

Abstract-- The Customer Domain of the Smart Grid

naturally blends with smart home and smart building systems,

but proposed approaches are “distributor-centric” rather than

“customer-centric”, undermining user acceptance, and often

poorly scalable. To solve this problem, we propose a detailed

architecture and an implementation of a “last-meter” smart

grid - the portion of the smart grid on customer premises –

embedded in an Internet-of-Things platform. Our approach has

four aspects of novelty and advantages with respect to the state

of the art: i) seamless integration of smart grid with smart

home applications in the same infrastructure; ii) data gathering

from heterogeneous sensor communication protocols; iii) secure

and customized data access; iv) univocal sensor and actuator

mapping to a common abstraction layer on which additional

applications can be built. A demonstrator has been built and

tested with purposely-developed ZigBee smart meters and

gateways, a distributed Internet-of-Things server and a flexible

user interface.

Index Terms-- demand side management, internet of things,

power meter, smart grid, telemetering.

I. INTRODUCTION

he last-meter Smart Grid is the portion of the Smart Grid

closer to the home, and the one with which customers

interact. It allows a two-way information flow between

customers and electric utilities, transforming the

“traditionally passive end-users into active players” [1] in the

energy market.

Considering the seven domains of the conceptual model of

Smart Grids proposed by the National Institute of Standards

and Technology [2], [3], the last-meter Smart Grid

corresponds to the “Customer Domain”. It enables

residential, commercial, and industrial customers – based on

their different energy needs – to optimize energy

consumption and local generation, and to actively participate

to demand-response policies [4], one of the most disrupting

aspects of smart grids.

Non-technical customers need a simple way to control

energy consumption and production, and to exchange power

usage data at the proper level of granularity with energy

This work was supported in part by the ENIAC JU grants ERG (contract n.

270722-2) and E2SG (contract n. 296131), by the Italian Ministry of
Economic Development through the Cleverhome Grant, by the Tuscany
Region under the SED POR-FSE project, and by Quantavis. S.r.l. The authors
wish to acknowledge support, services, and fruitful discussions from Dario
Presti, Irene Bontà, and Gianluca Iannaccone, and Quantavis s.r.l.
E. Spanò, S. Di Pascoli, G. Iannaccone are with the University of Pisa, SEED
Lab, PUSL, Via dei Pensieri 60, Livorno (email: elisa.spano@iet.unipi.it,
s.dipascoli@iet.unipi.it, g.iannaccone@unipi.it). L. Niccolini was with the
University of Pisa when the work was performed.

providers or distributors.

From the point of view of market acceptance and

penetration, the last-meter smart grid is just one aspect of the

broader concept of smart home and smart buildings. The

consequence of this consideration is that one can hardly

imagine a situation in which the consumer side of the smart

grid and other smart home applications rely on different and

separate infrastructures or platforms.

However, smart-grid architectures proposed in the

literature typically focus on the needs of power distributors to

manage the complete power grid [5]. They reach customers’

premises with an ad-hoc network of smart meters connected

by GPRS or, sometimes, with a dedicated PLC technology

[6]. They do not take into account the possibility that

customers already have other smart home infrastructures [7]-

[13]. On the other hand, some solutions proposed in the

literature, based on a smart home infrastructure, are not

designed to be seamlessly scalable to large deployments [14]-

[23].

In this paper, we present an architecture for the last-meter

smart grid that is embedded in a platform for the Internet of

Things (IoT) [24]. Our architecture has four main advantages

and elements of novelty with respect to the state of the art,

each corresponding to the basic requirement of being

“customer-centric” and scalable, in order to improve market

acceptance and ease of deployment:

• It seamlessly integrates smart grid with smart home

applications. We assume that the typical early adopter of a

last-meter smart grid is also a user of smart home

applications (dedicated to security, entertainment, home

automation, et cetera). In order to avoid duplication and

enable possible synergy, the platform must support both

smart grid and other smart home applications.

• It can gather data from heterogeneous sensor

communication protocols. The last-meter Smart Grid

exploits existing infrastructure for in-home connection to

smart meters. Therefore, its architecture allows different

wireless or wired protocols to be used for communications

between meters, users, and other parts of the system.

• It provides secure and differentiated access to data.

Single customers have complete fine-grained access to their

own data, and can enable access by third parties. On the other

hand, distributors and energy utilities can receive coarse-

grained and aggregated statistical data.

• It allows to univocally map each sensor and actuator

to a common abstraction layer. To simplify interaction with

non-technical users, sensors and actuators are also described

at a higher abstraction level, independent of the physical

Last-meter Smart Grid embedded in an Internet-
of-Things platform

E. Spanò, Student Member, IEEE, L. Niccolini, S. Di Pascoli, and G. Iannaccone, Senior Member, IEEE

T

details and of the communication protocols. Developers and

businesses can use this higher abstraction level to provide

additional services.

