
 Open access Proceedings Article DOI:10.1109/GIOTS.2018.8534565

LATe: A Lightweight Authenticated Time Synchronization Protocol for IoT
— Source link

Renzo E. Navas, Laurent Toutain

Published on: 04 Jun 2018 - The Internet of Things

Topics: Synchronization (computer science) and Synchronization

Related papers:

 A Secure and Lightweight Authenticated Key Agreement Protocol for Distributed IoT Applications

 A Lightweight Authentication Protocol using Implicit Certificates for Securing IoT Systems

 PAKIT: Proactive Authentication and Key Agreement Protocol for Internet of Things

 An Unlinkable Authentication Scheme for Distributed IoT Application

 Lightweight and Privacy-Preserving Two-Factor Authentication Scheme for IoT Devices

Share this paper:

View more about this paper here: https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-
24o45wbwr4

https://typeset.io/
https://www.doi.org/10.1109/GIOTS.2018.8534565
https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4
https://typeset.io/authors/renzo-e-navas-2xufdj75rl
https://typeset.io/authors/laurent-toutain-rfly26nz6p
https://typeset.io/conferences/the-internet-of-things-2h19syo0
https://typeset.io/topics/synchronization-computer-science-1et2yiv9
https://typeset.io/topics/synchronization-2wu61gqg
https://typeset.io/papers/a-secure-and-lightweight-authenticated-key-agreement-544ku7c50m
https://typeset.io/papers/a-lightweight-authentication-protocol-using-implicit-53jqb2lmnb
https://typeset.io/papers/pakit-proactive-authentication-and-key-agreement-protocol-coo6ufs6v1
https://typeset.io/papers/an-unlinkable-authentication-scheme-for-distributed-iot-3uh7n72f1a
https://typeset.io/papers/lightweight-and-privacy-preserving-two-factor-authentication-siexr06gkp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4
https://twitter.com/intent/tweet?text=LATe:%20A%20Lightweight%20Authenticated%20Time%20Synchronization%20Protocol%20for%20IoT&url=https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4
https://typeset.io/papers/late-a-lightweight-authenticated-time-synchronization-24o45wbwr4

HAL Id: hal-02007159
https://hal.archives-ouvertes.fr/hal-02007159

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LATe: A Lightweight Authenticated Time
Synchronization Protocol for IoT

Renzo Efrain Navas, Laurent Toutain

To cite this version:
Renzo Efrain Navas, Laurent Toutain. LATe: A Lightweight Authenticated Time Synchronization
Protocol for IoT. 2018 Global Internet of Things Summit (GIoTS), Jun 2018, Bilbao, Spain. pp.1-6,
10.1109/GIOTS.2018.8534565. hal-02007159

https://hal.archives-ouvertes.fr/hal-02007159
https://hal.archives-ouvertes.fr

LATe: A Lightweight Authenticated Time

Synchronization Protocol for IoT

Renzo E. Navas, Laurent Toutain

Network Systems, Cybersecurity and Digital Law Department

IMT Atlantique

Cesson-Sevigne, France

{renzo.navas, laurent.toutain}@imt-atlantique.fr

Abstract—Time synchronization is fundamental for a wide
variety of IoT applications. Time is also fundamental to provide
security services such as certificates or OAuth-token validation.
Having a secure source of time is a fundamental problem, and
the first step to provide other services for applications. There
is no standardized lightweight and secure time synchronization
solution suitable for IoT. We propose a Lightweight Authenti-
cated Time (LATe) Synchronization Protocol. Our proposal is
based on IETF open standards and is agnostic to underlying
communication technologies. We also provide a computer-aided
proof of the security claims using the Scyther tool.

Index Terms—time ; synchronization; secure; authenticated;
protocol design ; ietf ; formal method; verification ; Scyther;

I. INTRODUCTION

Synchronized time is needed in several Internet of Things

(IoT) applications, from time-stamping of sensor data to

the establishment of authenticated secure channels. However,

many time synchronization protocols are not secure: they

assume existing secured communication channels. The estab-

lishment of secure channels, in most cases, assumes a secure

source of time e.g. to assure freshness of transactions. This

creates a circular dependence problem that has already been

spotted on the standardization community. Time protocols

are being designed to overcome this, such as the Internet

Engineering Task Force (IETF) work-in-progress Network

Time Security (NTS) [1]. However, NTS or secure-versions

of existing time protocols, are not designed for the IoT

constraints, e.g. in NTS the simplest time synchronization

takes at least six messages, including a Datagram Transport

Layer Security (DTLS) handshake, and the format of each of

the message is not optimized in terms of size.

