 0.130 0.102 0.101 0.130 0.102 0.099
XOM 0.221 0.182 0.192 0.221 0.179 0.179 0.221 0.178 0.175 0.221 0.176 0.174

MSPE for all nine assets across training window length of 200, 400, 1,000, and 2,000 obser-
vations (rolling window). In addition to the lasso and the HAR the random walk (RW) is
included.

We measure the out-of-sample performance using the mean squared prediction error (MSPE)

which is computed as MSPE = 1
n
∑n

t=1( ̂log RVt+1|t − log RVt+1)2 where ̂log RVt+1|t is the prediction

obtained by either the HAR model or the lasso and n is the total number of out-of-sample

predictions. Tab. 4 shows two points: First, both the lasso and the HAR need a certain window

length to attain reasonably low mean squared prediction errors (MSPEs), although the HAR

model is markedly better for small training window sizes. Second, for longer training windows,

the lasso and the HAR are almost equal in terms of MSPE.

To better understand these results we further report the evaluation over different out-of-

sample periods: Pre-crisis, post-crisis, and full sample. The date for the beginning of the

financial crisis was set to Sep 1, 2007. For the relevant training window lengths (i.e., 1,000

days and 2,000 days) we kept the maximal out-of-sample period which, unlike Tab. 4, results

in evaluation windows of different lengths. The difference in MSPE is then tested using the

Diebold-Mariano test (Diebold & Mariano 1995). These results are reported in Tab. 5.

22



Table 5: Diebold-Mariano (Diebold & Mariano 1995) tests of equal predictive ability

AA C HAS HDI INTC MSFT NKE PFE XOM

1,
00

0

Total Mean Diff. 0.002 -0.001 0.001 -0.003 -0.001 -0.002 -0.006 -0.007 -0.001
(n=1’383) p-value 0.38 0.86 0.85 0.34 0.49 0.35 0.18 0.00 0.48
PreCrisis Mean Diff. 0.002 0.000 0.002 -0.006 0.001 -0.001 -0.012 -0.008 0.000
(n=575) p-value 0.57 1.00 0.78 0.22 0.50 0.55 0.17 0.01 1.00
PostCrisis Mean Diff. 0.002 -0.001 0.000 0.000 -0.003 -0.003 -0.001 -0.006 -0.003
(n=808) p-value 0.49 0.84 0.96 0.94 0.26 0.44 0.69 0.05 0.39

2,
00

0

Total Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.92 0.44 0.72 0.09 0.62 0.30 0.18 0.33
PreCrisis Mean Diff. — — — — — — — — —

p-value — — — — — — — — —
PostCrisis Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.91 0.44 0.72 0.09 0.62 0.29 0.18 0.33

Difference in MSPE (MSPEHAR − MSPElasso) are reported together with p-values from the Diebold-

Mariano (Newey-West (Newey & West 1987) adjusted). The differences and p-values are reported for

different training windows (1,000, 2,000) and before/after the financial crisis. Differences significant at

0.1 are typeset in boldface

Although there are a small number of rejections of the null we find no consistent pattern,

neither in favor of the HAR nor in favor of the lasso. Investigating the predictions ̂log RV
(lasso)

t+1|t

and ̂log RV
(HAR)

t+1|t in the sense of Mincer & Zarnowitz (1969) we find no evidence of either of the

models (reported in Appendix E) being more often unbiased.

To be retained at this stage is that there is no clear evidence that either of the two models is

genuinely better suited to forecast realized variance out-of-sample.
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3.4 Risk Management Application

To test the predictions obtained from the lasso and the HAR model from a different angle, we

include a risk management application. The value at risk of an asset to the level α is given as

VaRt
α = − inf{x ∈ R|P(Xt ≤ x) ≥ 1 − α} (9)

where Xt is the daily log-return of an asset.8 Under the assumption, which also underlies the

computation of realized variance, that an asset’s return Xt is given as9

Xt = µt + σt · Zt

we can readily compute (assuming a scale-location family with continuous distribution function)

as

VaRα(X) = µt + σtq1−α (10)

where q1−α is the 1−α quantile of the standardized distribution Zt, µt the conditional mean, and

σt the conditional volatility of X.

