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ABSTRACT

Last-mile delivery (LMD) refers to the movement of goods
from transportation origins to the final destinations. It has
widespread applications such as urban logistics, e-commerce,
etc. One fundamental problem in last-mile delivery is route
planning, which schedules multiple couriers’ routes, i.e., se-
quences of origins and destinations of the requests under cer-
tain optimization objectives. Prior studies usually designed
heuristic solutions to two strongly NP-hard optimization ob-
jectives: minimizing the makespan (i.e., maximum travel
time) of couriers and total latency (i.e., waiting time) of
requesters. There is no algorithm with theoretical guaran-
tees for either optimization objective in practical cases. In
this paper, we propose a theoretically guaranteed solution
framework for both objectives. It achieves both approxima-
tion ratios of 6ρ, where ρ is the approximation ratio of a core
operation, called kLMD, which plans for one courier a route
consisting of k requests. Leveraging a spatial index called hi-
erarchically separated tree, we further design an efficient ap-
proximation algorithm for kLMD with ρ = O(log n), where
n is the number of requests. Experimental results show that
our approach outperforms state-of-the-art methods by av-
eragely 48.4%-96.0% and 49.7%-96.1% for both objectives.
Especially in large-scale real datasets, our algorithm has
29.3×-108.9× shorter makespan and 20.2×-175.1× lower to-
tal latency than the state-of-the-art algorithms.
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1. INTRODUCTION
Last-mile delivery (LMD) is defined as the movement of

goods from a transportation origin to the final delivery des-
tination [56]. In recent years, last-mile delivery services
have been widespread in applications like urban logistics
(e.g., FedEx [5] and Cainiao [3]), e-commerce (e.g., Ama-
zon [2] and Alibaba [1]), food delivery (e.g., Seamless [11]
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and Meituan [8]), etc. In these applications, couriers are of-
ten responsible to transport the goods (e.g., parcels or food)
for the requesters (e.g., customers). The origins of the re-
quests can be the warehouses in e-commerce or the restau-
rants in food delivery platforms, while the destinations can
be the workplaces or homes of the requesters. Thus, a funda-
mental problem is how to plan the routes (i.e., sequences of
origins and destinations) among the couriers and requests.

Such a route planning problem is not only strongly NP-
hard [12] to address [22], but also has a large number of
requests in real-world applications. Many solutions have
been proposed to pursue approximate results for different
objectives. Major studies [46, 37, 41, 34, 16, 29, 57, 39,
17, 27] take couriers into consideration by minimizing their
travel time, i.e., the makespan (maximum travel time) or the
total travel time of the couriers. A few studies [20, 30, 21, 50]
focus on alleviating the requesters’ pain of waiting, i.e., their
total latency. Other studies [28] consider a more complex
optimization goal, which is defined as the weighted sum of
the couriers’ objective and requesters’ objective. However,
these studies have the following limitations.

Limitation 1. Though they are effective in their concerned
objectives, such effectiveness may stem from the great sac-
rifices of the efficiency or other important objectives. Cur-
rently, metaheuristics are usually used to achieve the effec-
tiveness in both requesters’ objective and couriers’ objective
(see Table 5 in the survey [28]). However, they usually con-
sume longer running time in large-scale datasets. For exam-
ple, the widely used ALNS algorithm [39, 25] can be 112×-
168218× slower than [50, 46] in our experiments. Other effi-
cient algorithms are only designed based on either couriers’
objective or requesters’ objective, which lose the effective-
ness in terms of the other objective. For instance, [50] aims
to minimize the total latency of requests and [46] focuses
on minimizing the total travel time. However, in our ex-
periments on real datasets, [50] has up to 82× longer travel
time than [46] and [46] has up to 9.6× longer makespan and
8.6× higher total latency than the ALNS algorithm [25].
Therefore, it is still unknown whether these methods can be
efficient in large-scale data while simultaneously effective in
the objectives of both requesters and couriers.

Limitation 2. No existing solutions have theoretical guar-
antees for either objective in practical cases. Specifically,
only [16, 21, 50] devise approximation solutions to plan the
routes for multiple couriers. However, the establishment of
theoretical guarantees usually relies on the restriction of the
courier’s capacity, e.g., one [21], two [16], infinite capac-
ity [50]. Thus, it is still an open problem whether there
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exists a theoretically guaranteed solution to plan the routes
for multiple couriers in practical cases.

To address Limitation 1, we study the Last-Mile Delivery
(LMD) problem which focuses on route planning for two
objectives, i.e., minimizing the makespan (i.e., maximum
travel time) of couriers and the total latency of requesters.
As labor laws of many countries [7, 14] restrict the maximum
working time for the labors (e.g., couriers), the last-mile
delivery platform should also ensure the makespan of the
couriers to be minimized with higher priority. By contrast,
minimizing total travel time may cause some couriers to
need longer travel time than others. However, as mentioned
above, we also test whether these two objectives stem from
a great sacrifice of total travel time in the experiments.

To solve Limitation 2, we propose a general framework
which simultaneously has theoretical guarantees in two ob-
jectives. The framework applies an adaptively increased travel
budget strategy to approximate the minimum makespan,
which iteratively plans a segment of the final route under
the travel budget for each courier. To approximate the min-
imum total latency, we need to deliver as many requests
(denoted by k) as possible in each segment, which relies on
the method to a subproblem called kLMD. As it has never
been studied before, we also devise an effective method to
kLMD and analyze the approximation ratio.

Our main contributions are summarized as follows:

• We propose a general framework and give a theoretical
analysis in terms of both makespan and total latency.
To the best of our knowledge, we are the first to use
one approach to simultaneously guarantee two ob-
jectives in the Last-Mile Delivery (LMD) problem.

• We devise an effective algorithm ESI for the subprob-
lem kLMD, which is critical to the effectiveness of
the framework. As the approximation ratio of ESI is
O(log n), we complete our approach with both approx-
imation ratios of O(6 log n) ∼ O(log n), where n is the
number of requests. The logarithmic approximation
ratios are by far the best guarantees [17, 27, 28].

• Extensive experiments show the superior effectiveness
of our approach. It outperforms the state-of-the-art
methods [46, 25, 17, 50] in terms of both makespan and
total latency with averagely 48.4%-96.0% and 49.7%-
96.1% improvements. Especially in large-scale real
datasets, our algorithm yields 29.3×-108.9× shorter
makespan and 20.2×-175.1× times lower total latency
than the state-of-the-art algorithms.

In the following, we present the definition of the LMD
problem in Sec. 2 and review related work in Sec. 3. Then
we introduce our framework for the problem in Sec. 4 and
our solution to its subproblem in Sec. 5. Finally, we conduct
experiments in Sec. 6 and conclude in Sec. 7.

2. PROBLEM STATEMENT

2.1 Preliminaries

Definition 1 (Request). A request is denoted by r =
〈or, dr, cr〉, which is initially located at the origin or and
needs to be delivered at the destination dr. The weight of
the goods in this request is cr.

We use R to denote a set of n requests. To complete a re-
quest, a courier needs to first pick up the goods at the origin
and then deliver it at the destination. We use er to denote

the latency of the request, i.e., the time when the requester
receives the goods from the courier at the destination.

Definition 2 (Courier). A courier is denoted by w =
〈ow, cw〉, who is initially located at ow with a capacity cw.

We use W to denote a set of m couriers and Rw to denote
a set of requests assigned to the courier w by the platform.

Definition 3 (Route). Given a courier w and the as-
signed requests Rw, a route of this courier is denoted by
Sw = 〈l0, l1, l2, · · · , lN 〉, which is a sequence of the initial
location of courier w and all the origins and the destina-
tions of the requests in Rw, i.e., l0 = ow and li ∈ {or|r ∈
Rw} ∪ {dr|r ∈ Rw} for all 1 ≤ i ≤ N .

Accordingly, the courier needs to start from his/her initial
location and then go through additional n places. The route
is feasible if the following constraints are satisfied.

(1) Order Constraint. For every request r ∈ Rw, or lies
ahead of dr in the route, i.e., a request needs to be
picked up before delivered.

(2) Capacity Constraint. At any time, the total weight of
all the goods that have been picked up but not delivered
does not exceed the capacity of courier w.