Our study provides a solution for a coarse-grained secure

time synchronization problem in a lightweight manner, i.e.

requiring the least possible messages at the synchronizing

node, minimizing the number of cryptographic operations

and optimizing the traffic sent on the network. It is not a

goal to provide precise time synchronization; we also use

open standards to encode the messages, and the proposed

protocol is agnostic to the underlying technologies (e.g. a

packet switched network), guaranteeing end-to-end security

properties among heterogeneous networks and in the presence

of untrusted nodes.

The rest of this paper is structured as follows: Section II

briefly discuss state of the art and related work on time syn-

chronization. Sections III-IV describe our proposed solution.

Section V presents a formal proof of the protocol and Section

VI analyses possible attacks. On Section VII we compare our

solution against different protocols. Finally, Sections VIII-IX

offer some perspectives and a final conclusion for our work.

II. STATE OF THE ART FOR SECURE TIME

SYNCHRONIZATION

Prominent standardized time synchronization protocols are

the IETF Network Time Protocol (NTP) [2], IEEE 1588

Precision-Time-Protocol (PTP), and satellite-based Global

Navigation Satellite System (GNSS). An excellent overview of

time synchronization protocols over packet-switched networks

is done in [3], it also analyses security threats and solutions.

Moussa et al. [4] focus on time synchronization for the smart

grid and its security requirements. Current standardized solu-

tions to achieve secure time synchronization include Annex K

of PTP, and authenticated mode of NTP. Design of secure time

synchronization protocols from scratch is an active topic, such

as the aforementioned Network Time Security for NTP [1].

The IETF has released a document [5] that specifies the threats

and security requirements for future time protocols. Current

standardization efforts do not deal with the specific constraints

of IoT, and focus mostly on precision and robustness at the

expense of increased requirements at the node and network.

A standard suitable for IoT is an unsolved problem.

Outside standardization bodies the secure time synchro-

nization problem has been prominently studied for wireless-

sensor-networks (WSN) [6][7][8][9]. WSN share many of

IoT constraints. However the aforementioned solutions either

require already loose time synchronization, use asymmetric

cryptography, or they use nonces but requiring more messages

exchanges than our proposed solution. On Section VII we will

compare them to our proposed solution. To our knowledge

none of the proposed lightweight time synchronization meth-

ods have been formally proved with computer-aided crypto-

graphic tools.

III. LIGHTWEIGHT AUTHENTICATED TIME (LATE)

SYNCHRONIZATION PROTOCOL: SEMANTICS

A. Background and justification

The non-cryptographic part of the proposed protocol can

be traced to Cristian’s time synchronization protocol [10].

However, the problem that needs to be solved concurrently

is related to security and is how to assure the freshness and

authentication of an exchange of information in the absence

of time-awareness. The concept of authenticated and fresh

exchange of information is generalized by Bauer et al. [11]

with the concept of event-markers.

The proposed solution is intended to be the simplest possible

to the secure time synchronization problem: namely using an

event-marker for a two-message protocol; but our contribution

also has the added value of using open standards suitable for

the IoT and presenting a computer-aided security proof.

B. LATe Synchronization Protocol Entities

The nonce-based Lightweight Authenticated Time (LATe)

Synchronization Protocol is our solution that allows to se-

curely bootstrap time. The protocol involves two entities. Time

Client (TC): the entity that attempts to update its local time

representation. Time Server (TS): the entity that provides its

local time representation. TC and TS have valid pre-shared

cryptographic material. The messages are transported over

unsecured communication channels.

C. Protocol Goals

Functional Goal: Provide an entity, i.e. the Time Client,

with the time representation from a trusted party, i.e. the Time

Server.