As the distribution for Zt we use the standard normal distribution as well as the empirical

distribution after (quasi-)standardizing Xt with µt and estimates of σt as obtained by the RVt

estimates. Since we are aiming for a realistic benchmark we do not employ backtesting for the

value at risk but conduct an out-of-sample analysis and predict

VaRt+1|t
α = µt + σt+1|tq1−α (11)

where σt+1|t is again obtained based on RVt+1|t estimates by either the lasso or the HAR model.

To do so, we estimate both models on window lengths of n = 200, 400, 1, 000, 2, 000 obser-

vations to obtain a forecast ̂log RVt+1|t. To get an optimal forecast (in the sense of Proietti &

8We define the value-at-risk compliant to the risk management literature: Instead of working with the usual dis-
tribution, we premultipliy with −1 such that losses are positive resulting in the mnemonic that a greater VaR means
greater risk.

9Strictly speaking the assumptions of computing realized variance also allow for jumps (depending on the estimator)
to contribute to the return Xt. For reasons of simplicity, we exclude this component.
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Lütkepohl (2011) and Appendix B) of the actual volatility we compute σ̂t+1|t as

σ̂t+1|t =

√
exp( ̂log RVt+1|t −

σ̃2

2
) (12)

where σ̃2 is the variance of log RVt and is computed as the empirical variance of {̂log RVt−n+1, . . . ,
̂log RVt}

which produces σ̂(HAR)
t+1|t and σ̂(lasso)

t+1|t . The same transformation is used to obtain the quantiles of

the (quasi-)standardized residuals in (10).

The hit ratios are then defined as

HRM (D)
α =

#{xt+1 < −VaRt+1|t
α }

n
(13)

where ‘M’ can either be ‘HAR’ or ‘lasso’ depending on how σt+1|t of (12) is computed (either

by the HAR-model or our lasso approach), and ‘D’ is either ‘Norm’ or ‘Emp’ depending on

how q1−α in (11) is computed (quantiles of aN(0, 1) distribution or quantiles of the standardized

empirical distribution). In all cases we compute the conditional mean as µt = 1
n
∑n

i=1 rt−n+i.

To contrast these estimates we also implement a naive estimator of the value at risk by simply

taking the empirical α-quantile of the distribution of the log-returns, i.e.

HREmp
α =

#{xt+1 < q̂1−α}

n
,

where q̂1−α is the empirical 1 − α quantile of {xt−n+1, . . . , xt}.
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Figure 5: Actual hit ratios.The columns show the different estimators of HRα, the rows show the

levels of α = 99, 95, 90%. The horizontal lines are the theoretical levels (1 − α) of the VaR. The

color indicates the p value of Kupiec’s (1995) test against the theoretical level.

Fig. 5 clearly shows that there is again no systematic difference between the HRHAR D
α and

HRlasso D
α . Both are too aggressive (producing a VaR which is too low and thus is violated more

often than theoretically specified) when the N(0, 1)-distribution is used for the standardized

innovations, and less so when the standardized empirical distribution is used. However, what

becomes apparent from Fig. 5 is that the influence of the assumption on the distribution is

much more crucial than the model used to forecast volatility. Compared to the simple model

of estimating the VaR by simply taking the empirical quantiles the results are disappointing:

There is no apparent outperformance of computing the VaR with volatility forecasts obtained

by either the HAR or the lasso over simple (but effective) historical quantiles. This is all the

more so, when looking at the rejections ofH0 under Kupiec’s (1995) test (assuming the correct

level for the VaR). It is less often rejected for the ‘Emp’ than for any realized variance model.

The poor performance of all VaR forecasts for Citigroup, Inc. is related to the turbulent times
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the stock went through during the financial crisis resulting in pronounced non-normality of the

log RVt as reported in Fig. 1 (b) as well as non-normality of the log-returns reported in Fig. 10.

4 Conclusions and Further Research

We conclude that the lasso does not recover the HAR model. We consider this as evidence

against the presumption that HAR model is the true DGP since, first, we have theoretically

founded reason to believe that the lasso should detect the HAR model, and, second, we provided

empirical evidence on synthetic data that the lasso does recover the HAR model if the data stem

from this DGP.