(3) Completion Constraint. At the end of the route, all
the requests need to be delivered (i.e., completed).

Similar to the existing works [17, 27, 46, 43, 31], we focus
on the metric space (V, d) where V contains the locations of
both requests and couriers, and d : V × V → [0,+∞) is the
function of the travel time between any two locations. For
example, a metric space can be a Euclidean space or a road
network. Thus, we use D(Sw) to denote the travel time of

the route Sw, i.e., D(Sw) =
∑N

i=1 d(li−1, li).

2.2 Problem Definition
Based on the basic concepts above, we first define the

Last-Mile Delivery (LMD) problem as follows.

Definition 4 (LMD Problem). Given a set of couri-
ers W and a set of requests R, we aim to plan a route Sw

for each courier w ∈W while simultaneously minimizing the
following objectives:

(1) makespan (a.k.a, maximum travel time) of the couri-
ers, OBJ1(W,R) = maxw∈W D(Sw), where D(Sw) is
the travel time of the route Sw;

(2) total latency of the requests, OBJ2(W,R) =
∑

r∈R
er,

where er is the latency of the request r.

and meet the following constraints:

• Feasibility constraint. Each route Sw is feasible.

• Completion constraint. All the requests in R should
be completed, i.e.,

⋃
w∈W

Rw = R.

Next, we illustrate the LMD problem in Example 1.

Example 1. Suppose there are 2 couriers w1, w2 and 5
requests r1-r5 on a last-mile delivery platform. As shown in
Fig. 1, the couriers are initially located at (0, 0) and (1, 0)
of a Euclidean space whose capacities are 3 and speeds are
1. The origins, destinations and weights of the requests are
listed in Table 1. In the LMD problem, we suppose the
platform assigns r1-r3 to w1 and r4, r5 to w2, i.e., Rw1

=
{r1, r2, r3} and Rw2

= {r4, r5}. Fig. 1 shows a plan of the
routes with the travel time of each edge annotated beside
it. The two routes are Sw1

= 〈ow1
, or1 , dr1 , or2 , dr2 , or3 , dr3〉

and Sw2
= 〈ow2

, or4 , or5 , dr5 , dr4〉. Therefore, D(Sw1
) =

1.4+3.6+2.8+3.6+2+2 = 15.4, D(Sw2
) = 3.2+1.4+1 = 5.6,
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Figure 1: An illustration of the LMD problem.

Table 1: The set of requests with weight cri = 1.

Request r1 r2 r3 r4 r5
origin or (1,1) (1,6) (6,4) (4,1) (4,1)

destination dr (3,4) (4,4) (6,2) (6,0) (5,0)

and then OBJ1(W,R) = max{D(Sw1
), D(Sw2

)} = 15.4. In
addition, we can calculate the latency of the requests as
er1 = d(ow1

, or1) + d(or1 , od1) = 1.4 + 3.6 = 5, er2 = 11.4,
er3 = 15.4, er4 = 5.6 and er5 = 4.6. Thus, OBJ2(W,R) =
er1 + · · · + er5 = 42. The LMD problem aims to find the
optimal routes which minimize the makespan and the to-
tal latency at the same time. In this example, the opti-
mal routes are Sw1

= {ow1
, or1 , dr1 , or2 , dr2} and Sw2

=
{ow2

, or4 , or5 , dr4 , dr5 , or3 , dr3}, which simultaneously obtain
both minimum makespan and minimum total latency.

Hardness Results. When minimizing either of the ob-
jectives, the LMD problem is equivalent to a variant of the
classic dial-a-ride problem [55]. Thus, our LMD problem is
both NP-hard and APX-hard due to the hardness of the
dial-a-ride problem. We refer readers to [22] for the proof of
the NP-hardness. Table 2 lists the major notations.

3. RELATED WORK
Our LMD problem originates from the dial-a-ride prob-

lem, which is widely applied in ridesharing and last-mile
delivery. The dial-a-ride problem focuses on planning the
routes for a set of origins and destinations and has recently
attracted extensive research interests from the database [38,
29, 37, 46, 57, 41, 19], transportation science [28, 25, 39] and
other communities [16, 21, 50, 27]. We categorize existing
solutions into heuristic and approximation algorithms.

(1) Heuristic Algorithms. Many metaheuristics have been
proposed to solve this problem, e.g., simulated annealing,
tabu search, genetic algorithm (please refer to survey [28]
for details). These studies usually use a weighted sum of
the couriers’ objective and requesters’ objective as the op-
timization goal in their problems [28]. Among these meth-
ods, adaptive large neighborhood search [39, 25] is one of the
most widely used solutions (e.g., [39] has over 1000 citations
in Google Scholar) and has also been applied in the indus-
try (e.g., Cainiao [3, 13]). In a reasonable running time, the
method can achieve good effectiveness when the number of
requests is median-scale. However, the required time cost
will dramatically increase in last-mile delivery (see Sec. 6),
where there are usually a large number of requests.

Recently, many methods from the database commu-

nity are proposed to plan the routes in large-scale spatial
data [37, 38, 29, 41, 19, 46, 57]. These solutions are designed
based on the efficient insertion operation to minimize the
travel time of couriers, e.g., T-Share [37, 38], kinetic [29, 41,
19] and pruneGreedyDP [46]. In these studies, the insertion
operation selects the optimal positions to insert the origin

Table 2: Summary of major notations.

Notation Description

r,R a request and a set of requests
or, dr the origin and destination of r
cr, er the weight and latency of r
w,W a courier and a set of couriers
ow, cw initial location and capacity of w
Rw the set of requests assigned to w
Sw the route of courier w

OBJ1 minimize makespan of the couriers
OBJ2 minimize total latency of the requests
n the number of requesters (i.e., |R|)
m the number of couriers (i.e., |W |)

and destination of a request into the current route of one
courier such that the increased travel time of the new route
is minimized. Tong et al. [46] and Xu et al. [57] design differ-
ent insertion algorithms with linear time complexity, which
is currently the fastest. Though these studies are efficient
to handle large-scale requests, the planned routes may have
longer total latency, which will result in bad experiences for
the requesters in last-mile delivery.

(2) Approximation Algorithms. There are relatively fewer
studies on approximation algorithms with theoretical guar-
antees. Specifically, [16] aims to minimize the total travel
time of the couriers, [17, 27] aim to minimize the makespan
of the couriers, and [21, 50] aim to minimize the total la-
tency of the requesters. However, the approximation ratios
in [16, 21, 50] rely on the special cases of capacity (i.e., cw),
e.g., one [21], two [16] or infinite capacity [50]. Though other
studies [17, 27] do not have such assumptions, they focus on
the special case of a single courier (i.e., m = 1). Among
these studies, [17] has the best approximation ratio.

Last-mile delivery (e.g., urban logistics and food deliv-
ery) is also viewed as one of the killer applications in Spa-
tial Crowdsourcing (SC) (please refer to survey [48, 26] or
tutorial [42] for details). Related studies in spatial crowd-
sourcing focus on different problems in last-mile delivery.
Specifically, [58, 20, 43, 59] aim to assign one proper request
(i.e., a task in SC) for each courier (i.e., a worker in SC)
instead of planning the routes. [36, 18] focus on selecting
the suitable taxi drivers to ship the goods in last-mile de-
livery. [33] studies a different food delivery scenario, where
the couriers are allowed to select the requests by themselves.
[30] focuses on clustering the food delivery orders such that
the total latency can be minimized. Therefore, their meth-
ods cannot be used in our LMD problem.

4. FRAMEWORK FOR LMD PROBLEM
In this section, we introduce our general framework for

the LMD problem. Specifically, we explain our basic idea
in Sec. 4.1, describe the algorithm details in Sec. 4.2 and
present our approximation analysis in Sec. 4.3.

4.1 Basic Idea
Our LMD problem has two objectives, i.e., minimizing

both makespan (i.e., maximum travel time) of couriers and
total latency of requests. In order to achieve that, our basic
idea is based on an adaptively increased travel budget.
(1) To minimize the makespan, we need to balance the
travel time of each route. Specifically, we set the same
travel budget for all couriers and then iteratively plan a
segment of the final route for each courier. The iterations
terminate when all the requests are assigned.
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(2) To minimize the total latency, we first need to deliver
as many requests as possible in each segment.
(3) To determine the value of the travel budget, we use an
adaptively increased travel budget instead of a static one.
Accordingly, the courier can complete the requests that are
nearer to him when the budget is smaller. After that, he/she
can cooperate with others by delivering the faraway requests
when the budget gets larger.