In the following, we present the complete architecture of

the IoT platform (Section II), a hardware and software

implementation of the last-meter smart grid with

experimental tests (Section III). In Section IV, we compare

our proposal with related work, and in Section V we present

our conclusion.

II. PLATFORM FOR THE INTERNET OF THINGS

We have developed a platform for the Internet of Things

(IoT) as a scalable distributed system that can seamlessly

support an in-home Smart Grid and different concurrent

applications for remote monitoring and control.

The platform architecture is illustrated in Fig. 1. It consists

of three main parts: the sensor and actuator networks, the

Internet-of-Things server and the user interfaces for

visualization and management.

Sensor and actuator nodes communicate in a reliable

bidirectional way with the IoT server.

The communication between the nodes and the IoT server

follows the TCP/IP client-server model. Sensors send

messages in their native format to the IoT server (through a

gateway, if needed), over an encrypted link.

The IoT server converts the raw payload, containing

information from heterogeneous nodes, into a standard

format, containing object identifier, object type,

measurement unit, data field, geographical position, and

timestamp. In this way, data can be easily represented,

manipulated and aggregated without considering the

communication protocol of the originating source.

Fig. 1. Block diagram of the Internet of Things platform supporting the in-
home Smart Grid.

A web-based graphical interface allows users to access real

time and historical sensor data. The same interface allows

users with administration privileges to manage networks and

single nodes. Third-party software can access the platform

using a REST API [25].

Due to the possibility of using the system to collect

sensitive and confidential data, the platform ensures an

adequate security level both to end-to-end communications

and to data access. For this reason, users need to be

authenticated before they can access the platform and can

only access specific sets of sensor data through HTTPS. The

IoT server supports multiple encryption protocols (AES-128,

SSH).

At a finer level of detail, the Internet of Things platform

consists of several hardware and software components, each

described by its functions and by its interfaces with other

components. In this way, the architecture is easily scalable

and robust. Each component can be modified, redesigned,

and extended with minimum impact on the rest of the system.

The components are indicated in Table I and are described in

more detail in the following subsections.

A. Sensor and actuator networks

 1) Sensor and actuator nodes

The sensor and actuator nodes can be part of networks

implemented with wired (e.g. CAN, power line

communication) or wireless (e.g. ZigBee, Wi-Fi, Bluetooth)

network protocols. The architecture is designed to

accommodate different and heterogeneous sensor and

actuator networks. The data management unit is responsible

for translating information to the format required by the

sensor database.
TABLE I

Main components of the Internet of Things platform

Internet of Things Platform
Parts Main components

Sensor and

actuator networks
• Sensor and actuator nodes

• IP gateways

IoT Server • Message dispatcher

• Data management unit and sensor DB

• Configurator unit and database

• Secure access manager

User interfaces • Visualization interface

• Configuration interface

• Applications using the REST API

On the other hand, bidirectional communication channels

to/from the nodes enable the IoT server to interrogate,

configure, and program them. Configuration messages

mainly carry node-specific information (for example

measurement thresholds, alarm settings) or firmware updates.

Even if specific node characteristics depend on the

network implementation, the proposed architecture supports

the possibility to add or remove any network component in

real time. Indeed, any node can join the system without

requiring any change to the network implementation. For this

reason, any new node that joins a network connected to the

platform is automatically identified and immediately

accessible from the network administration interface for

registration and configuration. Similarly, updating or un-

joining nodes are automatically referred to the IoT server.

The interface between sensor networks and the platform is

based on a communication protocol between the gateway and

the IoT server defined by API specifications.

Each node has to be uniquely identified to ensure global

device accessibility. However, node addresses in typical

sensor networks may change over time and are often unique

only within a single network. For this reason, the IoT server

assigns a unique ID to each node of the network (for example

an octet string based on the EUI-64) and maintains the

mapping between such ID and the network address provided

by the local sensor network coordinator. When a node sends

a message to the server, the gateway translates its network

address into the unique ID, and vice versa for messages from

server to nodes.

 2) IP Gateway

The gateway is the element connecting a sensor/actuator

network - if it has no direct IP capability - to the IoT server

via an IP link. The gateway is bidirectional: for uplink

communication it collects data received from the network

nodes, performs reformatting/encapsulation if required, and

sends them over a secure TCP/IP link to the message

dispatcher. For downlink communication, it forwards to the

receiver node(s) the commands received from the IoT server.

We propose a different gateway concept with respect to

the one commonly used to integrate heterogeneous networks

with an external network [26]-[28]. These systems use a

gateway-based approach [29], where the gateway performs a

conversion of data into a universal format.