Security Goals: (1) Data Authentication: The time rep-

resentation must be authenticated, data origin-authentication:

coming from the intended party. (2) Data Integrity: The time

representation must be integrity-protected, an alteration of the

original information must be detected. (3) Freshness: The time

representation must be fresh, it corresponds to the current run

of the protocol and not replayed from an earlier run.

Design Goals: (1) Lightweight: Minimize the number of

messages to exchange; minimize the cryptographic operations

to execute (in terms of complexity, that will be equivalent to

minimize CPU processing power-time needed at the entities);

minimize the information to exchange and provide a compact-

representation of the information over the channel1. (2) Agnos-

tic to underlying communication technologies: The protocol

messages should be easily transported over any underlying

communication technology (wired, wireless, Ethernet, IP, non-

IP, datagram oriented, etc)2. (3) Cryptographic agility: The

crypto-primitives used by the protocol must be easily inter-

changeable, e.g. ready for future algorithms, or if an attack is

discovered in current one easily to replace with other.

Non-goal: Precise, fine-grained, time synchronization its not

a goal. e.g. not synchronize at the order of µs but rather at ms

(will be determined by round-trip delay time of the network).

D. The LATe Synchronization Protocol

The Lightweight Authenticated Time (LATe) Synchroniza-

tion Protocol consists of two messages exchanged between a

Time Client (TC) and a Time Server (TS). KCS is a symmetric

1Not a semantic goal but strictly related with the syntax of the protocol.
2Idem footnote 1.

Time Client

KCS

Time Server

KCS

fresh NC

IDC , NC

NC , T imeS ,MACKCS
(NC , T imeS)

sync T ime

protocol LATe synchronization protocol

Fig. 1. LATe Synchonization Protocol Diagram. KCS is a symmetric pre-
shared key between the Time Client (TC) and the Time Server (TS). IDC is
the identity representation of TC. NC is a nonce generated by TC.

pre-shared key between TC and TS. MACKk
(M) is a

message authentication code of message M using shared key

Kk. A protocol run can be described as follows:

1) TC generates a random nonce NC

2) TC sends to TS Message 1. Containing: IDC the identity

representation of TC, and NC .

3) TS sends to TC Message 2. Containing: NC ,

T imeS the local time representation of TS, and

MACKCS
(NC , T imeS) a message authentication code

of NC and T imeS using the key KCS

4) TC can synchronize its internal time representation

according to subsection III-E

The protocol is described on Figure 1.

E. Time Synchronization Calculation

The Time Client (TC) will have to run the following steps

to achieve authenticated time synchronization:

1) Timestamp when it sends Message 1: T1.

2) Validate Message 2:

• Verify nonce N ′

C
on Message 2 matches NC sent

on Message 1. (Freshness)

• Verify data authentication and integrity: C Calcu-

lates MACKCS
(NC , T imeS) and compares with

the received value on Message 2.

3) Calculate Round Trip Time (RTT) as RTT = T2 − T1,

where T2 is the local time of TC when performing this

calculation.

4) Set the internal time representation TC as TC =
T imeS + RTT

2
, the associated uncertainty is ±RTT

2

IV. LATE SYNCHRONIZATION PROTOCOL: SYNTAX

A. IETF standards: CBOR and COSE

The Internet Engineering Task Force (IETF) is an open

standards organization that has developed and published many

TABLE I
CBOR MAP ”TIC INFORMATION” OBJECT DEFINITION

Parameter

name
CBOR Key Value Type Description

nonce 4 binary string A random nonce

kid 5 binary string

Key-ID is an opaque

value and identifies the

cryptographic key to be

used in the response

alg

(optional)
6 int

Identifies the crypto-

graphic algorithm to be

used in the response

server

(optional)
7 string

Identifies the intended

Server for time syn-

chronization

(Absulute URI)

of the protocols that are in use on the Internet (e.g. IP

and TCP). We use the CBOR and COSE IETF standards

to encode the LATe messages. The Concise Binary Object

Representation (CBOR)[12] is a binary data format inspired by

JSON and provides a compact representation of most common

data types used at Internet standards; it also has the explicit

goals of a lightweight implementation in terms of code and

RAM needed. For the security services of the messages we

use CBOR Object Signing and Encryption (COSE) [13]. COSE

describes how to create and process encryption, signatures and

message authentication codes using CBOR for serialization.