In addition, the lasso and the HAR model appear to be indistinguishable from an out-of-

sample performance point of view: Neither the HAR nor the lasso excels in an out-of-sample

prediction exercise. When we look at a more economically meaningful comparison using value

at risk prediction, both models fare equally poorly with no noticeable differences in favor of

either of the two.

The argument above and the selection of only near-lags (in the whole sample, and even more

pronouncedly during the crisis) leads us to the hypothesis that in fact the realized variance

dynamics are much better explained by shorter horizon models. Our results are in line withe

empirical evidence shown in Chen, Härdle & Pigorsch (2010), eventually hinting at the possi-

bility that the seemingly long-memory dynamics of the realized variance time series are in fact

spurious. Arguments against this view are the lags which are selected and persist: This actually

indicates that there might be some long range dependence which warrants further research.

We thus conclude that the HAR model may not be the true model. However, it captures – as

does the lasso – a linear footprint of the possibly non-linear volatility dynamics that can be used

for volatility forecasting. Given the equal out-of-sample performance of the two approaches

we see potential for further research in this domain: Although adding additional predictors

other than the lagged values of the realized volatilities themselves expels us from the thorough

theoretical model selection framework established in this paper, we anticipate further insights

with regard to e.g., volatility spillovers (including other assets, markets, etc. as predictors) or

calendar effects (adding day-of-week dummies to the lasso regression).
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A Proof of Theorem 2

This proof is structured as follows. We first show in Lemma 1 that the irrepresantable condition

is satisfied for the HAR model. Based on this we invoke a theorem of Zhao & Yu (2006) which

relaxes the assumptions on the innovation term for the lasso to be model consistent. Finally we

show that the HAR model satisfies the assumptions of the aforementioned theorem and we can

thus expect the lasso to be model selection consistent without the assumption Gaussianity for

the error term.

Lemma 1. Under the assumption that HAR model is true, condition (ii) of Theorem 1 is satisfied.

Lemma 1 states that if the true DGP indeed obeys the law of motion as specified by the

HAR model one can apply the results of Nardi & Rinaldo (2011) who establish that the lasso

is a valid model selection device under two assumption, namely, that (i) ‖Γ−1
SS‖∞ ≤ C and (ii)

‖ΓScSΓ−1
SS‖∞ < 1. Γ denotes the autocovariance matrix, S is the true active set of predictors, Sc

is the true non-active set of predictors. When embedding the HAR model in this specification

we have that S consists of the lagged values up to order 22 and Sc is any other lagged values

beyond 22. Since (i) holds trivially as by (1) none of variables is a linear combination of another,

we only collect the proof of (ii) in the Lemma below.

Proof. The proof is split into two parts. First we show that the infinity norm of ΓScSΓ−1
SS can be

seen as the sum of the absolute values of the regression coefficients of the usual HAR estimates,

second, we show that it is sufficient to consider one specific non-active regressor.

Moreover, consider the following equivalent notations:

Cov(Sc,S) Var(S)−1 = Cov(Sc,S) Cov(S,S)−1 = ΓScSΓ−1
SS .

To rule out any possible confusion we re-state the definition of the infinity norm of a matrix.

If ‖ξ‖∞ for ξ ∈ Rn is defined as ‖ξ‖∞ = max1≤i≤n |ξi|, then the corresponding matrix norm is given

as

‖A‖∞ := max
‖ξ‖∞=1

‖Aξ‖∞
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where it can be shown (Lewis 1991, Proposition 3.4.1) for A = [ai j]1≤i≤n,1≤ j≤m that

‖A‖∞ = max
1≤i≤n

m∑
j=1

|ai j|.

In what follows we consider a row-vector ξ = [ξ1, . . . , ξn] as 1× n matrix such that ‖ξ‖∞ = ‖ξ′‖1.