In our architecture, instead, it is the IoT server that

performs such operation. Therefore, the gateway sends

network packets over TCP/IP in the native format and both

the gateway and the message dispatcher are transparent at the

logical communication level between nodes and IoT server.

This choice provides three meaningful advantages:

i) The gateway can have reduced hardware requirements

and computational complexity. Our gateway has only to

ensure an IP connection, to implement the encapsulation of

the nodes’ native protocol into TCP/IP packets, and to ensure

the security level required by the specific application.

ii) Different applications and new functionalities can be

developed and added without modifying the gateway.

iii) The user side of the platform can communicate at the

application level directly with network nodes.

As a validation of this concept, the gateway is currently

implemented with Cortex-M3/M4 microprocessors. It is

designed for easy deployment in a typical home LAN, which

uses private non-routable addresses and is connected to the

Internet through a router able to perform Network Address

Translation (NAT). The machines on such LAN cannot

receive incoming TCP connection from a remote server

without a manual configuration of the router. To avoid this

user configuration, our gateway implements the client side of

a TCP connection to the IoT server and always initiates the

communication with the message dispatcher (Fig. 1).

B. IoT Server

 1) Message dispatcher

The message dispatcher manages the bidirectional

communication between each gateway and the rest of the

system. It only deals with low-level communications from

nodes (through the gateways) to the data management unit

and from the configurator unit to the nodes.

It has the main task of listening to new connections from

IP nodes that want to join the system. For every connection,

it decrypts incoming packets and forwards them to the data

management unit, for interpretation and storage. In the other

direction (downlink), it encrypts and encapsulates messages

from the configurator unit into a TCP message, and forwards

them to the destination gateway. The packet structure is

illustrated in Fig. 2. Each packet contains the following

information: i) 64-bit gateway address (which uniquely

identifies the local network), ii) opcode, iii) timestamp, with

resolution of 1 second, iv) serial number, v) payload in raw

format.

The opcode defines the function of each packet. Packets

can be divided in two main classes: administration packets

and data relay packets.

For every type of local sensor network protocol included

in the platform two opcodes are defined: one used for the

upstream and one for the downstream data transmission.

Fig. 2. Structure of the TCP/IP packet of the communication protocol
between gateway and message dispatcher.

Administration packets are used for configuration and

maintenance of the gateway. The addition of a different local

sensor and actuator network requires only the addition of two

new opcodes to the protocol.

 2) Data management unit and database storage

The Data management unit is a collection of software

modules, each able to manage the messages of a specific

sensor network type. These components receive node packets

in their native format and extract their payload. Depending

on the payload, two different storing mechanisms are used:

• If the payload contains measurement data from a sensor

or an event notification by an actuator, data are stored in a

unique format in a streaming sensor database.

• If the payload contains specific network messages

(configuration, management information, communication

channel, node address, etc.), messages are stored in the

original format into the configurator database.

The presence of the sensor database decouples data

collection from data processing and visualization, so that

users do not need to interrogate nodes directly. This approach

is useful especially when sensor networks are heterogeneous.

It is also very useful when nodes are battery-operated

devices. Decoupling allows nodes to stay most of the time in

sleep mode and periodically wakeup to receive commands

and configurations and to send measurement and status data.

In the sensor database, sensor data are represented with a

unique format, independent of the local sensor network

protocol, and are univocally associated to the physical nodes

through the unique node ID. In this way, data can then be

easily accessed by performing a simple query to the database,

and can be processed and visualized independently of the

characteristics of the physical source.

Unlike sensor data, configuration variables and messages

can be completely different for nodes of different type and

network protocol. Storing configuration messages with no

protocol conversion avoids possible loss of information.

Both sensor and configuration information are stored in

remote databases. This makes the system easily scalable and

does not impose limitations on the data volume a node can

send to the server.

 3) Configurator unit and database

This unit configures networks and nodes according to

inputs from users and authorized applications and according

to the system status stored in the configuration database. Also

the configurator unit is a collection of software components,

each dedicated to a specific type of sensor/actuator network.

For any new added sensor network protocol, dedicated

modules must be added to the configurator unit.

 4) Secure access manager

A secure access manager that ensures privacy and data

protection coordinates all communication between end-users

and the IoT server. It provides access to stored information

and network configuration only to authorized users or third-

party applications, based on a database of users and their

permission to each resource (networks, node). By default,

network owners have administrator rights on their networks.

C. User interfaces

Users, service providers and application developers can

interact with the platform through user interfaces (web-based

or API). The user interface offers two main functionalities

related to two main client profiles: standard users and

administrators. Standard users can access sensor data and

control actuators. Administrator users have superior access:

they can also see the configuration and the status of the nodes

and dynamically configure them.

