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Abstract

Much work has been done recently to make
neural networks more interpretable, and one
approach is to arrange for the network to use
only a subset of the available features. In lin-
ear models, Lasso (or ℓ1-regularized) regres-
sion assigns zero weights to the most irrel-
evant or redundant features, and is widely
used in data science. However the Lasso
only applies to linear models. Here we intro-
duce LassoNet, a neural network framework
with global feature selection. Our approach
achieves feature sparsity by allowing a feature
to participate in a hidden unit only if its lin-
ear representative is active. Unlike other ap-
proaches to feature selection for neural nets,
our method uses a modified objective func-
tion with constraints, and so integrates fea-
ture selection with the parameter learning di-
rectly. As a result, it delivers an entire regu-
larization path of solutions with a range of
feature sparsity. In experiments with real
and simulated data, LassoNet significantly
outperforms state-of-the-art methods for fea-
ture selection and regression. The LassoNet
method uses projected proximal gradient de-
scent, and generalizes directly to deep net-
works. It can be implemented by adding just
a few lines of code to a standard neural net-
work.

1 Introduction

1.1 Background

In many problems of interest, much of the information
in the features is irrelevant for predicting the responses
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and only a small subset is informative. Feature selec-
tion methods provide insight into the relationship be-
tween features and an outcome while simultaneously
reducing the computational expense of downstream
learning by removing features that are redundant or
noisy.

With high-dimensional data sets becoming ever more
prevalent, feature selection has seen widespread usage
across a variety of real-world tasks, including speech
(Cai et al., 2018), object recognition (Li et al., 2017),
and disease detection from protein data (Wulfkuhle
et al., 2003). The benefits of feature selection include
reducing experimental costs, enhancing interpretabil-
ity, computational speed up, memory reduction and
even improving model generalization on unseen data
(Min et al., 2014). For example, feature selection is es-
pecially valuable in biomedical studies where the data
with the full set of features is expensive or difficult to
collect, as it can alleviate the need to measure irrel-
evant or redundant features, and allows to identify a
small set of features while maintaining prediction per-
formance − this can significantly save on future data
collection costs. While feature selection methods have
been extensively studied in the setting of linear regres-
sion (e.g. LASSO), identifying relevant features for
highly nonlinear models remains an open challenge.

As a motivating example, consider a data set that con-
sists of the expression levels of various proteins across
tissue samples. Such measurements are increasingly
carried out to assist with disease diagnosis, as biol-
ogists measure a large number of proteins with the
aim of discriminating between disease classes. Yet,
it remains expensive to conduct all of the measure-
ments that are needed to fully characterize proteomic
diseases. It is natural to ask: Are there redundant
or unnecessary features? What are the most effective
and representative features to characterize the disease?
Furthermore, when a small number of proteins are
selected, their biological relationship with the target
diseases is more easily identified. These ”marker” pro-
teins thus provide additional scientific understanding
of the problem.
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Figure 1. Feature selection path produced by

our method on the MICE Protein Dataset. Con-
sidering the cost of proteomic measurements, a trade-
off between the number of features kept and statistical
performance is often desirable. In this example, the
method captures 70% of the signal with about 20%
of the features. This allows to narrow down the list
of important features, making the conclusions of the
prediction task more actionable.

Figure 1 shows an example of feature selection path
produced by our method on the MICE Protein Dataset
(Higuera et al., 2015), which contains protein expres-
sion levels of normal and trisomic mice exposed to
different experimental conditions. We see that only
about 35 proteins are needed to obtain maximal clas-
sification accuracy. This kind of steeply concave curve
explains why feature selection is a key pre-processing
step in many machine learning tasks.

Section 1 discusses related works on feature selection.
Section 2 formulates the problem. Section 3 intro-
duces our main proposal, and Section 4 the optimiza-
tion strategy. In Section 5, we conduct experiments
on several real-world datasets. Finally, Sections 6 and
7 extend LassoNet to the unsupervised learning and
matrix completion problems, respectively.

1.2 Related Works

Feature selection methods can generally be divided
into three groups: filter, wrapper and embedded meth-
ods.