Throughout the proof we assume without loss of generality the HAR model to contain no

intercept. Moreover, for the sake of notational simplicity we assume the AR process to be labeled

as

xt =

22∑
i=1

φixt−i + εt. (14)

Assume that |Sc
| = 1 with Sc = {xt−23}

10 and that the true model is in fact the HAR model, i.e.

|S| = 22 with S = {xt−1, xt−2, . . . , xt−22}. In other words, the active set consists of the first 22 lagged

values and the first non-active predictor is xt−23. We then find that

Cov(xt−23, [xt−1, xt−2, . . . , xt−22])Var([xt−1, xt−2, . . . , xt−22])−1 = [φ̃1, . . . , φ̃22], (15)

where [φ̃1, . . . , φ̃22] is the usual representation of regression coefficients of xt−23 on xt−1, xt−2, . . . , xt−22

(note that the previously introduced superscript “HAR” is omitted to alleviate notation).

Since we are only interested in the sum of the absolute values of these regression coefficients,

i.e. ‖[φ̃1, . . . , φ̃22]‖∞, we may as well reorder the regressors since

‖[φ̃1, . . . , φ̃22]‖∞ = ‖[φ̃σ(1), . . . , φ̃σ(22)]‖∞ (16)

is true for any permutation σ. With σ(i) = 22 − i + 1 we find that

‖[φ̃σ(1), . . . , φ̃σ(22)]‖∞ = ‖Cov(xt−23, [xt−22, xt−21, . . . , xt−1])Var([xt−22, xt−21, . . . , xt−1])−1
‖∞

A closer look at the second term (exploiting covariance stationarity and thus, the fact that the

10Observe that we slightly deviate from the notation used previously where S ⊂ N; we use S and Sc to denote the
corresponding lags variables rather than their indices.
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autocovariance is an even function, (see for instance Brockwell & Davis (1986)) shows that

Cov(xt−23, [xt−22, xt−21, . . . , xt−1] = [Cov(xt−23, xt−(23−i))]1≤i≤22

= [Cov(xt, xt−i)]1≤i≤22

= Cov(xt, [xt−1, xt−2, . . . , xt−22])

and

Var([xt−22, xt−21, . . . , xt−1]) = Var([xt−1, xt−2, . . . , xt−22])

such that

[φ̃σ(1), φ̃σ(2), . . . , φ̃σ(22)] = Cov(xt−23, [xt−22, xt−21, . . . , xt−1]) Var([xt−22, xt−21 . . . , xt−1)

= Cov(xt, [xt−1, xt−2, . . . , xt−22]) Var([xt−1, xt−2, . . . , xt−22])−1

= [φ1, φ2, . . . , φ22] (17)

Combining (16) and (17) shows that (15) is indeed simply the sum of the absolute values of the

coefficients of (14), i.e., we conclude for Sc = {xt−23} that we have

‖ΓScSΓ−1
SS‖∞ = β(d) + β(w) + β(m). (18)

When extending the set of non-active predictors to SC = {xt−(22+i)}1≤i≤k one can verify11 that

Cov([xt−(22+1), . . . , xt−(22+k)], [xt−1, xt−2, . . . , xt−22])Var([xt−1, xt−2, . . . , xt−22])−1

=


φ̃(1)

1 φ̃(1)
2 · · · φ̃(1)

22
...

...
...

φ̃(k)
1 φ̃(k)

2 · · · φ̃(k)
22

 .
(19)

11This can either be seen by establishing the usual AR(p) moment conditions or recalling the fact that the OLS estimates
of an AR(p) process are consistent.Note that the consistency of the AR(p) estimates only gives results a.s. by asymptotic
equivalence. However, basing the argument on theoretical moments and the fact that for appropriate random matrices
X and Y we have [Cov(Y,X) Var(X)−1]′ = Var(X)−1 Cov(X,Y) yields (19) directly.
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Hence,

‖Cov(Sc,S)Var(S)−1
‖∞ = max

1≤ j≤k

22∑
i=1

|φ̃( j)
i |.

In a next step we show that
∑22

i=1 |φ
(l)
i | <

∑22
i=1 |φ

(k)
i | for l > k by induction. The conclusion then

follows since it holds for k = 1, i.e. for Sc = xt−23 which has already been proved in (18).

Given the argument which shows that reversing the order has no effect on the sum of the

coefficients we present the argument in the usual AR(22) representation as given in (14) and

thus drop the tilde, i.e.

xt+ j =

22∑
i=1

φ( j)
i xt+ j−i + εt+ j.