Security using COSE is at the application-layer of the network

it is also referred as object security, the security properties can

be maintained end-to-end (even if different technologies are

used at lower layers, and -untrusted- intermediate nodes are

involved) and can be set on a per-message basis (as opposed

to session oriented security, e.g. IPSec, D-TLS).

B. LATe Message Encodings

The protocol consists of two messages encoded with CBOR.

COSE is used to cryptographically protect the second message.

We define two new CBOR objects: TIC Information and TOC

Response. Those objects are CBOR Maps which consist of

key-value pairs of information. Additionally, to give semantic

meaning to the objects without relying on external information

we assign a CBOR Tag to each of the objects. CBOR Tag

values range between ±65536, and are registered on the

Internet Assigned Numbers Authority, tags on the 1-23 range

take one byte when encoded -but all are allocated-; tags in the

24-255 range take two bytes: we chose values in this range.

1) Message 1 - TIC Information: The message will consist

of a new CBOR MAP TIC Information as defined on Table I,

we propose the CBOR Tag 59 to describe a TIC Information

object. About the nonce generation: Nonce must be at least

64-bits and cryptographically secure randomness is needed, a

pseudo-random number generator may be used if the seed has

sufficient entropy, for details see [14].

TABLE II
CBOR MAP ”TOC RESPONSE” OBJECT DEFINITION

Parameter

name
CBOR Key Value Type Description

time 3 unsigned int
Time representation

information

nonce 4 binary string A random nonce

The Key-ID is an opaque identifier of the key to be used

by the server, it is the equivalent of the client’s identity. The

Alg field allows cryptoagility, some recommended algorithms

are HMAC w/SHA-256 truncated to 64 bits (using

a 256-bit pre-shared-key), AES-CBC-MAC or AES-CMAC

(for both, 128-bit key will suffice). The client can explicitly

request for a time server, e.g. in cases where the message

is dealing with intermediate nodes. On Listing 1 we show a

TIC Information object on human-readable CBOR diagnostic

notation.

{ nonce:h'73616E206C6F7265',

kid :h'0001',

alg :4/*HMAC w/SHA-256 truncated to 64 bits*/}

Listing 1: TIC Information on CBOR diagnostic notation.

The binary representation of the same TIC Information

object is found on Listing 2 the size of the message is 19

bytes.

D83B # tag(59) (TIC Info.)

A3 # map(3)

04 # unsigned(4) (=nonce)

48 # bytes(8)

73616E206C6F7265 # Nonce Value

05 # unsigned(5) (=kid)

42 # bytes(2)

0001 # Key-ID Value

06 # unsigned(6) (=alg)

04 # unsigned(4)

Listing 2: TIC Information CBOR object (19 Bytes).

2) Message 2 - TOC Response: The message consists of a

new CBOR MAP TOC Information as defined in Table II, we

propose the CBOR Tag 60 to describe a TOC Information ob-

ject. The TOC Information object contains the representation

of the time from the server and a nonce.

The TOC Response object needs to include a Message

Authentication Code, this security service will be provided

by COSE using a COSE_Mac0 object. A TOC Response

authenticated and wrapped in COSE can be found on Listing

3 on CBOR diagnostic notation.

{protected: { /* Protected header of COSE_Mac0 Object*/

kid: h'0001',

alg: 4 /* HMAC w/ SHA-256 truncated to 64 bits */

},

payload : { /* TOC Response CBOR MAP*/

time : 1477307841,

nonce : h'73616E206C6F7265'

},

tag : h'36f5afaf0bab5d43' /* MAC Code*/}

Listing 3: TOC Information on CBOR diagnostic notation.