To deliver as many requests as possible under a travel
budget, we first enumerate the value of k from 1 to the
total number n and then plan a route to deliver exactly k
requests while minimizing the travel time. If its travel time
is under the budget, we can try a larger k. Thus, we define
a subproblem called k Last-Mile Delivery (kLMD) problem.

Definition 5 (kLMD Problem). Given a courier w,
a set of requests R and an integer k, we aim to plan a route
Sk
w for completing exactly k requests Rk

w to minimize the
total travel time D(Sk

w) and meet the following constraints:
• Feasibility constraint. The route Sk

w is feasible.

• k-Completion constraint. Exactly k requests in R
are completed, i.e., Rk

w ⊆ R and |Rk
w| = k.

The kLMD problem is NP-hard since it generalizes an NP-
hard problem, the dial-a-ride problem [22], by k = n. We
will elaborate our approximation solution to the subproblem
in Sec. 5 and temporarily assume that a ρ-approximation
algorithm for the kLMD problem exists in the following.

4.2 Framework Details
Algorithm Details. In lines 1-2, we use R′ to denote

the set of currently unassigned requests. In line 3, we ini-
tialize the travel budget δ as ρ and iteratively double it. For
the given travel budget, we find the maximum integer k be-
tween 1 and |R′| for each courier w, such that it takes no
more than δ time to complete k requests (denoted by Rk

w)
from the unassigned ones in the route Sk

w (lines 4-5). The
maximum integer k is denoted by k∗. If such k∗ exists and
some requests in Rk∗

w have not been assigned yet (line 6), we
update the route Sw of w to complete such requests. In line
7, we first refine the route Sk∗

w by removing the initial loca-
tion of the courier since he/she can directly go to the origin
of the first request in Rk

w. In line 8, we update the route Sw

by first following the original route Sw and then following
the newly planned route Sk∗

w , i.e., we append Sk∗
w at the end

of Sw. Finally, if all the requests have already been assigned,
we return the final route for each courier (lines 10-11).

Example 2. Back to Example 1. For simplicity, we as-
sume ρ = 1. When δ = 1, 2, 4, neither w1 nor w2 can com-
plete any request. Thus, no request is assigned. When δ = 8,
k∗ = 1, Rk∗

w1
= {r1}, Sk∗

w1
= 〈ow1

, or1 , dr1〉, D(Sk∗

w1
) = 1.4 +

3.6 = 5 ≤ 8 (line 5). Thus, Sw1
= 〈ow1

, or1 , dr1〉 (line 8).

Similarly, since Sk∗

w2
= 〈ow2

, or4 , or5 , dr5 , dr4〉, D(Sk∗

w2
) =

3.2+1.4+1 = 5.6 ≤ 8 (line 5), Sw2
= 〈ow2

, or4 , or5 , dr5 , dr4〉
(line 8). At this time, the set of unassigned requests is R′ =

{r2, r3} (line 9). When δ = 16, Sk∗

w1
= 〈ow1

, or2 , dr2 , or3 , dr3〉
D(Sk∗

w1
) = 13.7 ≤ 16 (line 5). After line 8, we have Sw1

=
〈ow1

, or1 , dr1 , or2 , dr2 , or3 , dr3〉. Finally, all of the requests
have been assigned (lines 10-11).

Complexity Analysis. As a courier can not complete all
the n requests in practice, we assume a courier finally takes
at most R (≪ n) requests. Suppose the time complexity
and space complexity of a ρ-approximation algorithm for
kLMD problem is T and S respectively. Thus, there are

Algorithm 1: General Framework

input : requests R, couriers W , and a parameter ρ
output: a route Sw for each courier w

1 currently unassigned requests R′ ← R;
2 currently planned route Sw ← ∅ for each courier w;

3 foreach travel budget δ ∈ {ρ · 20, ρ · 21, ρ · 22, · · · } do
4 foreach courier w ∈W do

5 k∗ ← maximum integer k ∈ [1, |R′|] such that

(Sk
w, R

k
w)← kLMD(w,R′, k) and D(Sk

w) ≤ δ;

6 if k∗ exists and Rk∗

w 6= ∅ then
7 if Sw 6= ∅ then remove ow from Sk∗

w ;

8 Sw ← append Sk∗

w at the end of Sw;

9 R′ ← R′ −Rk∗

w ;

10 if requests R are all assigned then break;

11 return {Sw|w ∈W};

O(log n) iterations in lines 3-10 since the shortest travel time
to complete all the requests is polynomial-time of n. In lines
4-9, there are O(m) iterations. In each iteration, line 5 takes
O(R · T ) time and lines 6-9 take O(R) time. Finally, the
time complexity of Algo. 1 is O(Rm log n · T ) and its space
complexity is O(S + n+m).

4.3 Approximation Analysis
In the following, we first define the (α, β)-approximation

algorithm for the LMD problem as follows. Intuitively, we
compare each objective of the approximation algorithm with
the result of each optimal solution that only optimizes the
corresponding objective.

Definition 6 ((α, β)-Approximation). Let OBJi de-
note the value of the i-th objective given by the approxima-
tion algorithm and OBJ∗i be the value of the i-th objective
given by the optimal method for this objective. An algorithm
for the LMD problem is an (α, β)-approximation method
such that for any instance (W,R), we have (1) OBJ1(W,R) ≤
α ·OBJ∗1(W,R) and (2) OBJ2(W,R) ≤ β ·OBJ∗2(W,R).

Based on the above definition, we present the approxima-
tion ratios of the framework in Theorem 1.

Theorem 1. Given a ρ-approximation algorithm for the
kLMD problem, our framework Algo. 1 achieves an approx-
imation ratio of (6ρ,6ρ).

The main idea to prove Theorem 1 is as follows:
(1) We introduce Lemma 1 to show that the total travel
time of our planned route Sw for a courier w is bounded by
the shortest route to complete the same set of requests Rw;
(2) Accordingly, we can prove the α and β of the two objec-
tives in Lemma 2 and Lemma 3 respectively;
(3) We directly prove Theorem 1 based on the lemmas.

Accordingly, we first present Lemma 1 in the following.

Lemma 1. Given a ρ-approximation method for the kLMD
problem, a courier w with his/her assigned requests Rw, let
Sw be the route obtained by Algo. 1 and S∗

w be the optimal
route with the shortest travel time to complete the requests
Rw by the courier w. We have D(Sw) ≤ 6ρ ·D(S∗

w).

Proof. Without loss of generality (WLOG), we consider
a courier w and assume thatD(S∗

w) ∈ [2L−1, 2L) for some in-
teger L ≥ 1 (w.r.t. the courier w). Based on the definition of
the kLMD problem, all the requests in Rw can be completed
by w in Algo. 1 when the travel budget is ρ ·2L. Since we al-
ways update the route Sw by appending the newly planned
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trip (line 8), the travel time of Sw is monotonically increas-
ing when the travel budget increases from ρ · 20 to ρ · 2L.
For example, we assume the current travel budget is ρ · 2i,
i.e., D(Sk∗

w ) ≤ ρ · 2i. In line 7, the travel time of the trip
connecting the last location of Sw and the first location of

Sk∗

w is no longer than the travel time of the trip, where the
courier first returns to his/her initial location at the end of

Sw and then follows the newly appended route Sk∗

w (due to
triangle inequality). Since the travel time of return trip is
under the previous travel budget ρ · 2i−1, we have

D(Sw) ≤

[L−1
∑

i=0

(2 · ρ · 2i)

]

+ ρ · 2L < 3ρ · 2L ≤ 6ρ ·D(S∗
w). (1)

In Lemma 2 and Lemma 3, we elaborate on our approx-
imation analysis of Algo. 1 in terms of α and β.

Lemma 2. Given a ρ-approximation method for the kLMD
problem, our framework Algo. 1 achieves an approximation
ratio of 6ρ to minimize the makespan.