The interaction between users and the platform through

the web user interface can be modeled as a finite state

machine. In this representation (illustrated in simplified form

in Fig. 3). Transitions are triggered by IoT node events and

client requests, and depend on user permissions.

The initial state is the login page. Non-registered users can

only see public sensor data and cannot send commands or

configure nodes and networks. Registered users have access

to the user home page.

The web interface can be divided in:

 1) Visualization interface

The visualization interface displays current and historical

information from sensors and actuators is a series of pages. In

addition, the visualization interface allows authorized users

to send commands to actuators. Users can create custom data

views and visualization pages, send commands, set rules and

alarm notifications.

 2) Administration interface

The administration interface provides users with the

possibility to remotely manage and configure their networks.

In addition, users can set the data visibility of their own

sensors and manage third-party access and privileges to their

nodes. The layout and the fields included in the

administration interface pages depend on the type of

networks and on the corresponding protocols. The

administrator interface is also used to easily and remotely

register new gateways and configure new network

connections.

To establish the connection, the gateway needs to know

the network name and the IP address of the message

dispatcher, the port number on which it accepts connections

and the network AES security key. For this reason, it has to

be registered and configured.

Using the web interface the administrator users can add a

new network on their admin page, by inserting the gateway

address, selecting the type of network and assigning a name,

a description and a network location. The server will generate

a network security key (ex. AES key) and will save it in the

user database along with the network information.

After the configuration with this security key, the gateway

connects to the server sending a request connection. The

server processes the request, spawns a new process and lets it

communicate directly with the gateway. This task acquires

the network information from the configuration database and

informs the gateway it can begin the encrypted

communication. After the communication is setup, the

network appears on the configuration page of the user.

 3) Web service API

Web service APIs open the platform to service providers

and new client applications (as for example an Android app

as in Fig. 4). APIs offer an easy and unified way to retrieve

information collected from heterogeneous sources. Service

providers, utilities and third parties can use the API to obtain

single, multiple or aggregated measurement data, useful to

develop new services. To protect sensitive information, the

sensor owner can define third-party accessibility of collected

data. Only registered end-users and authorized third-party

applications can retrieve sensor data from the sensor database

through the API.

Fig. 3. User interface State machine diagram. Blue circles represent states
of the administration interface; red circles represent states of the
visualization interface.

UNREGISTED

USER

BACK

SELECT A

VIEW

OK

SELECT

A DATA

WELCOME

NEW

USER

REGISTR.

HOME

PUBLIC

DATA

ADMIN

CUSTOM

VIEW
NET

CONFIG.

DEVICE

CONFIG.

NEW NET

REGISTR.
VIEW

SETUP

DATA

FLOW

COMMANDS

NEW

DEVICE

REGISTR.

RIGHTS

BACK

SEND A COMMAND

TO A DEVICE

BACK

ADMIN

NEW USER

LOG

INOK

CANCEL /FAIL

ADD A

NEW

NET

BACK

ACCESS

RIGHTS

ACCESS RIGHTS

OK

OK

BACK

SELECT A

DEVICE

SELECT

A NET

BACK

ADD A

DEVICE

OK

LOG

OUT

OK

SELECT

A DATA

BACK

VIEW

SETUP

III. IN-HOME SMART GRID IMPLEMENTATION

We have implemented an in-home prototype on the IoT

platform, building dedicated hardware and software. This

first prototype only includes a ZigBee network connected to

the IoT server through a ZigBee IP gateway. The sensors are

smart plugs, placed between home appliances and a wall

socket, and able to collect real-time power consumption data

from the loads. Customers can have a visual feedback of their

energy consumption and can remotely control each load. Let

us consider in detail the elements of the system.

A. Smart plug

As shown in Fig. 5 (left), the smart plug is enclosed in a

plastic case with a plug and a socket section and can be

inserted in a standard wall socket.

Fig. 5. Smart Plug prototype (left) and power calibration curves (right).

The smart plug collects load information from the

attached electrical equipment. Information includes single-

phase active, reactive, and apparent power; power factor;

sampled waveforms; RMS current and voltage; on/off status.

The smart plug is also an actuator, since it can turn the load

on and off. Our smart plug has no buttons and can be

completely configured and controlled through the user

interface.

In the current design (Fig. 6), the communication with the

ZigBee network is provided by a Freescale MC13224 SoC,

equipped with an AES128 encryption engine. The board

includes an ARM7 processor with 128 kB of Flash, 96 kB of

RAM and 80 kB of ROM memory. An Analog Devices

ADE7953 is used for energy measurement.

Load control is implemented using a single pole bistable

12 V relay supporting loads up to 16 A.

Fig. 6. Smart plug block diagram.