V. FORMAL METHOD VERIFICATION USING SCYTHER

A. Security protocols verification

There are currently two main approaches to verify secu-

rity protocols: the provable security and the formal method

approach. Provable security defines a rigorous framework

to define and prove (theorem-proof) cryptographic properties

from a mathematical point of view, proving a protocol secure

is hard on the provable security approach, and although there

is criticism to this approach [15] it is still regarded as the

most sound proof possible for a protocol. The formal method

approach proposes a simpler model to describe an analyze

cryptographic protocols, by abstracting basic properties (e.g:

encryption), it assumes perfect cryptography (e.g. the crypto-

primitives can not be broken), and the attacker capabilities

need to be modeled also (and restricted), then logical flaws

can be found on such model. Several formal methods exists;

the most known is the Burrows-Abadi-Needham (BAN) logic

or logic of beliefs, and is deprecated: flaws have been found

on protocols that have been proved secure on the BAN logic.

State-of-the-art approaches include the automatic falsifica-

tion or verification of protocols with computer-aided tools

like: Coq, CertiCrypt, EasyCrypt and CryptoVerif, all these

aimed at achieve or help to manually achieve computational

security -a subset of provable security-, in which the proof of

security is reduced to the computational infeasibility of solving

some mathematical problems for an adversary e.g. semi-prime

factorization- (these methods cannot find particular attacks

just prove they exist); on the other hand, tools like ProVerif,

Scyther, and Tamarin are all three on a higher abstraction level

(formal methods assuming a particular attacker model, e.g. the

Dolev-Yao and perfect cryptography), they provide a weaker

proof than a computational security one, but is easier to model

complex cryptosystems.

B. The Scyther tool and a formal proof of LATe

The choice of the formal proof method for this paper

is using the Scyther tool [16]. The reasoning behind is its

simplicity to model cryptosystems, the attacker model found

adequate to our setting, and the possibility to find concrete

attacks. Scyther assumes perfect (or black-box) cryptography:

the cryptoprimitives can not be broken. Another important

assumption is the Dolev-Yao adversary model [17]. In Dolev-

Yao an adversary has complete control over the communica-

tion channel: it can eavesdrop, intercept; modify, delete, and

insert any message; the adversary is a legitimate user of the

network.

To prove LATe security claims using the Scyther tool

and its model we needed notably two additional tasks not

straightforward: (1) express a message authentication code

(MAC) function (the primitive does not exist); (2) express

properly the security-authentication goals claimed.

To represent a MAC function over message m we use

two primitives: Enck(m) symmetric encryption of message

m using key k, and a non-cryptographic hash function H(m)
(a hash function on Scyter is a one-way-function and known to

every agent); then to obtain the keyed MACk(m) of a message

m we chose to encrypt-then-hash as follows H(Enck(m)),
the captured semantical meaning is that only an agent in

possession of the key k will be able to produce this one-way

function over m.

Regarding the modeling of the authentication and freshness

claims, Scyther offers the check of secrecy of a variable

m, and the following notions of authentication: aliveness,

weak agreement, non-injective agreement and non-injective

synchronization. Non-injective synchronization requires that

all protocol messages occur in the expected order with the

expected values. Proving non-injective synchronization will

implicitly include aliveness, weak agreement and non-injective

agreement. For a deep analysis on authentication hierarchies

and precise definitions see [18] and [19].

1) The LATe Protocol Description: The LATe Synchroniza-

tion Protocol defined on the Security Protocol Description

Language (SPDL) from Scyther is shown on Listing 4.

LATe: Authenticated Time Synch Protocol

hashfunction H1;

usertype TimeStamp;

protocol LATe(I,R)

{

role I # Time Client - Initiator

{

fresh Na : Nonce;

var T : TimeStamp;

send_1(I,R,I,Na);

recv_2(R,I,Na,T,H1({Na,T}k(I,R)));#encrypt-then-hash

claim_I1(I,Nisynch); #encrypt-then-hash

claim_I2(I,Niagree);

claim_I3(I,Alive);

claim_I4(I,Weakagree);

}

role R # Time Server - Responder

{

var Na : Nonce;

fresh T : TimeStamp;

recv_1(I,R,I,Na);

send_2(R,I,Na,T,H1({Na,T}k(I,R)));#encrypt-then-hash

}

}

Listing 4: LATe Protocol on Scyther’s SPDL

C. Verify Results

We verify our protocol using Scyther v1.1.13 compiled from

source running on OS Ubuntu 17.04 x64. The Scyther settings

are: Maximum number of runs 0 (unbounded), Matching

type ”find all type flaws”, advanced parameters were left

to default values. The results are the following: all claims

have been verified (Nisynch, Niagree, Alive and Weakagree).