Proof. Let S∗
w be the route of courier w in the optimal

solution to minimizing the makespan and R∗
w be the cor-

responding requests assigned to the courier w according to
the route. WLOG, we assume that the w′ is the courier
with the maximum travel time in the optimal solution, i.e.,
w′ = argmaxw D(S∗

w). Similar to Lemma 1, we assume
some integer L such that D(S∗

w′) ∈ [2L−1, 2L). In the fol-
lowing, we want to prove that all requests must be assigned
by Algo. 1 when the travel budget δ increases to ρ · 2L.

Since the courier w′ takes the maximum travel time, we
know that the travel time of any S∗

w is also bounded by
2L, i.e., D(S∗

w) ≤ D(S∗
w′) < 2L. Then for any courier w,

his/her assigned requests R∗
w in the optimal solution must be

delivered in our planned route Sw when the travel budget
δ becomes ρ · 2⌈D(S∗

w)⌉ ≤ ρ · 2L. Some of the requests in
R∗

w may also be assigned to others in the earlier iterations.
Therefore, all the requests must be assigned by Algo. 1 when
the travel budget becomes 2L.

As we have D(Sw) ≤ 3ρ · 2L for each courier w according
to Eq. (1) in Lemma 1, we derive the following upper bound
and lower bound:

OBJ1(W,R) = maxw∈W D(Sw) ≤ 6ρ · 2L−1

OBJ∗1(W,R) = maxw∈W D(S∗
w) = D(S∗

w′) ≥ 2L−1

Finally, we have OBJ1(W,R) ≤ 6ρ · OBJ∗1(W,R) for any
instance (W,R), i.e., α ≤ 6ρ.

Lemma 3. Given a ρ-approximation method for the kLMD
problem, our framework Algo. 1 achieves an approximation
ratio of 6ρ to minimize the total latency.

Proof. Let S∗
w be the route of courier w in the optimal

solution to minimizing the total latency and R∗
w be the

corresponding requests assigned to the courier w according
to the route. WLOG, we use function N∗(R, 2i) to denote
the number of requests in R whose latency e∗r ∈ [2i−1, 2i) by
the optimal solution. Similarly, we use function N(R, 3ρ ·2i)
to denote the number of requests in R whose latency er ∈
[3ρ · 2i−1, 3ρ · 2i) by Algo. 1. In the following, we first prove
a powerful result. For any integer j ≥ 0, the number of
requests whose latency is strictly shorter than 2j by the
optimal solution is no more than the number of requests
whose latency is strictly shorter than 3ρ · 2j by Algo. 1, i.e.,

∀j ∈ Z,
∑j

i=0
N∗(R, 2i) ≤

∑j

i=0
N(R, 3ρ · 2i). (2)

We use n∗
w to denote the number of requests assigned to

the courier w whose latency is shorter than 2j in the optimal
solution. Thus, the shortest travel time to complete these
requests is at most 2j . Otherwise, the last delivered request
must have a longer latency than 2j . Since a ρ-approximation
algorithm for the kLMD problem is given, it can achieve
a feasible route (with parameter n∗

w) in line 5 such that
the travel time of this route is bounded by ρ · 2j . In other
words, at least n∗

w requests must have been assigned when
the budget δ increases to ρ · 2j . Thus, we derive the lower
bound of the number of currently assigned requests R′ as

when δ = ρ · 2j , |R′| ≥
∑

w∈W
n∗
w =

∑j

i=0
N∗(R, 2i). (3)

Next, we need to prove the latency of any request r ∈ R′ is
strictly shorter than 3ρ · 2j . According to Eq. (1), we know
the total travel time of any courier is currently bounded
by 3ρ · 2j . Hence, the maximum latency of the requests is
shorter than 3ρ · 2j , i.e., |R′| = ∑j

i=0 N(R, 3ρ · 2i).
Similar to Lemma 2, we assume the last budget is ρ · 2L.

Then we derive the upper bound and lower bound as:

OBJ2(W,R) ≤
∑L

i=0

(
N(R, 3ρ · 2i) · (3ρ · 2i)

)
,

OBJ∗2(W,R) ≥
∑L

i=0

(
N∗(R, 2i) · 2i−1).

Thus, we can calculate the ratio β as

β =
OBJ2(W,R)

OBJ∗2(W,R)
≤ 6ρ ·∑L

i=0

(
N(R, 3ρ · 2i) · 2i−1

)
∑L

i=0

(
N∗(R, 2i) · 2i−1

) . (4)

As we know that
∑L

i=0 N(R, 3ρ · 2i) = ∑L
i=0 N

∗(R, 2i) = n
(i.e., all the requests are completed eventually) and prove
that Eq. (2) holds for j = 0, · · · ,L, we have
∑L

i=0

(
N(R, 3ρ · 2i) · 2i−1) ≤

∑L

i=0

(
N∗(R, 2i) · 2i−1).

Finally, we complete our proof as β ≤ 6ρ.

5. ALGORITHM FOR KLMD PROBLEM
In this section, we introduce our solution to the subprob-

lem kLMD in our framework. Specifically, we introduce the
preprocessing procedure in Sec. 5.1, elaborate on our basic
idea in Sec. 5.2 and explain algorithm details in Sec. 5.3.
Finally, we analyze the approximation ratio in Sec. 5.4 and
discuss some practical issues in Sec. 5.5.

5.1 Preprocessing
In Sec. 5.1.1, we introduce the spatial index called hier-

archically separated tree (HST) [15, 23], which can embed
any metric into a balanced tree HST. In Sec. 5.1.2, we then
transform the shortest path between origin and destination
of each request on the original metric into a path on HST.

5.1.1 Spatial Index

Construction. The index HST is usually used to project
a set of objects in databases [43, 20, 32, 24]. The main

idea of constructing an HST is to decompose the objects
into clusters according to the original distances.

The algorithm details of the construction procedure [23]
is illustrated in Algo. 2. In line 1, it randomly generates a
permutation order π of the location set V and a parameter
γ. In line 2, ∆ denotes the longest travel time between
any two locations and H denotes the height of the HST. At
the i-th level of HST, we use a cluster to denote the set of
locations that are in the same circular range with a radius
Li (i.e., d(π(j), u) ≤ Li in line 7) , and Ci denotes the set of
such clusters. Since each cluster corresponds to a node on
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Algorithm 2: Spatial Index Construction

input : a metric space (V, d)
output: an HST T

1 sample a permutation π of V and γ ∈ [0.5, 1];
2 ∆← maxu,v d(u, v),H ← ⌈log2 ∆⌉, C0 ← V ;
3 for i← 1 to H do

4 Li ← γ · 2H−i, Ci ← ∅;
5 foreach cluster c ∈ Ci−1 do

6 for j ← 1 to |V | do
7 cluster c′ ← {u ∈ c|d(π(j), u) < Li};
8 add c′ into Ci and remove u ∈ c′ from c;

9 return T ← create an HST with C0, · · · , CH;

(a) The decomposition. (b) The corresponding HST.

Figure 2: An illustration of constructing the HST.

the HST, Ci also denotes the set of nodes on the i-th level.
In lines 3-8, it performs a hierarchical decomposition to get
Ci based on the specific order π(j) in line 6. At the i-th
level, we decompose the clusters c ∈ Ci−1 into new clusters
c′ by smaller circular ranges with shorter radii in lines 7-8.
In line 9, we create an HST with all the cluster sets.

Example 3. Suppose we construct the HST with loca-
tions of w1 and r1-r3. Fig. 2 illustrates the construction pro-
cedure. We also assume γ = 1 and π = 〈ow1

, dr1 , dr2 , or1 ,
or2 , or3 , dr3〉. In line 2, we have ∆ = d(ow, or3) = 7.2,H =
⌈log2 ∆⌉ = 3. As shown in Fig. 2b, C0 only has one node,
i.e., the root of the HST which contains all locations. In line
3, when i = 1, Li = 1 · 23−1 = 4. The circles marked by
green in Fig. 2a represents the range of d(ow1

, u) < 4 and
d(dr1 , u) < 4 respectively (line 7). Since d(ow, ow) = 0 < 4
and d(or1 , ow) = 1.41 < 4, the cluster c′ only contains ow1

and or1 in line 7. In the end, C1 has two nodes at the first
level of HST, as shown in Fig. 2b. Similarly, we further
decompose the locations using smaller circular ranges with
radii of 2 which are marked by red. At last, C2 has five
nodes and C3 has seven nodes on the HST in Fig. 2b.