• Filter methods operate independently of the
choice of the predictor by selecting individual fea-
tures that maximize the desired criteria. For
example, the popular Fisher score (Gu et al.,
2012) selects features such that in the data space
spanned by the selected features, the distances
between data points in different classes are as
large as possible, while the distances between data
points in the same class are as small as possi-
ble. Filter methods select features independently
of the learning method to be used, and this is a

major limitation. For example, since filter meth-
ods evaluate individual features, they generally
do not detect features that participate mainly in
interactions with other features.

• Wrapper methods use learning algorithms to eval-
uate subsets of features based on their predictive
power. For example, the recently proposed HSIC-
LASSO (Yamada et al., 2014) uses kernel learning
to discover non-linear feature interactions.

• Similarly to wrapper methods, embedded meth-
ods use specific predictors to select features, and
are generally able to detect interactions and re-
dundancies among features. However, embedded
methods tend to do so more efficiently as they
combine feature selection and learning into a sin-
gle problem. A well-known example is the lasso
(Tibshirani, 1996), which can be used to select
features for regression by varying the strength of
l1 regularization. The limitation of lasso, how-
ever, is that it only applies to linear models. Re-
cently, Feng and Simon (2017) proposed an input-
sparse neural network, where the input weights
are penalized using the group LASSO penalty. As
will become evident in Section 3, our proposed
method extends and generalizes this approach in
a natural way.

1.3 Proposed Method

We propose a new approach that extends lasso regres-
sion and its feature sparsity to feed-forward neural net-
works. We call our procedure LassoNet. The method
is designed so that only a subset of the features are
used by the network. Our procedure uses an input-
to-output residual connection and allows a feature to
have non-zero weight in a hidden unit only if its linear
connection is active.

The linear and nonlinear components are optimized
jointly, allowing to capture arbitrary nonlinearity. As
we show through experiments in Section 5, this leads to
lower classification errors on real-world datasets com-
pared to the aforementioned methods. A visual ex-
ample of results from our method is shown in Fig. 2
, where LassoNet selects the most informative pixels
on a subset of the MNIST dataset, and classifies the
original images with high accuracy.

We test LassoNet on a variety of datasets, and find
that it generally outperforms state-of-the-art methods
for feature selection and regression.
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Figure 2. Demonstrating LassoNet on the

MNIST dataset. Here, we show the results of using
LassoNet to simultaneously select informative pixels
and classify digits 5 and 6 from the MNIST dataset.
Top: The classification accuracy by number of se-
lected features. Bottom: 3 samples from the model
with 84, 110 and 158 active features out of the 784
features respectively.

2 Problem Formulation

We now describe the problem of global feature se-
lection. Although global feature selection is relevant
for both supervised and unsupervised settings, we de-
scribe here the supervised case, which is the focus of
this paper, and defer discussion of the unsupervised
case to Section 6.

We assume a data-generating model p(x, y) over a d-
dimensional space, where x ∈ R

d is the covariate and y
is the response, such as class labels. The goal is to find
the best function f∗(x) for predicting y. We empha-
size that the problem of learning f∗ is non-parametric,
so that for example no linear or quadratic restriction
is assumed. We seek to minimize the empirical recon-
struction error:

min
f∈F,S

Ê[L(y, f(xS))] (1)

where S ⊆ {1, 2 . . . d} is a subset of features, xS de-
notes the vector x with elements xi set to zero for
i /∈ S, and L is a loss function specified by the user.
For example, in a univariate regression problem, the
function class might be the set of all linear functions,
and the loss function might be the squared error loss
L(y, f(x)) = (y − f(x))2. The principal difficulty
in solving (1) is due to the combinatorial nature of
the minimization—the choice of possible subsets S
grows exponentially in d, making the problem NP-
hard even for simple choices of f , such as linear regres-
sion (Amaldi et al., 1998), and exhaustive search is in-

tractable if the number of features is large. In addition,
the function class F needs to exhibit strong expressive
power—that is, we seek to develop a method that can
approximate the solution for any given class of func-
tions, from linear regression to deep fully-connected
neural networks.