Now, consider the induction basis for j = 1→ 2:

xt+1 =

22∑
i=1

φ(1)
i xt+1−i + εt+1

= φ(1)
1

 22∑
i=1

φ(1)
i xt−i + εt

 +

22∑
i=2

φ(1)
i xt+1−i + εt+1

=

21∑
i=1

(
φ(1)

1 φ
(1)
i + φ(1)

i+1

)
xt−i + φ(1)

1 φ
(1)
22 xt−22 + ε̃t+1

=

22∑
i=1

φ(2)
i xt−i + ε̃t+1,

where ε̃t+1 = φ(1)
1 εt + εt+1 and

φ(2)
i = φ(1)

1 φ
(1)
i + φ(1)

i+1 for i = 1, . . . , 21 and φ(2)
22 = φ(1)

1 φ
(1)
22 . (20)

By the assumptions put forward in (1) we have that φ(2)
i > 0 ∀i = 1, . . . , 22 and taking the

difference of the sum of absolute values thus yields

22∑
i=1

|φ(2)
i | −

22∑
i=1

|φ(1)
i | = φ(1)

1

 22∑
i=1

φ(1)
i − 1

 = φ(1)
1

(
β(d) + β(w) + β(m)

− 1
)
.
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By (20) and (3) we have the induction basis φ(2)
i > 0 ∀i = 1 . . . 22 and also we find by the fact12

β(d) + β(w) + β(m) < 1 that
∑22

i=1 φ
( j−1)
i <

∑22
i=1 φ

( j)
i .

Reapplying the same argument for the induction step j→ j + 1 yields

xt+ j =

22∑
i=1

φ( j)
i xt+1−i + εt+ j

= φ( j)
1

 22∑
i=1

φ(1)
i xt−i + εt

 +

22∑
i=2

φ( j)
i xt+1−i + εt+ j

=

21∑
i=1

(
φ( j)

1 φ
(1)
i + φ( j)

i+1

)
xt−i + φ(1)

22φ
( j)
1 xt−22 + ε̃t+ j

=

22∑
i=1

φ( j+1)
i xt−i + ε̃t+ j

where again ε̃t+ j = φ(1)
1 εt + εt+ j and φ( j+1)

i = φ( j)
1 φ

(1)
i + φ( j)

i+1 for i = 1, . . . , 21 and φ( j+1)
22 = φ(1)

1 φ
( j)
22 .

Taking the difference between the sum of φ( j+1)
i and the sum of φ( j)

i yields

22∑
i=1

φ( j+1)
i −

22∑
i=1

φ( j)
i =

 22∑
i=1

φ(1)
i − 1

φ( j)
1 .

By the induction basis we have φ( j)
i > 0 ∀i = 1, . . . , 22 such that φ( j+1)

i > 0 ∀i = 1, . . . , 22 and thus

22∑
i=1

|φ( j+1)
i | −

22∑
i=1

|φ( j)
i | < 0

such that the claim
22∑
i=1

|φ( j+1)
i | <

22∑
i=1

|φ( j)
i |

follows. Summarizing we conclude that for the HAR model it holds that ‖ΓScSΓSS‖∞ ≤ 1 − δ if

β(d) + β(w) + β(m)
≤ 1 − δ. �

Having proven the above we look at a theorem provided by Zhao & Yu (2006) which shows

that the lasso is model selection consistent under some assumptions. Later we will prove that

these assumptions hold if the HAR model is assumed to be true and we can thus safely relax

12This follows directly from the causality assumption: Since all roots lie outside the unit circle and the P(z), the
characteristic polynomial, is continous on R it follows that P(1) > 0 and thus that β(d) + β(w) + β(m) < 1.
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the assumption of normally distributed errors if we are willing to accept a fixed S and Sc (as

opposed to Nardi & Rinaldo’s (2011) results where p = |S| is allowed to grow as the sample size

increases.