Complexity. In Algo. 2, the number of iterations in line
3, line 5 and line 6 are H, |V | and |V |, respectively. Thus,
the time complexity is O(H|V |2) and the space complexity
is O(H|V |), where H denotes the height of the HST and |V |
denotes the number of locations.

Properties. Based on Algo. 2, the HST is a balanced
tree and hence inherits all the sound properties of a balanced
tree. Besides, it also has the following powerful properties:
(1) It guarantees that dT (u, v) ≥ d(u, v) and E[dT (u, v)] ≤
O(log |V |) · d(u, v), where u, v are two locations in the loca-
tion set V , d(u, v) is the travel time between u and v in the
original metric, and dT (u, v) is the travel time on the HST.
(2) Each leaf node is a cluster containing a unique location
in V , while each non-leaf node contains a subset of V , which
is the union set of locations contained in its children.
(3) For any nodes u, v at the i-th level (u can be same as v),

u and v have the same travel time (i.e., Li) to their children
ch(u) and ch(v). i.e., dT (u, ch(u)) = dT (v, ch(v)).
(4) For any node v, let pa(v) and ch(v) be its parent and its
child, we have dT (v, pa(v)) = 2 · dT (v, ch(v)).
5.1.2 Shortest Path Transformation

To minimize the total travel time, an effective algorithm
tries to makes the requests share the routes of the requests
between their origins and destinations. However, it is quite
hard to determine which subsets of requests are suitable to
share together on the original metric since there may be
many shortest paths or approximate shortest paths between
the origins and destinations in practice. By our index, we
can transform such paths into a unique path on the HST.

Basic Idea. According to the first two properties men-
tioned in Sec. 5.1.1, we know: (1) the travel time on the
HST is always no shorter than the travel time on the origi-
nal metric, and (2) each leaf node of the HST corresponds to
a unique location. Thus, the shortest path between an origin
and a destination is actually a path (denoted by path(., .))
between their corresponding leaf nodes on the HST.

Algorithm Sketch. Since each leaf node corresponds to
a unique location, we can easily obtain the path path(., .) by
traversing the HST from the two leaf nodes up to their least
common ancestor (denoted by lca(., .)). By iterating such
process, we can transform the paths of multiple requests on
the original metric into the paths on the HST.

Example 4. In Fig. 2b, leaf nodes u10, u11 and u12 cor-
respond to or1 , dr1 and dr2 respectively. Thus, lca(u10, u11) =
lca(u10, u12) = u1 and path(u10, u11) = 〈e9, e3, e1, e2, e4, e10〉
path(u10, u12) = 〈e9, e3, e1, e2, e4, e11〉. Since path(u10, u11)
and path(u10, u12) have many common edges, it might be
better to deliver the corresponding requests together.

Complexity Analysis. Both time complexity and space
complexity is O(Hn), where H is the height of HST.

5.2 Basic Idea
The basic idea of our algorithm ESI is as follows:
(1) We aim to select k requests that are closer to the initial

location ow and hence we pick them from the lowest subtree
of HST that contains ow and at least k requests. The reason
is dT (ow, u) ≥ 2 · dT (ow, v), where u is any location outside
the subtree and v is any location inside the subtree.

(2) To plan the route, we apply the insertion operator [57],
which has been widely used in recent works [46, 57, 29, 37]
due to its superior performance. Insertion refers to the pro-
cedure of adding a new request into the current route, i.e.,
inserting the origin and destination of the new request into
the right positions. The final route is usually formed by se-
quentially inserting the requests. Thus, the insertion order
is important, which is not discussed in these studies.

(3) The requests, which are more likely to share routes
together, should be inserted consecutively. Intuitively, if
two paths with the same lca(., .) have no common edges on
some level of the HST, they can not have any common edges
on the lower levels. Thus, we can vectorize each path in a
top-down manner. We next sort the requests based on the
lexicographic order of the vectors. After that, the requests,
which have common prefixes of their vectors (i.e., common
edges of the paths), are getting closer.

5.3 Algorithm ESI
Our algorithm ESI (Algo. 3) for the kLMD problem has

three major steps: Embedding, Sorting, and Insertion.
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Algorithm 3: Algorithm ESI for kLMD problem

input : a courier w, requests R and parameter k
output: a route for the courier Sw

1 Sw ← ∅, V ← {ow} ∪ {or|r ∈ R} ∪ {dr|r ∈ R};
2 T ← embed metric (V, d) into HST by Algo. 2;
3 T ′ ← the lowest subtree of T such that its root node

contains ow and at least k requests.;

4 Rk ← the first k requests during the depth-first
search of T ′ starting from the leaf node of ow;

5 transform the paths of r ∈ Rk into path(or, dr);
6 label the edges in path(., .) by integers based on the

visited order during the previous search process;
7 encode each path(or, dr) into a vector vec(or, dr) with

the labeled integers in a top-down manner;

8 R̂k ← sort the requests Rk based on lexicographic
order of vec(or, dr) by bucket sort;

9 return Sw ← sequentially insert r ∈ R̂k into Sw;

Algorithm Details. The detailed procedure of ESI is:
(1) Metric Embedding. In lines 1-2, we embed the origi-
nal metric into the HST metric by Algo. 2.
(2) Sorting. In lines 3-4, we select the k requests from R.
Specifically, we first find the lowest subtree T ′ of the HST
such that the root node of subtree contains ow and at least
k requests (line 3). Accordingly, T ′ is the smallest subtree
to cover the selected requests. Therefore, we select the first
k requests Rk during the depth-first search of T ′ starting
from the leaf node of ow (line 4). Then we get the unique
paths of the requests on HST in line 5, and label their edges
with continuous integers based on the visiting order during
the depth-first search in line 6. We next encode each path
path(or, dr) into a vector vec(or, dr) with the labeled integers
in a top-down manner in line 7. Since there are usually two
edges at the same level, the edge closed to or appears before
the edge closed to dr. Finally, we obtain an ordered set of

requests R̂k based on the lexicographic order of vec(or, dr)
in line 8. Here we use the bucket sort since each labeled
integer can be viewed as a bucket and the length of vec(., .)
is no more than the height H of the HST.
(3) Insertion. In line 9, we apply the classic insertion pro-
cedure [46]. Specifically, we sequentially insert each request
into the current route Sw based on the sorted order.

Example 5. Assume Rw1
= {r1, r2, r3} and k = 3 in

the following example. In line 2, we know an HST is con-
structed as shown in Fig. 2b. In lines 3-4, we know T ′ = T
and Rk = Rw1

. In line 5, we then transform the paths
of requests as in Example 4. Specifically, path(or1 , dr1) =
〈e9, e3, e1, e2, e4, e10〉, path(or2 , dr2) = 〈e12, e5, e4, e11〉 and
path(or3 , dr3) = 〈e13, e6, e7, e14〉. In line 6, the visiting order
of edges is {e8, e9, e3, e1, e2, e4, e10, e11, e5, e12, e6, e13, e7, e14}.
In line 7, we encode these paths by labelling e8 as 0, e9 as
1, etc. After that, we have vec(or1 , dr1) = 〈3, 4, 2, 5, 1, 6〉,
vec(or2 , dr2) = 〈8, 5, 9, 7〉 and vec(or3 , dr3) = 〈10, 12, 11, 13〉.
Then the lexicographic order is vec(or1 , dr1) < vec(or2 , dr2) <

vec(or3 , dr3) and hence R̂k = {r1, r2, r3}. In line 9, we first
insert r1 and obtain a route 〈ow, or1 , dr1〉. We next insert r2
and get a new route 〈ow, or1 , or2 , dr1 , dr2〉. Finally, we insert
r3 and obtain the route Sw = 〈ow, or1 , or2 , dr1 , dr2 , or3 , dr3〉.
Please refer to [46] for the detailed calculation procedure.

Complexity Analysis. The time complexity of Algo. 3
is O(Hn2 + k2) and its space complexity is O(Hn), where

H is the height of HST. Specifically, lines 1-2 take O(Hn2)
to construct an HST. Lines 3-4 take O(Hn) time to traverse
the HST. Lines 5-7 take O(Hk) time to transform the paths
and encode them into vectors. Line 8 takes O(Hk) time to
implement the bucket sort. The sequential insertion in line
9 takes O(k2) time according to [57, 46].