The board includes a power supply unit, which provides

the supply voltages of 12 V for the relay and 3 V for the

ADE7953 IC and the MC13224 SoC. The firmware running

on the smart plug is implemented using the Freescale ZigBee

stack, called BeeStack.

The ADE7953 can be calibrated by MCU through the

serial link. The smart plug has been calibrated using as a

reference meter tabletop power meter PCE-PA 6000 (Fig. 5 –

right). Calibration coefficients can be remotely send to the

node through the ZigBee radio. The ZigBee smart plug has

an accuracy of 1.1% (post-calibration).

B. Gateway

As the power meter is a ZigBee device, a ZigBee/IP

gateway is needed to allow communication with the IoT

server. The gateway is composed by an Ethernet interface, a

microcontroller, and a ZigBee RF transceiver.

Following what we wrote in Section IIA2, the gateway can

have reduced hardware requirements. However, in order to

reduce chip count, and hence cost, we have selected a

microcontroller with an on-chip Ethernet controller, which

slightly increases the processor hardware requirements.

Among the suitable microcontrollers (MCUs), we choose

the Freescale Kinetis K60 MCU. It is based on an ARM

Cortex M4 processor with hardware encryption (Fig. 7).

Fig. 7. ZigBee IP gateway prototype

The gateway firmware makes use of the lwIP TCP/IP

stack [30]. When connected to a LAN equipped with a DHCP

server (like most of home ADSL modem/routers) it can auto-

configure its network interface. All the messages exchanged

between the server and the gateway can be encrypted.

C. Message dispatcher

The message dispatcher is implemented as a multi process

application running on a Linux machine. The main

application task continuously listens to new possible

connections from gateways or other IP nodes. Every time a

Fig. 4. Example of a sensor data visualization using a smartphone.

new TCP connection is established, a new process is created

and remains active until the connection is closed by the

gateway or a timeout occurs. This new process saves received

packets in a UNIX-named pipe, which is read by the data

management unit (II.B.2). Moreover, the process collects and

delivers from the config database (II.B.3) downstream data

addressed to the gateways.

D. Data collection and storage

 The data collection unit is implemented using the CoMo

platform software [31]. CoMo has been developed for the fast

prototyping of network data mining applications and has been

used in large testbed deployments, such as PlanetLab [32].

Hence it is scalable to very large systems and very high data

rates.

The CoMo architecture presents an abstraction layer for

the network interface and for the IoT server. Developers can

implement new algorithms for processing sensor network

data streams without any explicit knowledge of the internals

of the monitoring system, transport media, memory and

storage organization.

CoMo follows a classical modular approach that has

proven to be successful in similar contexts [33]. The core

system provides an API to enable the development of

modules for each packet stream. Each module uses a

common data model and specifies the information of interest

(together with its resolution and accuracy). The system

identifies if that information is available. CoMo converts all

incoming data streams in a unified packet stream that is then

delivered to the subsequent processing queries [31].

In the context of the IoT platform, each CoMo module

interprets the packets of a specific type of sensor network and

extracts data to be further included in the sensor database or

in the config database.

E. User interface, Configurator unit, Secure access module

We have chosen a web interface implementation that: i) is

easily scalable to many concurrent client connections, ii)

implements user authentication, and iii) is friendly to

inexperienced users on different form-factor devices.

The web interface, the configurator unit, and the secure

access module are based on Tornado [34], an open-source

scalable non-blocking web server and web application

framework written in Python. The graphical interface is

responsive and rests on Twitter Bootstrap [35], a set of ready-

to-use graphical elements. Among the many services, which

could be provided by our architecture, we have implemented

five main user interface functionalities:

• View sensor data: As shown in Fig. 8, this page allows

the user to visualize collected data of a sensor. The page

provides a chart where data are plotted as a function of time

and a time range selector. On the right, a timepicker allows

an easy selection of measurement period.

Fig. 8. Example of the visualization of data from a smart meter in the
implemented last-meter Smart Grid.

• Register and configure new networks: The

administrator users can register and configure new networks

through dedicated pages. The network configuration is saved

in the configurator database and the AES key for the gateway

is generated. This is the only action required to an

administrator user to make its network visible.

• Network configuration and rights management: The

network configuration page allows the administrator to assign

access rights with different privileges, to modify specific

network options (netID, communication channel, security

level, etc.) and to manage sensors visibility, grouping, and

security.

• Register new sensors: The system automatically

recognizes unregistered sensors that are sending data through

a registered network/gateway and presents them to

administrators, who can decide to register them.

• Send commands: Authorized users can send commands

to actuators. All nodes are represented as one or more virtual

devices (Fig. 9) that can possibly accept commands.