Notably we achieved non-injective synchronization for the

protocol. Secrecy of the server time was not a goal. The

data authentication-integrity claims are satisfied by these

results. However, the non-injective synchronization does not

guarantee, by itself, the freshness goal of the LATe protocol,

we will discuss this on Section VI.

VI. ATTACKS, MITIGATIONS AND REAL-WORLD ISSUES

This section studies possible attacks, its mitigations, and

discuss other real-world issues that affect the LATe protocol.

A. Replay-attack, Injectivity and the Freshness claim

Our protocol satisfies the notion of non-injective synchro-

nization, however, this is not enough to claim resilience to

replay-attacks. This kind of attacks can be formally ruled out

by the notions of injective agreement and injective synchro-

nization. Injective-synchronization is the strongest notion of

authentication on the model we are using and -informally-

is defined as follows: ”an Initiator I considers a protocol

injectively synchronizing if the protocol (non-injective) syn-

chronizes and each run of I corresponds to a unique run of

Responder R.”. The freshness goal of our protocol is strictly

related to the injectivity property. The question arises if our

protocol satisfies injective synchronization, while we will not

make a formal proof, that will involve to prove the LOOP

property proposed in [19], but an affirmative response can be

done, informally justified by observing that every client run

will have a unique and unpredictable Nonce Ni which is used

in all the messages exchanges with the Server in that run.

This guarantees a one-to-one correspondence between all the

messages of the same run, and message from others runs will

not be able to be injected. On the formal model, a response that

matches the nonce on the request, corresponds to the current

run of the protocol and not another, it is fresh.

B. Real nonces and pre-play attack

The injective synchronization claim, who assure freshness,

relies on the (idealized) properties of the Nonce as being

unique and unpredictable. On practice this will not be the case,

and the guarantees will be limited by the randomness quality

of the nonce generation and by its length (not infinite). Shorter

nonces will be more prone to collisions and pre-play attacks

e.g. an attacker obtaining all possible nonce responses from the

server, will be able to reply these responses -with old values of

time- to any future client run of the protocol. To mitigate this

risk one straightforward solution is to use longer nonces: e.g.

128-bits (the MAC-tag should also be increased accordingly).

To make pre-play attacks infeasible (i.e. an attacker will not be

able to obtain responses from the server to inject on the client)

we define a stronger version of the protocol that includes the

authentication of the first message as shown on Listing 5.

Avoiding randomness: Authentication of the first message

allows another refinement, the nonce does not need to be

random and a counter (i.e. a sequence number) will suffice; the

counter value must be stored on persistent memory to avoid

being reset by an attacker.

1 : C → S : IDC , NC ,MACKCS
(IDC , NC)

2 : S → C : NC , T ime,MACKCS
(NC , T ime)

Listing 5: LATe w/MAC of first message: NC can be a counter

1 : C → S : IDC , NC ,MACKCS
(IDC , NC)

2 : S → C : T ime,MACKCS
(IDC , NC , T ime)

Listing 6: LATe Synchronization Protocol v2

C. Reflection Attack

Another attack can be done if the Time Client also acts as a

Time Server: on the original LATe protocol an attacker can use

a message generated by the actor in the Time Server role, to

be injected in another run of the protocol with the same actor

acting as a Time Client. The modified version on Listing 5

does not suffer from this attack. This can also be avoided if

the second message includes the recipient ID in the MAC.

D. Symmetric cryptography: server key management issues

The use of symmetric cryptography comes at a burden

at the server: it has to keep a copy of all clients’ keys.

We assume an IoT setting where the constrained node (i.e.

Time Client) has a well-known trusted party which it uses for

many purposes e.g. an Authorization Server (AS) as defined

on IETF Authentication and Authorization for Constrained

Environments [20] framework. On such a setting the AS can

also act as a Time Server. LATe has also the flexibility to use

asymmetric crypto to relieve the Time Server key management

issues if fits better the envisioned IoT use case.