Implementation. In practice, since the Algo. 3 is exe-
cuted multiple times by the general framework, we can con-
struct a global spatial index with all the locations. In this
way, the time complexity of ESI improves to O(Hn + k2).
Accordingly, the time complexity of the complete solution
to the LMD problem is O(Hn2 +R3m log n+HRmn log n)
and its space complexity is O(m +Hn), where R (≪ n)
denotes the maximum number of requests assigned to the
couriers and H denotes the height of the spatial index.

5.4 Approximation Analysis
We next prove the theoretical guarantee of ESI for the

kLMD problem. Since HST is constructed by a random-
ized routine, ESI is intrinsically a randomized algorithm. To
theoretically analyze a randomized algorithm, the expected
value of the approximation ratio is a prevalent standard [54,
49, 17]. Specifically, the expected approximation ratio is
the ratio of the expected result of the randomized algorithm
to the optimal result in the worst-case. Our main result is
summarized as follows.

Theorem 2. The (expected) approximation ratio of our
algorithm ESI (Algo. 3) is O(log n).

The main idea of proving Theorem 2 is:
(1) We first prove the lower bound in Lemma 4. Our lower
bound is extended from [17], where the authors assume the
weight of each request is a unit.
(2) We next prove the upper bound in Lemma 5.
(3) We finally prove Theorem 2 by Lemma 4 and Lemma 5.

For simplicity, we first introduce the additional notations
in the following analysis. Ei denotes the set of edges on the
HST at the i-th level. Re,e′ denotes the set of requests whose
paths path(., .) go upward through edge e and go downward
through edge e′. ye,e′ denotes the total weight of requests
in Re,e′ , i.e., ye,e′ =

∑
r∈R

e,e′
cr.

Next, we extend the lower bound of the optimal solution
in [17] to the setting of arbitrary weights.

Lemma 4. On the HST metric, the lower bound of the
optimal solution is 1√

cw

∑H
i=1

∑
e,e′∈Ei

(
⌈ ye,e′

cw
⌉ · |e|

)
.

Proof. We assume the optimal method has the power
to split the delivered goods into unit pieces. For instance, a
request with a weight cr can be split into a set of cr requests
each of which has a unit weight. The above equation is
the lower bound of such a powerful optimal solution [17].
However, the goods can not be split into pieces in practice.
Thus, the actual optimal result is no smaller than it.

Then we prove the upper bound of our algorithm ESI.

Lemma 5. On the HST metric, the upper bound of our
algorithm ESI is 8

∑H
i=1

∑
e,e′∈Ei

(
⌈ ye,e′

cw
⌉ · |e|

)
.

Proof. The route of Sw consists of two parts, i.e., the
part that courier w has not picked up any requests and the
part that courier w has already picked up the requests. Ac-
cordingly, the upper bound of ESI should be bounded by the
sum of the total travel time of these two parts.

In the first part, let us first focus on the edges Ei at
the i-th level. For any two different edges e, e′ ∈ Ei, there
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(a)An example of HST
with {r1, r2, r3}.

(b) the paths of {r1, r2, r3} on
the HST.

Figure 3: An example of the HST and the paths.

are totally ye,e′ requests which need to go upward through
edge e and then go downward through edge e′. Since these
requests have already shared the edges e, e′, they must also
share the same edges at the higher levels. Thus, after the
sorting step (line 8) in Algo. 3, these requests will be in

adjacent positions in the sorted order R̂k. To satisfy the
capacity constraint, the courier has to traverse the edges e, e′

with no picked requests for 2⌈ ye,e′
cw
⌉ times at most. This is

because at least half of the capacity cw can be fully loaded

when the weights of requests are not unit, i.e., ⌈ y
e,e′

0.5cw
⌉ ≤

2⌈ ye,e′
cw
⌉. As the edges at the same level (e.g., e, e′) have the

same length, the total travel time of this part is bounded by

H
∑

i=1

∑

e,e′∈Ei

(

2⌈
ye,e′

cw
⌉ · 2|e|

)

= 4
H
∑

i=1

∑

e,e′∈Ei

(

⌈
ye,e′

cw
⌉ · |e|

)

(5)

In the second part, we prove the upper bound in the
following two cases.

Case 1. We first focus only on the set of requests (de-
noted by Re,e′) in ye,e′ . As shown in Fig. 3a, we assume the
requests {r1, r2} belong to Re,e′ as they have common edges
from u1 to u2 (see Fig. 3b). Suppose the courier is currently
located at the root ow. Fig. 4a illustrates the route after
sequentially inserting r1, r2 on the HST, i.e.,

〈ow, (u1, ) or1 , (u1, ) or2 , (u1, ow, u2, ) dr1 , (u2, ) dr2〉
As the insertion operator only outputs the sequences of ori-
gins and destinations, we use brackets to represent the nodes
that the route passes through. Obviously, the detour of in-
sertion only happens at the branches of non-shared parts.
Thus, the travel time of the shared edges e, e′ are equally
amortized by the requests Re,e′ . As explained above, the
courier has to traverse the edges e, e′ to deliver the requests

for 2⌈ ye,e′
cw
⌉ times. As the edges at the same level (e.g., e

and e′) have the same length on the HST, the total travel
time of this part is bounded by

H
∑

i=1

∑

e,e′∈Ei

(

2⌈
ye,e′

cw
⌉ · 2|e|

)

= 4
H
∑

i=1

∑

e,e′∈Ei

(

⌈
ye,e′

cw
⌉ · |e|

)

(6)

Case 2. In some cases, after inserting all the requests
Re,e′ , we will insert the requests that have no shared parts
with Re,e′ . For example, the request r3 in Fig. 3 is one
of such requests. We want to prove that the upper bound
Eq. (5) still holds after inserting r3. As shown in Fig. 4b,
there is always a possible insertion plan to place or3 at the
end of the route, i.e., the courier first delivers all the re-
quests Re,e′ and then the new request outside Re,e′ (i.e.,
red edges). Therefore, the travel time of such a simple route
is still bounded by Eq. (6). Since the insertion operator can
get the route with the shortest travel time after adding the
new request, it should also be bounded by Eq. (6).

The upper bound is derived by the sum of Eq. (5)-(6).

We finally prove the ratio of algorithm ESI in Theorem 2.

(a) the route after inserting
{r1, r2}.

(b) the route after inserting
{r1, r2, r3}.

Figure 4: An example of inserting requests {r1, r2, r3}.
Proof. Let DT (S

∗
w) and D(S∗

w) be the minimum total
travel time following the optimal route S∗

w on the HST met-
ric and original metric respectively. Let DT (Sw) and D(Sw)
be the total travel time obtained by our algorithm ESI on
the HST metric and original metric respectively. We also use
C to denote the ratio between the longest requests and the
shortest requests, i.e., C = maxr d(or, dr)/minr d(or, dr). In
the following, C is assumed to be a constant, which is prac-
tical in the last-mile delivery platforms [30, 57, 18]. For
example, [30] provides the spatial distribution of 1,852,439
food delivery orders collected in Shanghai. The delivery dis-
tances of all these requests are strictly less than 4000 meters
while the delivery distances of these requests are over 100
meters. In this case, C can be viewed as 40.

Thus, in the worst case, the k requests selected by ESI

are the longest while the k requests selected by the optimal
solution are the shortest. Based on Lemma 4 and Lemma 5,
we can derive the ratio of ESI on the HST as

DT (Sw)

DT (S∗
w)
≤ C ·

1√
cw

H∑
i=1

∑
e,e′∈Ei

(
⌈ ye,e′

cw
⌉ · |e|

)

8
H∑
i=1

∑
e,e′∈Ei

(
⌈ ye,e′

cw
⌉ · |e|

) = O(
√
cw).

Based on the first property of the HST (see Sec. 5.1.1), we
know dT (u, v) ≥ d(u, v) and E[dT (u, v)] ≥ O(log n) · d(u, v).
Thus, we have E[DT (S

∗
w)] ≥ O(log n)·D(S∗

w) and DT (Sw) ≥
D(Sw). Finally, since the capacity cw is a small constant
(≪ n,m) in practice, the (expected) approximation ratio is

ratio =
E[D(Sw)]

D(S∗
w)

≤ O(logn) · E

[

DT (Sw)

DT (S∗
w)

]

= O(logn).