If this is the case, the command interface is visible to

authorized users. When a command is sent through the user

interface, a JSON message is created containing the recipient

ID and the command. This message is then converted into the

sequence of messages to be sent to the node. All messages

are stored in a configuration database that is continually read

by the message dispatcher.

The user database and the config database are

implemented with MySQL. The Tornado backend

implements direct access, after authentication, to the sensor

data through HTTP. This makes it easy to ask for sensor data

directly from the JavaScript frontend through Ajax requests.

The query returns sensor data for a given network id, sensor

id and time range as an array of <timestamp, measure>

tuples.

F. Experimental demonstration

 We have performed several extensive tests of the
implementation to verify operation and reliability. Each
element has been individually tested and validated. All
sensors have been calibrated as described in Sec. III.A. A

Fig. 9. Authorized uses can see possible commands that can be sent to
each virtual device.

complete demonstrator including all elements of the
implementation and more than 10 sensors has run
continuously for more than three months without loss of data
in a laboratory setting, with quasi-daily addition and removal
of sensors. As an example, data extracted from the
demonstrator in a time span of about three hours from three
smart meters are plotted in Fig. 10.

Fig. 10. Power consumption data collected from 3 common household
loads and partial sum.

 Data from a small refrigerator, an electric heater, and an
expresso coffee maker show the typical features of the
corresponding power loads.

IV. COMPARISON WITH RELATED WORKS

 Comparison with related works must consider recent

literature in the neighboring fields of distributed sensor

networks, home automation and smart grids. We can loosely

classify the large number of related papers in two groups.

 A set of papers focuses on the automation of the complete

power distribution grid, of which the “last-meter” smart grid

is only a subsystem. In this case, the complete grid includes

power generation plants, transmission and distribution

networks, and “smart” consumers, with local generation

capabilities, flexible usage and sometimes energy storage

capacity. This large infrastructure is usually managed by a

central server/data storage or SCADA system [7]-[9]. For

obvious reasons, the proposed systems are described only at

the architectural level, with an extensive discussion of the

goals and objectives but with few details of the

implementation. They also require substantial investments in

infrastructure, especially for data transmission from the

customer site to the last node of power distribution (“last

meter”). Many transport options are typically proposed, such

as the use of dedicated lines, to POTS/modem, power line

communications (PLC), wireless links [10], [11].

Most of these projects include a “smart meter” used for

both data collection and billing [9], which can be deployed

only by the power distributor or in strict coordination with it.

A pilot project deployed by a power distributor [12] required

an investment of 10 M€ for the territory covered by a single

primary distribution transformer (about 30 MVA). It is worth

noting that deployed smart metering networks are usually

based on PLC links [13].

With respect to this set of papers, the advantage and the

uniqueness of our approach are apparent. Our proposal is

“customer centric”, as opposed to “distribution centric”, in

the sense that favors ease of deployment and user acceptance,

leveraging the smart home trend to enable the merging of

smart grid and smart home applications in customers’ homes.

Indeed, our proposal focuses on the customer domain of the

smart grid, possibly leaving the domains more evidently

controlled by the utilities, such as transmission and

distribution, to a “distribution-centered” treatment.

There is also another set of papers presenting home

automation systems for power metering and analysis, which

are therefore closer to the present paper. While [14] and [15]

provide mostly an architectural description, [16]-[19] and

[23], provide implementation details and a demonstration.

Most of the proposed implementations connect the home

sensor or automation network to the wide area network or to

a central server by means of a complex gateway, with large

computational power (several MB of RAM and FLASH and a

complete operating system) [19], [20]. Communication can

occur for example via ZigBee and 6LoWPAN [18], [19], [23]

but also dedicated point-to-point radio links are proposed in

[16] and in [20]. The installation and configuration of this

device makes the deployment of the system out of the reach

of many end users. Ref. [19], [21] and [22] implement the

data storage, analysis and user interface by means of a local

server, assigning to the user the task to maintain and

configure the system.

With respect to this other group of papers, the advantages

of our proposed architecture and implementation consist in

their intrinsic scalability to large-scale deployment. This is

enabled by the choice of low-cost gateway and power meter

(the bill of material of each is less than 15$), and by the

accent on deployment by non-technical users.

V. CONCLUSION

 We have presented an architecture, an implementation,

and a demonstration of the Customer Domain of the Smart

Grid, based on a platform for the Internet of Things that can

host a broad range of smart home applications.

Novelty in this field must be found in the architectural

concept, in the system integration, and in the prioritization of

requirements. In this sense, our proposal has unique

advantages and elements of novelty with respect to the state

of the art: it is customer centric, it minimizes the deployment

of specific smart grid infrastructure, and it leverages possibly

available smart home applications, sensors, and networks.