3 Our proposal: LassoNet

3.1 Background and notation

Here we choose F to be the class of residual feed-
forward neural networks:

F =
{

f : f(x) = θTx+ fW (x)
}

,

where the width and depth of the network are arbi-
trary. Residual networks are known to be easier to
train (He et al., 2016a). Furthermore, they act as
universal approximators to any function class (Raghu
et al., 2017; Lin and Jegelka, 2018).

For the reader’s convenience, we collect key notation
and background here. Throughout the paper n de-
notes the total number of training points, d denotes
the data dimension, fW denotes a fully connected
feed-forward network with parameters W , K denotes
the size of the first hidden layer, W (1) ∈ R

d×K de-
notes the first hidden layer, and θ ∈ R

d denotes the
residual layer. L(θ,W ) = 1

n

∑n

i=1 ℓ(xi, yi; θ,W ) is
the loss on the training data set, where ℓ denotes
the loss on individual training samples. Sλ(x) =
sign(x) · max {|x| − λ, 0} is the soft thresholding op-
erator.

The general architecture of LassoNet is illustrated in
Fig. 3. The method consists of two main ingredients:

1. A penalty is introduced to the original empirical
risk minimization that encourages feature spar-
sity. The formulation transforms the combinato-
rial search to a continuous search by varying the
level of the penalty.

2. A proximal gradient algorithm is applied in a
mathematically elegant way, so that it admits a
simple and efficient implementation. The method
can be implemented by adding just a few lines of
code to a standard neural network. The mathe-
matical derivation of this algorithm is detailed in
Section 5.

3.2 Formulation

The LassoNet objective function is defined as
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Figure 3. The architecture of LassoNet.

The architecture of LassoNet consists of a single resid-
ual connection, shown in green and an arbitrary feed-
forward neural network, shown in black. The resid-
ual layer and the first hidden layer are jointly passed
through a hierarchical soft-thresholding optimizer.

minimize
θ,W

L(θ,W ) + λ ‖θ‖1

subject to
∥

∥W
(1)
j

∥

∥

∞
≤M |θj |, j = 1, . . . , d.

(2)

where the loss function L(θ,W ) was defined in Sec-
tion 3.1, and W (1) denotes the first hidden layer. We
emphasize that our goal is not just to sparsify the net-
work, but to do so in a structured way that selects
the relevant input features. Since the network is feed-
forward, we do not need to penalize the remaining hid-
den layers in any particular way.

The constraint

|W
(1)
jk | ≤M · |θj |, k = 1, . . . ,K

budgets the total amount of non-linearity involving
feature j according to the relative effect importance
of Xj as a main effect. An immediate consequence is
that Wj = 0 as soon as θj = 0. In other words, fea-
ture j is completely inactive from the model without
the need for an explicit penalty on W , hence efficient
feature selection. In this framework, feature sparsity
becomes possible with a controllable trade-off between
the linear and nonlinear components. In the extreme
where M = 0, the formulation recovers exactly the
LASSO; in the other extreme (by letting M → +∞),
one recovers a standard feed-forward neural network
with ℓ1-penalty on the first layer.

This formulation has several benefits. First, it pro-
motes the linear component of the signal above the
nonlinear one and uses it to guide feature sparsity.
Such a strategy is not new, and bears close resem-
blance to the hierarchy principle which has been ex-
tensively studied in statistics (Choi et al., 2010; Rad-
chenko and James, 2010; Lim and Hastie, 2014; She

et al., 2016; Yan and Bien, 2017). In addition, the
formulation leverages the expressive power of residual
neural networks (He et al., 2016a). These are easier to
train and can uniformly approximate any measurable
function, unlike fully-connected networks which are
not universal approximators (Lin and Jegelka, 2018).
Finally, by tying every feature to a single coefficient
(the linear component), our formulation provides a
natural framework for feature selection.

One added benefit of the formulation is that the linear
and non-linear components are fitted simultaneously,
allowing to capture arbitrary nonlinearity in the data.
If the best fitting model would have ‖Wj‖ large but
|θj | only moderate, this can be accommodated with
a reasonable choice of M . Furthermore, Fig. 4 sug-
gests that the demand for hierarchy is analogous to
the demand for sparsity—–a form of “regularization.”