5.5 Discussions
In practice, last-mile delivery can be applied in many sce-

narios with different settings. In the following, we discuss
how to extend our algorithm to the online scenario and the
scenario with deadline constraint.

(1) Online scenario. In the online scenario, the requests
dynamically arrive at the platform. To plan the routes in the
online scenario, we can apply the widely-used batch-based
mode [60, 53, 47]. The main idea is to determine the length
of a time period and then plan the part of routes for the set of
requests which have arrived in this time period. Iteratively,
all the requests will be completed. Thus, in each batch, our
algorithm can be used to plan the routes for the available
couriers to complete this batch of requests. Moreover, our
theoretical guarantees still hold for the batch-based mode.
Please refer to our full paper [6] for the proof.

(2) Deadline constraint. Some of the requests may
have preferred deadline constraints (i.e., the latest time to
reach origin and destination). For instance, in the real
datasets collected by Cainiao [4], 8,856 out of 238,636 the
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packages (3.71%) have these deadlines, and all the other
packages (96.29%) do not any deadlines. In other word, the
number of such requests is small and most of the requests
have no deadlines for either pickup or delivery. To address
this scenario, we first use our algorithm to plan the routes
for the requests without the deadlines. After that, we use
the linear-time insertion algorithm [46] to sequentially insert
the requests with deadlines into the current routes. Since
more constraint is involved, the theoretical guarantees do
not hold in this extension.

6. EXPERIMENTAL STUDY

6.1 Experimental Setup

Synthetic Datasets. We generate the synthetic datasets
based on the parameter settings in Table 3, where the de-
fault parameters are marked in bold. Specifically, we vary
the number of requests |R|, the number of couriers |W |, etc.
Similar to [57], weights are generated by Gaussian distribu-
tion whose mean value varies from 1 to 3. To generate the
locations, we apply the widely used method [43, 53, 44, 45,
35, 40, 51, 52]. Specifically, we generate the initial locations
of couriers and the origins and destinations of requests on a
two-dimensional Euclidean space with size 200× 200 under
the Uniform, Gaussian, and Exponential distributions. For
the scalability tests, we generate the locations on a larger
Euclidean space with size 500× 500.

Real Datasets. As shown in Table 4, we use the two pub-
licly accessed real datasets of last-mile delivery, i.e.,Cainiao
and Olist . The Cainiao dataset [4] is collected in Shanghai
by the largest logistics platform called Cainiao [3] owned by
Alibaba Group [1]. The requests in Cainiao include both
food delivery requests and parcel delivery requests. We use
the same procedure to process the raw data as [57]. We
also use a smaller dataset Olist , which is generated by the
public datasets from Kaggle [10], It includes the real-world
e-commerce requests of a Brazilian e-commerce company
called Olist [9]. We extract the requests whose origins and
destinations are both in the city of Sao Paulo, because Sao
Paulo involves the maximum number of such requests. The
two real datasets include all the information except the ini-
tial locations of couriers. Therefore, we randomly generate
the initial locations in the spatial range of the requests and
vary the number of couriers in Table 4.

Metrics and Baselines. We compare our method (named
by FESI) with the following baselines in terms of makespan
of couriers (makespan for short), total latency of requesters
(total latency for short), total travel time of couriers (total
travel time for short), running time and memory usage.

(1) pruneGreedyDP [46] (GDP for short) devises the most
efficient insertion operation to minimize the total travel time.

(2) TAC [50] is a TSP based solution to minimize the
latency of couriers. Its basic idea is to iteratively select
a set of requests and then combine the TSP tour of their
origins and the other TSP tour of their destinations.

(3) [17] achieve the best-known approximation ratio in
minimizing the makespan when there is one courier. We
extend their algorithm (denoted by eFOCS) to the case of
multiple couriers by the idea of hot spots [29]. Specifically,
we use binary-search to decide the radius of the hot spot
for each courier. Then, a courier is assigned to the set of
requests in his/her hot spot. Thus, their method is used to
plan the route for each courier to complete his/her requests.

Table 3: Synthetic datasets.
|R| 2000,4000,6000,8000,10000
|W | 30,60,100,120,150

weight cr 1,1.5,2,2.5,3
capacity cw 4,6,8,10,15

location
distributions

mean of Uniform: 50,75,100,125,150
µ of Gaussian: 50,75,100,125,150

σ of Gaussian: 5,10,15,20,25
λ of Exponential: 50,75,100,125,150

scalability (|R|, |W |) (20k, 1k), (40k, 2k), · · · , (200k, 10k)

Table 4: Real datasets.
Dataset |R| |W | Collected City
Cainiao 238,636 1k,2k,3k,4k,5k Shanghai, China
Olist 4,819 30,60,100,120,150 Sao Paulo, Brazil

(4) Adaptive large neighborhood search (ALNS) is one of
the widely used algorithms from the area of transportation
science. Gschwind and Drexl [25] propose the state-of-the-
art ALNS algorithm (denoted by ALNS), which is viewed as
the most effective and efficient ALNS algorithm to minimize
the total travel time of couriers in a recent survey [28]. We
optimize ALNS by the linear-time insertion operation in [46].
Moreover, we also use a weighted sum of the two objectives
in our LMD problem to extend the algorithm (denoted by
ALNS+), i.e., OBJ1 + 1

n
OBJ2, since most related studies

(see Table 5 in the survey [28]) with multiple objectives use
a weighted sum of the objectives as the optimization goal.

Though some baselines are designed based on a single
objective, we still conduct experiments as it is unknown
whether they are effective in the other practical objectives.

Implementation. We implement all the compared algo-
rithms in GNU C++. The experiments are conducted on a
server with 40 Intel(R) Xeon(R) E5 2.30GHz processors and
128GB memory. Each experiment is repeated 50 times and
the average results are reported. Due to space limitations,
we report the memory usage in Sec. 6.2 and refer readers to
our full paper [6] for more illustrations.

6.2 Experimental Results

Impact of the number of requests. The first row of
Fig. 5 shows the experimental results of varying the number
of requests. In terms of both objectives (i.e., makespan and
total latency), our algorithm FESI outperforms other base-
lines. Specifically, FESI has up to 45.9%, 45.9%, 56.0%,
78.3% and 96.8% shorter makespan than ALNS, ALNS+,
TAC, GDP and eFOCS respectively. Simultaneously, FESI

has up to 48.7%, 48.7%, 66.3%, 70.6% and 96.9% lower total
latency than ALNS, ALNS+, TAC, GDP and eFOCS respec-
tively. Among the baselines, ALNS+ is only a little better
than ALNS and both of them are more effective than the
other baselines. GDP has longer makespan and lower to-
tal latency than TAC although TAC instead of GDP focuses
on minimizing the total latency. eFOCS is always the least
effective in these two objectives but it is comparable in mini-
mizing the total travel time. As shown in Fig. 5c, eFOCS has
averagely 55.4% shorter total travel time than TAC, which is
the least effective in this metric. Our method FESI takes up
to 36.9%, 36.9%, 60.6% and 21.9% shorter total travel time
than ALNS, ALNS+, TAC and eFOCS respectively. Besides,
ALNS is the most effective when |R| is 2k and eFOCS is the
most effective when |R| is 10k. In terms of running time,
ALNS and ALNS+ are the slowest, TAC is the fastest and
others are efficient enough. Particularly, ALNS and ALNS+

take up to 92257×, 581×, 13796× and 1689× longer running
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Figure 5: Results on varying |R|, |W |, weight cr and capacity cw on synthetic datasets.

time than TAC, GDP, eFOCS and FESI respectively. In terms
of memory usage, all the algorithms are efficient enough to
consume less than 17MB.