We believe this is key for a widespread acceptance of smart

grid applications and equipment to be deployed at home.

VI. REFERENCES

[1] V. Giordano, F. Gangale, and G. Fulli, “Smart Grid projects in Europe:
lessons learned and current developments,” JRC Scientific and Policy
Reports, Eur. Comm., 2012 (Update).

[2] NIST Framework and Roadmap for Smart Grid Interoperability
Standards, Release 1.0, NIST Special Publication, January 2010.

[3] R. Ma, H. H. Chen, Y. Huang and W. Meng, “Smart grid
communication: Its challenges and opportunities”, IEEE Trans. Smart

Grid, vol. 4, no. 1, pp.36-46, 2013.
[4] P. Palensky and D. Dietrich, “Demand Side Management: Demand

Response, Intelligent Energy Systems, and Smart Loads”, IEEE Trans.

Industrial Informatics, vol. 7, pp. 381–388, no. 3, Aug. 2011.

[5] K. Samarakoon, J. Ekanayake, N. Jenkins, “Reporting Available
Demand Response,” IEEE Trans. Smart Grid, vol.4, no.4, pp.1842,1851,
Dec. 2013.

[6] Energy Community Regulatory Board, European Union, “A review of
smart meters rollout for electricity in the energy community,” 2010.

[7] A. A. Khan and H. T. Mouftah, “Web services for indoor energy
management in a smart grid environment,” in Proc. 2011 IEEE 22nd

International Symposium on PIMRC, pp.1036-1040.
[8] J. Byun, I. Hong, B. Kang, and S. Park, “A smart energy distribution and

management system for renewable energy distribution and context-
aware services based on user patterns and load forecasting,” IEEE

Trans. Consumer Electronics, vol. 57, no. 2, pp. 436–444, May 2011.
[9] A. Zaballos, A. Vallejo, and J. Selga, “Heterogeneous communication

architecture for the smart grid,” IEEE Network, vol. 25, no. 5, pp. 30–37,
Sep. 2011.

[10] T. Sauter and M. Lobashov, “End-to-end communication architecture for
smart grids,” IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp.
1218–1228, Apr. 2011.

[11] F. Benzi, N. Anglani, E. Bassi, L. Frosini, “Electricity Smart Meters
Interfacing the Households,” IEEE Trans. Industrial Electronics, vol.58,
no. 10, , pp.4487-4494 Oct. 2011.

[12] Enel Press Release: “Italy’s first smart grid in Isernia”, 4 Nov. 2011,
[Online]. Available: http://goo.gl/RsY8F

[13] B. Botte, V. Cannatelli, S. Rogai, “The Telegestore project in Enel's
metering system,” in Proc. 2005 18th International Conference and

Exhibition on Electricity Distribution 2005. CIRED 2005, pp.1-4.
[14] Y. Yang, Z. Wei, D. Jia, Y. Cong, and R. Shan, “A Cloud Architecture

Based on Smart Home,” in Proc. 2010 Second International Workshop

on ETCS, vol.2, pp.440-443.
[15] Hu, Q.; Li, F., “Hardware Design of Smart Home Energy Management

System With Dynamic Price Response,” IEEE Trans. Smart Grid, vol.4,
no.4, pp.1878-1887, Dec. 2013.

[16] Q. Liu, G. Cooper, N. Linge, H. Takruri, and R. Sowden, “DEHEMS:
creating a digital environment for large-scale energy management at
homes,” IEEE Trans. Consumer Electronics, vol. 59, no. 1, pp. 62–69,
Feb. 2013.

[17] J. Park, I. Han, J. Kwon, J. Hwang, and H. Kim, “Development of a
residential gateway and a service server for home automation,” in
Lecture Notes in Computer Science, Vol. 2402, 2002, pp. 137–149.

[18] I. Choi, J. Lee, and S.-H. Hong, “Implementation and evaluation of the
apparatus for intelligent energy management to apply to the smart grid at
home,” in Proc. 2011 IEEE International Instrumentation and

Measurement Technology Conf., pp. 1–5.
[19] F. Viani, F. Robol, A. Polo, P. Rocca, G. Oliveri, A. Massa, “Wireless

Architectures for Heterogeneous Sensing in Smart Home Applications:
Concepts and Real Implementation,” Proceedings of the IEEE, vol.101,
no.11, pp.2381-2396, Nov. 2013.

[20] C. Borean, A. Ricci, G. Merlonchi, “Energy@home: a “User-Centric”
Energy Management System”, in Metering International, no. 3, pp. 52-
56, 2011.

