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[1] The processes of arc initiation at the margin of an oceanic plateau are remarkably well preserved along
the southern coastline of eastern Costa Rica and western Panama. We present new results of a combined
tectonostratigraphic and petrologic study with which protoarc initiation (75-73 Ma) at the margin of an
oceanic plateau (89-85 Ma) is documented. Dykes of protoarc igneous rocks within the plateau and occur-
rences of protoarc igneous rocks are widely distributed. These types of field observations, geochemical
data, and paleontologic ages for Late Cretaceous to Eocene fore-arc rocks of the Golfito Complex and
Azuero Marginal Complex (southern Costa Rica and western Panama) provide the first direct evidence that
a Coniacian—early Santonian oceanic plateau forms the arc basement. Stratigraphic and geochemical con-
straints from Golfito and Azuero indicate subduction initiation in south Central America, associated with
geochemically distinctive suprasubduction igneous rocks, occurred in the late Campanian along the margin
of the newly defined Azuero Plateau. Overall, the Golfito Complex and Azuero Marginal Complex provide
a significant opportunity for exploration of petrologic mechanisms linking some oceanic plateaus to the
growth of continents. The Azuero Plateau may extend further toward the Colombian Basin and forms thick-
ened Caribbean crust. It served as a nucleus for accretion of additional oceanic plateaus, seamounts, and
oceanic islands of Pacific origins.
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1. Introduction

[2] Volcanic arcs are complex systems that are
initiated and evolve in response to the regional
tectonic/geodynamic régime [Gurnis et al., 2004]
and nature of the subducting plate [e.g., Pearce
and Peate, 1995]. Subduction initiation is charac-
terized by petrologically distinctive suprasubduc-
tion rock types [Pearce et al., 1992] that are
generally obscured by younger deposits in mature
arcs. Understanding initiation and early evolution
of arcs depends on studies of these infant arc rocks;
fortuitous exposures in southern Central America
provide an important opportunity for such effort.
The volcanic arcs and related subduction zones of
this region have been the subject of intense study [e.
g., Ranero and von Huene, 2000; Carr et al., 2007;
Hoernle et al., 2008], but the early history of the area
is relatively poorly understood. We present new data
(tectonostratigraphic and geochemical) for ex-
posures in the current fore arc between southern
Costa Rica and western Panama, to obtain insight
into the origins of the South Central American Arc
and the nature of the arc basement. We propose the
arc initiated in the late Campanian (~75-73 Ma) on
top of a Coniacian-Santonian (~89—85 Ma) oceanic
plateau that formed a margin of the Caribbean Plate.
We provide the first recognition of the earliest arc
igneous rocks formed through suprasubduction
magmatism along the margins of this plateau.
These rocks offer an opportunity to test possible
roles of oceanic plateaus in the growth of con-
tinents (i.e., continentalization of the oceanic
crust) [e.g., Ben-Avraham et al., 1981].

2. Regional Setting

[3] The South Central American Arc lies on the
Panama Microplate (also described as Chorotega
and Choco blocks) (Figure 1). The Panama Micro-
plate is a SW extension of the Caribbean Plate
bounded by thrust zones and transforms, situated at
the junction of five plates and a tectonic block: the
Caribbean Plate, South American Plate, Chortis Block,
Cocos Plate, and Nazca Plate (Figures 1 and 2).

[4] The Caribbean Plate is generally regarded as an
archetypical example of a large igneous province or
oceanic plateau: normal oceanic crust partly thick-
ened by intraplate magmatism [e.g., Sinton et al.,
1998; Kerr, 2003; Hoernle et al., 2004] (Figure 1).
Most authors consider the Caribbean Plateau (or
Caribbean Large Igneous Province, CLIP) formed in
the Pacific in the latest Cretaceous before being
incorporated between the Americas in response to
the opening of the Atlantic Ocean and associated
westward migration of the Americas [e.g., Burke,
1988; Pindell et al., 2005, 2006; Mann, 2007,
Pindell and Kennan, 2009]. Alternate models con-
sider the CLIP formed in situ [e.g., Meschede and
Frisch, 1998; James, 2006].

[5] Boundaries of the Panama Microplate include
the North Panama Deformed Belt [Adamek et al.,
1988; Silver et al., 1990] and a diffuse thrust belt
in the Cordillera Central of Costa Rica [Marshall
et al., 2000; Denyer and Alvarado, 2007], con-
trolled by active convergence of the Caribbean Plate
toward Central America [Trenkamp et al., 2002].
The eastern edge of the Panama Microplate is
suturing with the continental South American
Plate [Taboada et al., 2000; Trenkamp et al., 2002].
The continental Chortis Block is in contact with
the NW edge of the Panama Microplate along a
Late Cretaceous suture zone exposing an assem-
blage of pre-Campanian oceanic terranes known
as the Mesquito Composite Oceanic Terrane
[Baumgartner et al., 2008]. The southern bound-
ary of the Panama Microplate is a subduction
zone involving the downgoing Cocos and Nazca
oceanic plates.