Training LassoNet involves two steps. First, all the
model parameters are updated by stochastic gradient
descent. Then, a hierarchical proximal operator is ap-
plied to the input layer pair (θ,W (1)). This sequential
nature makes the procedure extremely simple to im-
plement in popular machine learning frameworks, and
requires only modifying a few lines of code from a stan-
dard residual network. The procedure is summarized
in Alg. 1.

An added benefit of the method is its computational
attractiveness. The LassoNet regularization path can
be trained at a cost that is essentially that of training
a single model. This is achieved thanks to the use
of warm starts in a specific direction, as outlined in
Section 4.1.

3.3 Hyper-parameter tuning

LassoNet has two hyper-parameters:

• the ℓ1-penalty coefficient, λ, controls the complex-
ity of the fitted model; higher values of λ encour-
age sparser models;

• the hierarchy coefficient, M , controls the relative
strength of the linear and nonlinear components.

It may be difficult to set the hierarchy coefficient, M ,
without expert knowledge on the domain or task. We
can circumvent this situation easily, by treating the hi-
erarchy coefficient as a hyper-parameter. We may use
a naive search, which exhaustively evaluates the ac-
curacy for the predefined hyper-parameter candidates
with a validation dataset. This procedure can be per-
formed in parallel.
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Algorithm 1 Training LassoNet

1: Input: training dataset X ∈ R
n×d, training labels

Y , feed-forward neural network fW (·), number of
epochs B, hierarchy multiplier M , path multiplier
ǫ, learning rate α

2: Initialize and train the feed-forward network on
the loss L(X,Y ; θ,W )

3: Initialize the penalty, λ = ǫ, and the number of
active features, k = d

4: while k > 0 do

5: Update λ← (1 + ǫ)λ
6: for b ∈ {1 . . . B} do
7: Compute gradient of the loss w.r.t to (θ,W )

using back-propagation
8: Update θ ← θ − α∇θL and W ←W − α∇

W
L

9: Update (θ,W (1))← Hier-Prox(θ,W (1), λ,M)

10: end for

11: Update k to be the number of non-zero coordi-
nates of θ

12: end while

13: where Hier-Prox is defined in Alg. 2

4 Optimization

4.1 Warm starts: a path from dense to sparse

The technique of warm starts is very effective in op-
timizing models over an entire regularization path.
For example, this technique is employed in Lasso ℓ1-
regularized linear regression (Friedman et al., 2010).
In this approach, optimization is carried out for each
fixed value of λ on a logarithmic scale from sparse to
dense, and using the solution from the previous λ as
a warm start for the next. This is effective, since the
sparse models are easier to optimize and the sparse
solution is also of main interest.

Not surprisingly, for optimizing LassoNet, we find that
a dense-to-sparse warm start approach is far more ef-
fective than a sparse-to-dense approach, in the sense
that the former approach returns models that gen-
eralize better than those returned from the latter.
This phenomenon is illustrated in Fig. 4, where the
standard sparse-to-dense approach gets caught in lo-
cal minima with poor generalization ability. On ther
other hand, the dense-to-sparse approach leverages the
favorable generalization properties of the dense solu-
tion and preserves them after drifting into sparse local
minima.

4.2 Hierarchical proximal optimization

The objective is optimized using proximal gradient
descent, as outlined in Alg. 1. The key novelty is
a numerically efficient algorithm for the proximal in-
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Lasso

LassoNet sparse to dense

LassoNet dense to sparse

Figure 4. Left: The path of residual coefficients
for the Boston housing dataset. We augmented the
Boston Housing dataset from p = 13 features to 13
additional Gaussian noise features (corresponding to
the broken lines). The number of features selected by
LassoNet is indicated along the top. LassoNet achieves
the minimum test error (at the vertical broken line) at
13 predictors. Upon inspection of the resulting model,
12 of the 13 selected features correspond to the true
predictors, confirming the model’s ability to perform
controlled feature selection. Right: Comparing two
kinds of initialization. The test errors for Lasso and
LassoNet using the sparse-to-dense (in red) and dense-
to-sparse (in green) strategies are shown. The dense-
to-sparse strategy achieves superior performance, con-
firming the importance of a dense initialization in or-
der to efficiently explore the optimization landscape.