Impact of the number of couriers. The second row of
Fig. 5 shows the experimental results of varying the number
of couriers. With the increase of W , the makespan and
total latency of all algorithms decrease. The rankings of
all algorithms in terms of both makespan and total latency
is still the same as previous results. Our algorithm FESI

still outperforms these baselines with 30.1%, 30.0%, 47.8%,
72.4%, 95.4% shorter makespan and 37.7%, 37.8%, 63.9%,
60.4%, 96.2% lower total latency than ALNS, ALNS+, TAC,
GDP and eFOCS in average. As for total travel time, ALNS,
ALNS+ and TAC are notably longer than the others. When
|W | is smaller than 150, GDP has the shortest total travel
time. However, when |W | increases over 200, FESI becomes
the most effective. eFOCS is often in the third place with
averagely 10.2% and 8.4% longer total travel time than GDP

and FESI. As for running time, TAC is the most efficient
while ALNS and ALNS+ are the least efficient (789×-1228×
slower than FESI). Besides, all the algorithms are efficient
in memory usage.

Impact of the weight of the requests. The third row of
Fig. 5 shows the experimental results of varying the weight
of requests. Our method FESI is still the best in terms of
both makespan and total latency, followed by ALNS+, ALNS,
TAC, GDP and eFOCS. As for total travel time, FESI is less

effective than GDP when the weight is large. However, when
the weight is small, FESI takes the shortest total travel time
by 14.8%-28.3% than GDP and eFOCS. The other baselines
still have notably longer total travel time. In terms of time
cost and memory usage, FESI is still efficient.

Impact of the capacity of the couriers. The last row
of Fig. 5 shows the experimental results of varying the ca-
pacity of couriers. For both makespan and total latency,
we observe similar patterns to previous results. In terms
of total travel time, FESI has longer total travel time than
ALNS, ALNS+, GDP and eFOCS when the capacity is small.
However, when the capacity increases, it eventually becomes
the most effective algorithm. For running time, ALNS and
ALNS+ are still 169×-99087× slower than the others. The
memory usage is all less than 16MB.

Impact of the mean of Uniform distribution. The first
row of Fig. 6 shows the experimental results when locations
follow the Uniform distribution with the parameter mean.
In Fig. 6a-Fig. 6c, the results are all first increasing and then
decreasing. The reason is the spatial range when mean = 50
is smaller than the spatial range when mean = 100. The
locations in the former case fall into an area with size 100×
100 instead of 200 × 200 in the latter case. In the Uniform
distribution, we can still observe that FESI outperforms the
others in terms of both makespan and total latency. As
for total travel time, we see a similar pattern to previous
results. As for time and memory cost, the rankings of these
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Figure 6: Results on varying Uniform (mean), Gaussian (µ, σ) and Exponential (λ) distributions on synthetic datasets.

algorithms are also similar to previous results.

Impact of the µ and σ of Gaussian distribution. The
second and third rows of Fig. 6 show the experimental re-
sults when locations follow the Gaussian distribution with
the parameter µ, σ. We can observe all algorithms are sen-
sitive to σ and eFOCS also is sensitive to µ. In terms of
makespan and total latency, FESI is always the best and
ALNS and ALNS+ are the runners-up. In terms of total
travel time, GDP is the best and FESI is the runner-up. The
gaps between them are still small. In terms of running time,
ALNS and ALNS+ are the slowest and TAC is the fastest. As
for memory cost, it is no more than 16MB.

Impact of the λ of Exponential distribution. The last
row of Fig. 6 shows the experimental results when locations
follow the Exponential distribution with the parameter λ.
We can observe the makespan and total latency of eFOCS

decrease with the increase of λ, while for the other algo-
rithms, the values of these two objectives are relatively sta-
ble. In the Exponential distribution, FESI is still the best. It
obtains at least 42.3% shorter makespan and at least 39.1%
lower total latency than all the baselines. As for total travel
time, TAC is still the least effective, followed by ALNS+,
ALNS, eFOCS, FESI and GDP. As for time cost and memory
cost, the pattern is similar to previous results.

Impact on the scalability tests. The first row of Fig. 7
shows the experimental results on scalability tests. ALNS

and ALNS+ usually cannot iterate enough times (e.g., less
than 20 when |R| = 200k) in the scalability tests. We only
report their best results within 2 hours. FESI always outper-
forms the others in terms of makespan, total latency and to-
tal travel time. Specifically, FESI has at least 70.0%, 70.0%,
66.2%, 88.7% and 99.0% shorter makespan and 58.9%, 58.8%,
64.0%, 73.0% and 98.5% lower total latency than ALNS,
ALNS+, TAC, GDP and eFOCS respectively. Besides, FESI
has averagely 70.2%, 70.3%, 67.9%, 4.3% and 8.7% shorter
total travel time than these baselines. In terms of running
time, TAC and eFOCS are notably efficient than others. Our
FESI algorithm is the third most efficient algorithm while
GDP, ALNS and ALNS+ consume up to 2×, 96× and 96×
more time respectively.

Impact on the real datasets. The last two rows of Fig. 7
show the experimental results on real datasets. In Olist
(Fig. 7e-Fig. 7h), the rankings of algorithms in terms of
makespan and total latency is similar to the results in syn-
thetic datasets. As for total travel time, GDP is the most
effective and FESI is the runner-up. In Cainiao, our algo-
rithm FESI notably outperforms all the baselines in terms
of makespan, total latency and total travel time (Fig. 7i-
Fig. 7k). Specifically, the compared baselines have 29.3×-
108.9× longer makespan and 20.2×-175.1× higher total la-
tency than our method FESI. Even for total travel time,
they are still worse than our method FESI by 1.6×-122.2×.
In terms of efficiency, ALNS and ALNS+ are inefficient in
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(j) Total latency.
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Figure 7: Results on scalability tests and real datasets.

real datasets. For example, they consume 430×-168218×
longer time than other algorithms in Olist . In large-scale
real dataset (Cainiao), ALNS and ALNS+ fail to terminate
in 2 hours and execute less than 20 iterations while TAC,
eFOCS and FESI can be terminated in less than 12 minutes.
TAC is the most efficient and GDP consumes notably longer
time. Moreover, the gaps among FESI, eFOCS and TAC are
much smaller than the results on scalability tests. Since
Cainiao is a large-scale dataset with over 200k requests, the
results demonstrate the efficiency of FESI. As for memory
usage, all the algorithms consume less than 95MB space.

Summary. Our experimental findings are summarized as:

• In terms of makespan and total latency, ALNS and
ALNS+ are comparably effective but they are also no-
tably inefficient. Other efficient baselines are either
ineffective in these two objectives (GDP and eFOCS)
or sacrifice notably longer total travel time (TAC).

• Our method FESI is usually the most effective algo-
rithm with averagely 48.4%-96.0% and 49.7%-96.1%
higher improvements in terms of makespan and total
latency than all the baselines. Simultaneously, FESI

only has averagely 2.5% higher total travel time than
GDP but obtains averagely 15.5%-64.7% shorter total
travel time than the other baselines. Especially in the
large-scale real dataset (Cainiao), FESI obtains 29.3×-
108.9× shorter makespan and 20.2×-175.1× lower to-
tal latency with shorter total travel time than the
state-of-the-art algorithms with good efficiency.

• Among the baselines, ALNS and ALNS+ are compara-
bly effective in makespan and total latency. However,
they are 112×-168218× slower than the other base-
lines (when n ≤ 10k). TAC is the most efficient while
it is notably ineffective in the large-scale real dataset.
eFOCS is also efficient but ineffective in minimizing

both makespan and total latency. GDP is often com-
parably effective in terms of total latency and total
travel time while it also has notably longer makespan.

7. CONCLUSION
In this paper, we propose the LMD problem, which plans

the routes among the couriers and requesters in last-mile
delivery for two objectives, i.e., minimizing the makespan
of couriers and total latency of requesters. The problem
with either objective is strongly NP-hard and hence we fo-
cus on designing an efficient method with theoretical guar-
antees. Specifically, we propose a framework with both ap-
proximation ratios of 6ρ, where ρ is the approximation ratio
of its core operation called kLMD. We next apply the spa-
tial index called hierarchically separated tree and devise an
approximation algorithm ESI for the kLMD problem with
ρ = O(log n), where n is the number of requests. Finally,
extensive experiments on both synthetic and real datasets
show that our approach outperforms the state-of-the-art al-
gorithms in terms of both makespan and total latency with
averagely 48.4%-96.0% and 49.7%-96.1% improvements.
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