[] The Cocos and Nazca oceanic plates include
seamounts and aseismic ridges (drowned intra-
plate volcanoes) formed in association with the
Galapagos Hot spot and oceanic transforms [e.g.,
von Huene et al., 1995, 2000; Werner et al.,
1999]. Subduction of the seamounts and trans-
forms under the Panama Microplate triggers local
uplift of the outer margin of the overriding plate
as close as 20 km from the trench [e.g., Fisher et al.,
1998; Gardner et al., 2001; MacMillan et al., 2004;
Sak et al., 2009]. Deep sections of this overriding
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Figure 1.

Tectonic setting of the Panama Microplate (PAN). Colored background map from GeoMapApp (http://

new.geomapapp.org/, 2007). Lineaments and plate limits modified after Meschede and Barckhausen [2001] and
Pindell et al. [2005, 2006]. Areas of thin “normal” oceanic crust after Mauffret and Leroy [1997].

plate expose complexes of oceanic and arc assem-
blages, unconformably overlain by fore-arc sedi-
ments we term overlap sequences. Our study
focused on some of the oceanic assemblages
between southern Costa Rica and western Panama.

3. Geologic Overview of the South
Central American Fore Arc, With Focus
on the Nature of the Arc Basement

and Arc Initiation

3.1. Nature of the Arc Basement

[7]1 The southern Central America fore arc includes
uplifted igneous and accretionary complexes made

of Early Cretaceous to Miocene seamounts, oceanic
plateaus, and sediments (Figure 2; see Denyer et al.
[2006], Hoernle and Hauff [2007], and Denyer and
Gazel [2009] for a general review). Some igneous
complexes along the margin from northern Costa
Rica to western Panama have geochemical affini-
ties with oceanic plateaus [e.g., Hoernle and Hauff,
2007, and references therein], with ages ranging
from 139 to 71 Ma (**Ar/*°Ar) [Sinton et al., 1997,
Hoernle et al., 2002, 2004]. These complexes are
considered to be part of the CLIP on the basis of
age and chemistry [e.g., Sinton et al., 1997, 1998].
However, little attempt has been made to use sedi-
mentary and structural observations to further con-
strain this interpretation. For example, new
tectonostratigraphic data suggest the Nicoya Complex
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Figure 2. Simplified geological map of south Central America modified after Buchs et al. [2009]. Bathymetry based
on Smith and Sandwell [1997]. Quaternary faults from Cowan et al. [1998], Montero et al. [1998], and Paris et al.
[2000]. Numbers indicate igneous complexes exposed along the fore arc; NPDB, North Panama Deformed Belt;
MAT, Mid American Trench. Autochthonous and accreted oceanic complexes are defined on the basis of our new
results and data from previous contributions [Bandy and Casey, 1973; Baumgartner et al., 1984, 2008; Di Marco,

1994; Arias, 2003; Flores, 2003; Bandini et al., 2008; Buchs, 2008; Buchs et al., 2009].

(northern Costa Rica) and the Inner Osa Igneous
Complex (southern Costa Rica) formed in the
Pacific realm as distinct oceanic plateaus before
being accreted to the Caribbean margin [Bandini et
al., 2008; Baumgartner et al., 2008; Buchs et al.,
2009]. These complexes are therefore not part of
the CLIP, even though they have ages and geo-
chemical affinities partly similar to igneous rocks
from the Caribbean Oceanic Plateau.

[8] Extension of plateau-like igneous complexes
under the South Central American Arc (toward the
Caribbean) is poorly constrained. Seismic profiles
across the volcanic front in northern Costa Rica

show the arc basement is a thickened oceanic crust,
distinct from the Nicaraguan basement, and
potentially representing the western extension of
the CLIP beneath the volcanic front [Bowland and
Rosencrantz, 1988; Bowland, 1993; Sallares et al.,
1999, 2001; Walther et al., 2000; Auger et al.,
2007; Flueh and von Huene, 2007; MacKenzie et
al., 2008]. This interpretation is consistent with
the geochemical characteristics of recent arc mag-
mas, which preclude a continental origin for the arc
basement [e.g., Feigenson et al., 2004; Gazel et al.,
2009], though ongoing continentalization of an
oceanic basement has been suggested by some [e.g.,
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Vogel et al., 2004]. Existence of a Pacific oceanic
plateau forming the bulk of the Caribbean Plate
supports the hypothesis that the South Central
American Arc formed in the latest Cretaceous on
top of the SW edge of the CLIP [e.g., Deering et al.,
2007; Geldmacher et al., 2008; Worner et al., 2009;
Wegner et al., 2010]. We provide here the first
direct observations supporting this hypothesis.