Theorem A (Zhao & Yu (2006)). Under the assumptions of S and Sc fixed and

(A1) |ΓSCSΓ−1
SS sgn(suppφ0)|

a.s.
< 1 where 1 is a vector of ones and the inequality is understood compo-

nentwise

(A2) Γn
(S,Sc),(S,Sc)

a.s.
−−→ Γ(S,Sc),(S,Sc) where Γ(S,Sc) is the autocovariance matrix and Γn

(S,Sc) its sample analogon

(A3) 1
n max0≤i≤n−p

∑p
j=1 x2

t−i− j
a.s.
−−→ 0

the lasso is model selection consistent in the sense of Definition 1 if the innovation term has finite second

moment and λn is chosen such that λn/n→ 0 and λn/n
1+c

2 →∞ with 0 ≤ c < 1.

Proof of Theorem 2. We prove that the assumptions of Theorem A above are satisfied if one

assumes the dynamics of the HAR model as put forward in (1) to hold as well as the existence

of a finite fourth moment of the innovation term.

(A1) |ΓSCSΓ−1
SS sgn(suppφ0)|

a.s.
< 1 in (A1) of Theorem A holds since the argument in the proof

of Lemma 1 can be made in terms of sample moments. Knowing that the least squares

estimates converge a.s. to the true values (Brockwell & Davis 1986, Theorem 10.8.1) the

conclusion follows since |ΓSCSΓ−1
SS sgn(suppφ0)|

a.s.
< 1 is weaker than ‖ΓScSΓ−1

SS‖∞ ≤ 1 − δ as

all components of suppφ0 are greater than zero by (3).

(A2) Under the assumption of a finite fourth moment of the innovations we have by a result

of Hong-Zhi, Zhao-Guo & Hannan (1982) the convergence almost surely. The positive

definiteness follows from the fact that Γ(S,Sc) is positive semi-definite iff a variable is a

linear combination of the others which is ruled out by the assumption of the HAR model

as given in (3).13

(A3) Assuming that xi is finite almost surely gives that 1
n max0≤i≤n−p

∑p
j=1 x2

t−i− j is of class oa.s.(n).

The condition on the innovation follows from Hölder’s inequality since we have that L4
⊂ L2

such that it suffices to require a finite fourth moment of the error term. �

13It is semi-definite since it is a covariance matrix.
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Summarizing we have that the lasso should detect the HAR model if we assume a finite

fourth moment.

B Log-Transformed Volatilities

Although it is common to use the log-transform to model realized variance for reasons of

positiveness, lower skewness and lower kurtosis, the case of the HAR model even allows for

additional arguments to justify the use of log-transformed realized volatilities. These are not

solely related to the realized volatility series as such (as for instance in Martens, van Dijk &

de Pooter (2009, Table 1)) but also to how realized volatility is modeled. Extending the approach

of Box & Cox (1964) where only the dependent variable is transformed we employ the Box-Cox

transform

fλ(x) = x(λ) =


xλ−1
λ if λ , 0

log(x) otherwise.

to series of realized volatility. Consequently, the Box-Cox transform not only affects the de-

pendent variable but also predictor variables in the HAR model. As in the original work of

Box & Cox we then compute the (quasi-)likelihood for each λ. Since the (quasi-)likelihood is

equivalent to the R2 we report the R2 for different values of λ in Fig. 6.
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Figure 6: R2 for different values of λ for the HAR model estimated on RV(λ)
t on the whole

sample as described in Section 3.1. The green line indicates the maximal R2 and the dotted

lines indicate common transformations for realized volatilities (
√

RVt withλ = −1, log RVt

with λ = 0, and RVt with λ = 1)

Clearly, following again Box & Cox and choosing a rationalλ it follows thatλ = 0 is a sensitive

choice and thus justifies the use of log-transformed volatilities. A further argument for usingλ =

0 may be found in the fact that for the case of λ = 0 we can construct unbiased estimates (under

the assumption of normality of the log-transformed realized volatilities) explicitly without

resorting to the median (Pankratz & Dudley 1987, Proietti & Lütkepohl 2011).
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C Robustness

This section shows the key results in graphical form as presented in the main paper if the

realized volatility is estimated by Andersen et al.’s (2009) MedRV estimator instead of Zhang

et al.’s (2005) two-time-scale estimator. MedRV is not only computationally attractive but also

robust to zero returns and outliers induced by jumps. Figures 7 to 9 and Tab. 6 are found below

and are otherwise identical to the corresponding figures in the main text. There are marginal

differences, but, the conclusions made in the main text remain valid such that we abstain from

further discussion of these results.
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Figure 7: Panel (a) shows the autocorrelation function for the 9 log RVt series. Panel (b)

shows a violin plot (Hintze & Nelson 1998) of the unconditional log RVt. Both use the

MedRV estimator.