E. Protocol refinement

Using the Scyther tool we verified that the same security

claims from the original LATe synchronization protocol are

hold true in a protocol using a more compact Message 2.

By omitting the Nonce in the response, but still using it to

calculate the MAC, all the security claims hold still true, but

we achieve a non-negligible gain in message size. This can

be done only if we assume that a client can run only one

concurrent run of the protocol (i.e. when receiving a response

it can assume implicitly the nonce to use to calculate the

MAC), this assumption is reasonable.

To conclude this section we gather all the mitigations

proposed for attack plus this optimization to propose a stronger

version of the LATe Synchronization Protocol on Listing 6.

The authentication of the first message that mitigates com-

pletely pre-play attacks, can also be used to mitigate Denial-of-

Service attacks at the server-side. A version that does not au-

thenticate the first message is still useful on real environments

if the users are aware of the pre-play and nonce considerations

of section VI-B.

VII. COMPARISON OF TIME SYNC. PROTOCOLS

To define a common baseline to compare several time syn-

chronization protocols we do not take in account underlying

layers overhead (e.g. IEEE 802.15.4), but only application

data. We also simplify the encoding of the messages, assuming

no overhead for metadata, and we assume the following data

TABLE III
SECURE TIME SYNCHRONIZATION PROTOCOLS BASELINE COMPARISON

Protocol
Nr. of

Msg.

Avg.

msg.

size

(Bytes)

Total

Bytes

Crypto Ops.

at Node

SPS [6] 2 21 41
1×MAC
1×Nonce

E-SPS [6] 3 17 50
1×MAC
1×Nonce

TinySeRSync [7] 2 21 42 2×MAC

Guo et al. [8] 3 39 116
2× Signature
1×MAC

E-SPBS [9] 3 35 104
1× Signature
1×Nonce

LATe 2 15 30
1×MAC
1×Nonce

LATe v2 2 15 30
2×MAC
1×Nonce

sizes: Timestamp representation is 4 bytes, Node Identity is 2

bytes, a Nonce is 8 bytes, and a MAC is 8 bytes. In E-SPBS

[9] an ECDSA signature is 48 bytes; In Guo et al. [8] we

assume an Unspecified Signature being of 16 bytes, and non-

cryptographic hash 16 bytes; In [6][7] syn-ack information of

1 byte. On Table III we can se the results.

We also calculated values for NTS Extensions for NTPv4

after Key Establishment [1]: 2 Messages; 134 bytes avg. msg.

size; 268 total bytes; 2 AEAD (symmetric) operations. And

for PTP with Annex-K after Security Association: 4 Messages;

128 bytes avg. msg. size; 512 total bytes; 4×MAC. Both are

one order of magnitude greater due to the calculations taking in

account real applicative messages and not simplified encoding.

At the IoT constrained node energy is the scarcest resource

and, simplifying, the total bytes to be exchanged is the most

important factor to be minimized. LATe minimizes both the

number of messages and the total bytes count, needing ≈ 25%
less application data exchange than the second-lowest Secure

Pairwise Synchronization Protocol (SPS). This percentage will

vary if we include other protocols’ overhead, or change the

application data representation estimations, however LATe will

still be strictly inferior. In terms of cryptographic burden LATe

is also the lightest, with one MAC operation and one nonce

generation.

VIII. PERSPECTIVES

Two main topics have been highlighted on this work: the

need for a lightweight secure time synchronization protocol

in the context of IoT, and the use of computer-aided tools to

prove the security claims of protocols. The first issue needs to

be solved, WSN time solutions aim at homogeneous one-hop

precise time synchronization, and the end-to-end NTP-based

IETF solution is not lightweight in any way; meanwhile IoT

nodes need to securely bootstrap time, and we assume real-

world implementations are using home-brew solutions. This

paper has shown how difficult is to prove secure even a simple

protocol like LATe, and this reinforces the need for an open

standardized effort that will benefit from the scrutiny of experts

and the academic community.