ner loop. We call the proposed algorithm Hier-Prox

and detail it in Alg. 2. Underlying its development
is the derivation of equivalent optimality conditions
that completely characterize the global solution of the
non-convex minimization problem defining the proxi-
mal operator. As it turns out, the inner loop is de-
composable across features. As we show in Appendix
B, Hier-Prox finds the global minimum of an opti-
mization problem of the form

minimize
b∈R,W∈RK

L(b,W ) ≡
1

2
(v − b)2 +

1

2
‖u−W‖

2
2 + λ|b|,

subject to ‖W‖
∞
≤M |b|

Remarkably, the complexity of Hier-Prox is con-
trolled by O(dK ·log(dK)), where dK is the total num-
ber of the parameters being updated. This overhead
is negligible compared to the computation of the gra-
dients with respect to the same parameters. Further-
more, implementing the optimizer is straightforward
in most standard deep learning frameworks. We pro-
vide more information about our implementation in
Appendix C.
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Algorithm 2 Hierarchical Proximal Operator

1: procedure Hier-Prox(θ,W (1);λ,M)
2: for j ∈ {1, . . . , d} do

3: Sort the entries ofW
(1)
j into |W

(1)
(j,1)| ≥ . . . ≥

|W
(1)
(j,K)|

4: for m ∈ {0, . . . ,K} do

5: Compute wm ≡
M

1+mM2 · Sλ

(

|θj | +M ·
∑m

i=1 |W
(1)
(j,i)|

)

6: Find the first m such that |W
(1)
(j,m+1)| ≤

wm ≤ |W
(1)
(j,m)|

7: end for

8: θ̃j ←
1
M
· sign(θj) · wm

9: W̃
(1)
j ← sign(W

(1)
j ) ·min(wm,W

(1)
j )

10: end for

11: return (θ̃, W̃ (1))
12: end procedure

13: Notation: d denotes the number of features; K
denotes the size of the first hidden layer.

14: Conventions: Ln. 6, W
(1)
(j,K+1) = 0, W

(1)
(j,0) = +∞;

Ln. 9, minimum is applied coordinate-wise.

4.3 Computational Complexity

In most existing hierarchical models, computation re-
mains a major challenge. Indeed, the complex na-
ture of the regularizers used to enforce hierarchy pre-
vents most current optimization algorithms from scal-
ing with d. In contrast, training LassoNet is performed
at an attractive computational cost. Namely:

• The bulk of the computational cost occurs when
training the dense network;

• Subsequently, training over the λ path is compu-
tationally cheap. By leveraging warm starts and
the efficient Hier-Prox solver, the method effec-
tively prunes the dense model. In practice, pre-
dictions across consecutive solutions in the path
are usually close, which explains the speed-ups we
observe in our experiments.

The use of warm starts dramatically reduces the num-
ber of rounds of gradient descent needed during each
iteration, as the solution with penalty λ is often very
similar to the solution with penalty λ(1 + ǫ). This
added benefit distinguishes LassoNet from many com-
peting feature selection methods, which require ad-
vance knowledge of the optimal number of features to
select, and do not exhibit any computational savings
over the path of features. Finally, the computational
complexity of the method improves with hardware ac-
celeration and parallelization techniques commonplace

in deep learning.

5 Experiments

In this section, we show experimental results on real-
world datasets. These are drawn from several domains
including protein data, image data and voice data,
and have been used for benchmarking feature selec-
tion methods in prior literature (Abid et al., 2019) 1:

• Mice Protein Dataset consists of protein ex-
pression levels measured in the cortex of normal
and trisomic mice who had been exposed to differ-
ent experimental conditions. Each feature is the
expression level of one protein.

• MNIST and MNIST-Fashion consist of 28-
by-28 grayscale images of hand-written digits and
clothing items, respectively. We choose these
datasets because they are widely known in the
machine learning community. Although these are
image datasets, the objects in each image are cen-
tered, which means we can meaningfully treat
each 784 pixels in the image as a separate feature.

• ISOLET consists of preprocessed speech data of
people speaking the names of the letters in the En-
glish alphabet, and is widely used as a benchmark
in the feature selection literature. Each feature is
one of the 617 quantities produced as a result of
preprocessing, including spectral coefficients and
sonorant features.