39



AA

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

C

Lag
C

oe
ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

HAS

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

HDI

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

INTC

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

MSFT

Lag
C

oe
ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

NKE

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

PFE

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

XOM

Lag

C
oe

ff

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 10 30 50 70 90

Lasso
HAR

Figure 8: HAR versus lasso coefficients with all predictors using MedRV estimator
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Figure 9: Stability of Lasso selected Regressors for all assets using MedRV estimator
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Table 6: Diebold-Mariano (Diebold & Mariano 1995) tests of equal predictive ability

AA C HAS HDI INTC MSFT NKE PFE XOM

1,000

Total Mean Diff. 0.000 0.000 -0.005 -0.001 -0.001 -0.002 -0.004 -0.003 0.000
(n=1’383) p-value 1.00 0.86 0.03 0.66 0.52 0.05 0.25 0.01 0.91
PreCrisis Mean Diff. -0.001 -0.003 -0.006 -0.002 0.000 -0.001 -0.005 -0.003 0.000
(n=575) p-value 0.87 0.25 0.13 0.71 0.89 0.32 0.51 0.11 0.90
PostCrisis Mean Diff. 0.000 0.003 -0.004 -0.001 -0.001 -0.003 -0.004 -0.003 0.000
(n=808) p-value 0.88 0.48 0.13 0.81 0.40 0.08 0.29 0.06 0.96

2,000

Total Mean Diff. 0.001 -0.001 -0.003 0.002 0.000 0.001 0.000 0.001 0.003
(n=383) p-value 0.70 0.21 0.39 0.57 0.82 0.61 0.95 0.56 0.31
PreCrisis Mean Diff. — — — — — — — — —
(n=—) p-value — — — — — — — — —
PostCrisis Mean Diff. 0.001 -0.001 -0.003 0.002 0.000 0.001 0.000 0.001 0.003
(n=383) p-value 0.70 0.21 0.39 0.57 0.82 0.61 0.95 0.56 0.31

Difference in MSPE (MSPEHAR−MSPElasso) are reported together with p-values from the Diebold-Mariano

(Newey-West (Newey & West 1987) adjusted). The differences and p-values are reported for different

training windows (1,000, 2,000) and before/after the financial crisis using the MedRV estimator.

D Risk Management Application

This section contains the actual violations of the value at risk visualized in Fig. 5 collected in

Tab. 8. Moreover, we have added summary statistics for the distribution of returns in Fig. 10.
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Figure 10: Kernel density estimates of standardized log-returns for pre-crisis (PC) and full sample

(FS) against normal distribution.

E Mincer Zarnowitz Regressions

In this paragraph we present the Mincer-Zarnowitz (Mincer & Zarnowitz 1969) regressions for

the lasso as well as the HAR model for the different training window lengths as well as split into

pre-crisis (PrC), post-crisis (PoC), and full-sample (FS). Instead of reporting tables we include

three figures: Fig. 11 contains the estimated intercept with 95% confidence intervals, Fig. 12

contains the estimated slope parameter with 95% confidence intervals, and Fig. 13 contains the

44



p-value of the joint hypothesis that the intercept equals 0 and the slope equals 1. Horizontal

lines show the 5% and 10% level. In total the lasso is rejected 38 times (48 times) at the 5% level

(10% level) whereas the HAR is rejected 50 times in both cases (out of 99 tests for each model).

We account for dependence of the error term by using HAC consistent standard errors (Newey

& West 1987).

AA C HAS HDI INTC MSFT NKE PFE XOM
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Figure 11: Estimate of α̂ in log RVt = α + β · ̂log RVt + εt
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Figure 12: Estimate of β̂ in log RVt = α + β · ̂log RVt + εt
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Figure 13: p-valueH0 : α = 0 ∧ β = 1 of log RVt = α + β · ̂log RVt + εt
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