[21] F. Salvadori, C.S. Gehrke, A.C. de Oliveira, M. de Campos, P.S. Sausen,
“Smart Grid Infrastructure Using a Hybrid Network Architecture,” IEEE

Trans. Smart Grid, vol.4, no.3, pp.1630-1639, Sept. 2013.
[22] N. Morimoto, Y. Fujita, M. Yoshida, H. Yoshimizu, M. Takiyamada, T.

Akehi, M. Tanaka, “Smart Outlet Network for Energy-Aware Services
Utilizing Various Sensor Information,” in Proc. 2013 27th International

Conference on WAINA, pp.1630-1635.
[23] B. Becker, A. Kellerer, and H. Schmeck, “User interaction interface for

Energy Management in Smart Homes,” in Proc. 2012 IEEE PES

Innovative Smart Grid Technologies (ISGT) Conf., pp. 1–8.
[24] E. Spanò, S. Di Pascoli, G. Iannaccone, “An Intragrid implementation

embedded in an Internet of Things platform”, in Proc. 2013 IEEE 18th

International Workshop on CAMAD, Germany, pp. 134-138.
[25] Roy T. Fielding. Architectural styles and the design of network-based

software architectures. PhD Thesis, University of California, 2000.
[26] N. Meratnia, P. Havinga, J. Muller, P. Spiess, S. Haller, T. Riedel, C.

Decker, and G. Stromberg, “Decentralized enterprise systems: a
multiplatform wireless sensor network approach,” IEEE Wireless

Communications, vol. 14, no. 6, pp. 57–66, Dec. 2007.
[27] C. Pastrone, M. A. Spirito, R. Tomasi and F. Rizzo “A Jabber-Based

Management Framework for Heterogeneous Sensor Network
Applications,” International Journal of Software Engineering and Its

Applications, vol. 2, no. 3, pp. 9–24, 2008.
[28] A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: An Infrastructure

for Shared Sensing,” IEEE Multimedia, vol. 14, no. 4, pp. 8–13, Oct.
2007.

[29] S. Lei, W. Xiaoling, X. Hui, Y. Jie, J. Cho, and S. Lee, “Connecting
Heterogeneous Sensor Networks with IP Based Wire/Wireless
Networks,” in Proc. 2006 The Fourth IEEE Workshop on SEUS-

WCCIA, pp. 127–132.
[30] A. Dunkels "Design and Implementation of the lwIP TCP/IP Stack."

Technical Report, Swedish Institute of Computer Science, 2001.
[31] G. Iannaccone, “Fast prototyping of network data mining applications,”

in Proc. 2006 Passive and Active Measurement Conf., Adelaide,
Australia, pp. 41-50.

[32] L. Peterson, S. Muir, T. Roscoe, A. Klingaman, “PlanetLab architecture:
An overview”. Tech. Rep. PDN-06-031, PlanetLab Consortium, Apr
2006.

[33] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman
and S. Zdonik, “Monitoring streams: a new class of data management
applications”, in Proc. 2002 28th international conference on VLDB, pp.
215-226.

[34] Tornado Documentation Release 3.1.1, Nov. 2013, [Online]. Available:
www.tornadoweb.org

[35] M.Otto, J.Thornton, Twitter Bootstrap. (2011). [Online]. Available:
http://getbootstrap.com/

Elisa Spanò (StM’2013) was born in Polistena
(Italy), on September 14, 1981. She received the
M.S. degree in electrical engineering from the
University of Messina, Italy, in 2006. She is
currently working toward the Ph.D. degree at the
University of Pisa. Her fields of interest include
Wireless Sensor Networks (WSN), Internet of
Things (IoT) platforms and smart grid technologies.

Luca Niccolini was born in Empoli (Italy) in 1983,
He received his MS and his PhD in Computer Engineering from the
University of Pisa in 2008 and 2012, respectively, with a research activity
focused on energy efficiency in networked systems. During his PhD, he has
been a Research Intern at Intel Research Berkeley and a visiting student at the
University of California, Berkeley. In 2012, he joined Riverbed Technology in
San Francisco.

Stefano Di Pascoli was born in Cremona (Italy) in 1967. He received the
MSEE from the University of Pisa in 1992, and the Ph.D. degree from Scuola
Superiore S.Anna, Pisa in 1997. He joined the University of Pisa in 1996,
where he is now Associate Professor of Electronics. His research interests
include the design of wireless sensors for home automation and
bioengineering applications, and embedded systems. He is author or co-author
of more than 35 articles.

Giuseppe Iannaccone

(M’98–SM’10) is professor
of electronics at the
University of Pisa. His
research interests include
electron device modeling,
nanoelectronics, analog
design, and smart systems.
He has authored and
coauthored more than 160

papers peer-reviewed journals and 90 papers in
proceedings of international conferences. He has
coordinated a few European and national research
projects. Visit him at http://www.iannaccone.org.