• COIL-20 consists of centered grayscale images
of 20 objects. Images of the objects were taken
at pose intervals of 5 degrees amounting to 72
images for each object. During preprocessing, the
images were resized to produce 20-by-20 images,
with each feature being one of the 400 pixels.

• Smartphone Dataset for Human Activity

Recognition consists of sensor data collected
from a smartphone mounted on subjects while
they performed several activities such as walking
upstairs, standing and laying. Each feature rep-
resents one of the 561 raw or processed quantities
from the sensors on the phone.

We compare LassoNet with several supervised feature
selection methods mentioned in Related Works, in-
cluding HSIC-LASSO and the Fisher Score. We also
include principal feature analysis (PFA), a popular
method for selecting discrete features based on PCA,
proposed by Lu et al. (2007). Where available, we

1The data sets descriptions were provided by these au-
thors.
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Figure 5. Results on the ISOLET dataset. Here,
we compare LassoNet to other feature selection meth-
ods using a 1-hidden layer neural network (left) and
an Extremely Randomized Trees (a variant of random
forests) classifier (right). We find that across all val-
ues of k tested, and for both learners, LassoNet has
highest classification accuracy.

made use of the scikit-feature implementation (Li
et al., 2018) of each method. Fig. 5 shows the results
on the ISOLET data set, which is widely used as a
benchmark in prior feature selection literature.

In our experiments, we also include, as an upper-bound
on performance, reconstruction methods that are not
restricted to choosing individual features. In experi-
ments with decoders, we use a standard feed-forward
auto-encoder with all the input features, and in tree-
based learners, we use equivalent full trees.

We benchmarked each feature selection method with
varying number of features. Although LassoNet is
an integrated procedure — simultaneously performing
feature selection and learning, most other feature se-
lections are not, and therefore we explore the use of the
selected feature set as input into two separate down-
stream learners. For every task, we run each algorithm
being evaluated to extract the k features selected. We
measure classification accuracy by passing the result-
ing matrix XS to a one-hidden-layer feed-forward net-
work and to an extremely randomized trees classifier
(Geurts et al., 2006), a variant of random forests that
has been used with feature selection methods in prior
literature (Drotár et al., 2015). For all of the experi-
ments, we use Adam optimizer with a learning rate of
10−3.

For LassoNet, we did not use the network that
was learned during training, but re-trained the feed-
forward network from scratch to remove the bias in-
troduced by ℓ1 regularization (Zhang et al., 2008). We
divide each data set randomly into train, validation
and test with a 70-10-20 split. The number of neu-
rons in the hidden layer of the feed-forward network
was varied within [k/3, 2k/3, k, 4k/3], and the network
with the highest validation accuracy was selected and
measured on the test set.

The resulting classification errors are shown in Fig.
5 for the decoder network on the ISOLET dataset,

and in Appendix 3 for other datasets and downstream
learners. Overall, we find that our method is the
strongest performer in the large majority of cases.
While occasionally more than one method achieves the
best accuracy, we find that our method either ties or
overtakes the remaining methods in all instances, sug-
gesting that the hierarchical objective may be widely
applicable for different learning tasks.

6 Application to Unsupervised

Feature Selection

In certain applications, specific prediction tasks may
not be known ahead of time, and thus it is impor-
tant to develop methods that can identify a subset of
features while allowing imputation of the remaining
features with minimal distortion. Thus, an unsuper-
vised approach becomes relevant in order to identify
the most important features in the dataset for arbi-
trary downstream tasks.

LassoNet adapts to the unsupervised setting conve-
niently by replacing the neural network classifier with
a decoder network. The main difference is the use
of the GROUP-LASSO rather than LASSO penalty in
order to enforce the same set of selected features across
all reconstructed inputs. We provide more details on
this setting in Appendix B.

Figure 6. Demonstrating the unsupervised Las-

soNet on the MNIST dataset.

Left: 3 test images from each class of digits are shown.
Right: the reconstructed versions of the images using
LassoNet with an intermediate penalty level (corre-
sponding to about 50 active features) show that gen-
erally the digit is identified correctly and some stylistic
features, such as the orientation in the digit ”5” and
the thickness in the digit ”7”, are preserved.