IX. CONCLUSION

Secure time synchronization is a fundamental service for

many IoT applications. Notably, security services need a

secure source of time. We proposed a nonce-based lightweight

authenticated time synchronization protocol, which allows

a client to securely bootstrap time with a trusted server.

The proposed protocol guarantees end-to-end security among

heterogeneous networks. We provided a specification of the

protocol using state-of-the-art IETF standards suitable for

IoT. We used the computer-aided tool Scyther to prove some

security claims of our protocol on a formal model.

ACKNOWLEDGMENT

The authors would like to thank Göran Selander and Ludwig

Seitz for its contributions on the design of the LATe protocol

and his efforts on the IETF community.

REFERENCES

[1] D. F. Franke, D. Sibold, and K. Teichel, “Network Time Security for
the Network Time Protocol,” IETF, Internet-Draft draft-ietf-ntp-using-
nts-for-ntp-11, Mar. 2018, work in Progress.

[2] J. Burbank, W. Kasch, and P. D. L. Mills, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” RFC 5905, 2010.

[3] M. Lévesque and D. Tipper, “A Survey of Clock Synchronization
Over Packet-Switched Networks,” IEEE Communications Surveys and

Tutorials, vol. 18, no. 4, pp. 2926–2947, 2016.
[4] B. Moussa, M. Debbabi, and C. Assi, “Security Assessment of Time

Synchronization Mechanisms for the Smart Grid,” IEEE Communica-

tions Surveys and Tutorials, vol. 18, no. 3, pp. 1952–1973, 2016.
[5] T. Mizrahi, “Security Requirements of Time Protocols in Packet

Switched Networks,” RFC 7384, 2014.
[6] S. Ganeriwal, C. Pöpper, S. Čapkun, and M. B. Srivastava, “Secure Time

Synchronization in Sensor Networks,” ACM Transactions on Information

and System Security, vol. 11, no. 4, pp. 1–35, 2008.
[7] K. Sun et al., “TinySeRSync: secure and resilient time synchronization

in wireless sensor networks,” Proceedings of the 13th ACM conference

on Computer and communications security, p. 264, 2006.
[8] L. Guo et al., “A Lightweight Secure Time Synchronization Mechanism

for ISO/IEC/IEEE 21451 Sensor Networks,” in IEEE Precision Clock

Synchronization for Measurement, Control, and Communication, 2015.
[9] C. Benzaid et al., “An Enhanced Secure Pairwise Broadcast Time

Synchronization Protocol in Wireless Sensor Networks,” Euromicro Int.

Conf. on Parallel, Distributed, and Network-Based Processing, 2014.
[10] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-

ing, vol. 3, no. 3, pp. 146–158, 1989.
[11] R. K. Bauer, T. A. Berson, and R. J. Feiertag, “A key distribution

protocol using event markers,” ACM Transactions on Computer Systems,
vol. 1, no. 3, pp. 249–255, 1983.

[12] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” RFC 7049 (Proposed Standard), RFC Editor, Oct. 2013.

[13] J. Schaad, “CBOR Object Signing and Encryption (COSE),” RFC 8152,
Jul. 2017.

[14] D. E. E. 3rd, S. Crocker, and J. I. Schiller, “Randomness Requirements
for Security,” RFC 4086, Jun. 2005.

[15] N. Koblitz and A. J. Menezes, “Another look at ”provable security”,”
Journal of Cryptology, vol. 20, no. 1, pp. 3–37, 2007.

[16] C. J. F. Cremers, “The Scyther Tool: Automatic Verification of Security
Protocols,” Computer Aided Verification, vol. 5423, pp. 414–418, 2008.

[17] D. Dolev and a. C. Yao, “On the security of public key protocols,” 22nd

Annual Symposium on Foundations of Computer Science, no. M, 1981.
[18] G. Lowe, “A hierarchy of authentication specifications,” Proceedings

10th Computer Security Foundations Workshop, pp. 31–43, 1997.
[19] C. J. F. Cremers et al., “Injective synchronisation: An extension of the

authentication hierarchy,” Theoretical Computer Science, no. 1-2, 2006.
[20] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,

“Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth),” IETF, Internet-Draft
draft-ietf-ace-oauth-authz-11, Mar. 2018, work in Progress.