7 Application to Matrix Completion

In several problems of contemporary interest, aris-
ing, for instance, in biomedical settings where mea-
surements are costly or otherwise limited, the ob-
served data are in the form of a large sparse matrix,
Zij , (i, j) ∈ Ω, where Ω ⊂ {1, ...,m}×{1, ..., n}. Popu-
larly dubbed the matrix completion problem (Candès
and Recht, 2008), the task is to predict the unobserved
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Figure 7. Imputation errors of LassoNet and

and Soft-Impute. We report the performance of
LassoNet with different numbers of selected features
using the MSE on the test set. We find that we can
achieve a similar MSE to Soft-Impute using only about
40 proteins, a 50% reduction in the number of proteins
measured.

entries.

Most existing approaches, including the popular Soft-
Impute algorithm (Mazumder et al., 2010) require low-
rank assumptions about the underlying data. In this
section, we show how to use LassoNet to perform ma-
trix completion without any low-rank assumption. In-
stead, the method exploits feature sparsity, i.e., only a
small number of input features are used for reconstruc-
tion. Additionally, our method differs from existing so-
lutions in another major way. While both methods are
iterative, Soft-Impute performs singular value thresh-
olding to find a linear low-dimensional structure. In
contrast, our method allows to use arbitrary nonlinear
manifolds through the network’s hidden layers.

To investigate the method’s performance, we run
both LassoNet and Soft-Impute on the MICE Protein
Dataset. This dataset was previously used in Section 5
for the supervised prediction task, and here the goal is
to impute the entries that are missing from the train-
ing data. The results are displayed in Fig. 7, where
LassoNet achieves about a 50% reduction in the num-
ber of proteins measured for an equivalent test MSE.

Our results show that the low-rank assumption un-
derlying most existing matrix imputation methods
is not always appropriate. More worryingly, when
the linear assumption is violated, the statistical per-
formance of standard imputation methods may be
severely impaired. Therefore, modeling nonlinear low-
dimensional structures may improve the imputation
power. If the underlying data effectively admits non-
linear structure, LassoNet will outperform linear re-

construction.

8 Discussion

In this paper, we have proposed a new feature selection
method for neural networks. Unlike most other feature
selection methods, our method provides a path of regu-
larized models at essentially the same cost as training a
single model. At its core, LassoNet involves a noncon-
vex optimization problem with hierarchy constraints
to satisfy feature sparsity . The nonconvex optimiza-
tion problem is decomposed into two subproblems that
are solved iteratively, one using stochastic gradient de-
scent and the other analytically. The stochasticity of
the initial dense model allows it to efficiently explore
and converge over an entire regularization path with
varying number of input features. This makes Las-
soNet different from many feature selection methods,
which assume prior knowledge of the number of fea-
tures to select.

Advantages of LassoNet include its generality and ease
of use. First, the generality of the method allows
it to extend to several other learning tasks, such as
unsupervised reconstruction and matrix completion.
Second, implementing the architecture in popular ma-
chine learning frameworks requires only modifying a
few lines of code from a standard feed-forward neural
network. Furthermore, the runtime of LassoNet over
an entire path of feature sizes is similar to that of train-
ing a single model and improves with hardware accel-
eration and parallelization techniques commonplace in
deep learning. Finally, the only additional hyperpa-
rameter of LassoNet is the hierarchy coefficient. We
find that the default value, M = 10, used in this paper
works well for a variety of datasets.

In several fields including computer vision (He et al.,
2016b) and speech recognition (Chan et al., 2016), the
trend has moved from inserting expert knowledge to-
ward general-purpose methods that learn these biases
from data. Currently, the state-of-the-art is based on
learning convolutional filters. In this setting, it would
be desirable to achieve ”filter sparsity”, that is, select
the most relevant convolutional filters to improve in-
terpretability. This constitutes an important direction
for future work.

LassoNet, like the other feature selection methods we
compared with in this paper, does not provide p-values
or statistical significance quantification. Features dis-
covered through LassoNet should be validated through
hypothesis testing or additional analysis using relevant
domain knowledge. In this regard, a growing body of
research about hypothesis testing for Lasso (Lockhart
et al., 2014; Javanmard and Montanari, 2014) could
serve as a fruitful starting point.
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