3.2. Previous Constraints on the South
Central American Arc Initiation

[v] While Cenozoic arc volcanism in south Central
America has been studied for a long time [e.g., de
Boer et al., 1995; Gazel et al., 2009], arc initiation
has been poorly constrained, because older arc
products are buried under younger volcanism (Costa
Rica) or located in remote areas (eastern Panama)
(Figure 2). Deciphering provenance and age of the
volcanic component of clastic sediments is critical in
this regard. In northern Costa Rica (Nicoya Penin-
sula) for example, Albian to Paleogene detrital de-
posits contain arc-derived sand grains [Lundberg,
1982, 1991; Rivier, 1983; Baumgartner et al.,
1984; Astorga, 1987; Calvo and Bolz, 1994]. New
tectonostratigraphic interpretation of Punta Samara
of the Nicoya Peninsula shows the earliest record of
arc-derived material is Coniacian (89.3 to 85.8 Ma)
[cf. Patino et al., 2004; Flores, 2003; Bandini et al.,
2008]. This material is unrelated to the latest
Cretaceous to Paleogene volcanic arc of southern
Central America, and likely formed in an in-
traoceanic arc in the Pacific realm [Baumgartner et
al., 2008]. In southern Costa Rica, upper Campa-
nian arc-derived tuffaceous sediments are exposed
in the back arc [Mende, 2001] close to contempo-
raneous differentiated volcanic rocks of the Rio
Changuinola [Fisher and Pessagno, 1965]. In the
fore-arc area, the oldest reported occurrence of arc-
derived sediments is Paleocene [Di Marco, 1994].

[10] In Panama, new *°Ar/*’Ar ages of arc-related
igneous rocks [Lissinna et al., 2002, 2006; Lissinna,
2005; Worner et al., 2005, 2006, 2009; Wegner et al.,
2010] agree with previous stratigraphic determina-
tions [del Giudice and Recchi, 1969; Maury et al.,
1995] and indicate the arc is at least Maastrichtian
(~71 Ma) in age. On the basis of ages and geochemical
constraints from central and western Panama, it has
been proposed the “early” Maastrichtian arc rocks
were emplaced on top of the CLIP, with involvement
of a large spectrum of mantle compositions at the
onset of arc magmatism [Worner et al., 2009;
Wegner et al., 2010]. It was also proposed that

suprasubduction and CLIP magmatisms were
coeval at the onset of arc magmatism in the Azuero
area and that the earliest South Central American
Arc represents a transition from plume activity to
subduction [Wegner et al., 2010]. In contrast, we
show here the onset of arc magmatism occurred at
least ~2 Ma earlier, in the late Campanian (~75—
73 Ma). The earliest arc magmatism corresponds
to a protoarc not previously recognized, which was
emplaced into and on top of a Late Cretaceous
oceanic plateau. Formation of the oceanic plateau
had ceased in the studied area prior to subduction
initiation. Composition of the earliest supra-
subduction magmas in south Central America is
consistent with occurrence of a compositionally
broadly homogeneous mantle wedge at the onset
of subduction, which was initially associated with
formation of the oceanic plateau.

4. Analytical Techniques

[11] Our study and interpretations are based on
integration of (1) >9 months of field work, (2) pet-
rographic observations of ~700 samples, (3) 195
geochemical analyses of rocks from distinct com-
plexes, (4) biochronological dating of sediments, and
(5) remote and on-land analysis of structures. Using
this approach, we define a new tectonostratigraphy
for the south Costa Rican to western Panamanian
fore arc. Interpretation of the geochemical data is
integrated with this tectonostratigraphy.

[12] Igneous samples (75) were chosen for their
relative freshness on the basis of microscope ob-
servations of glasses and minerals. Samples were
cut, crushed, powdered and analyzed at the Institut
de Minéralogie et Géochimie (Université de
Lausanne, Switzerland). Rock powders were pre-
pared with a WC mill. Replicate analyses of some
depleted samples prepared with an agate mill show
with the exception of Ta, the use of the WC mill
did not introduce detectable contamination (Ta was
not used in geochemical interpretations). Six grams
of Li tetraborate was added to 1.2 g of rock powder
and fused in a Pt crucible to obtain lithium tetra-
borate glass beads. Whole-rock major element
abundances were determined on the lithium tetra-
borate glass beads using a Philips PW2400 X-ray
fluorescence spectrometer. Major and minor element
contents were recalculated on an anhydrous base for
interpretations. Trace element contents were deter-
mined using a laser ablation inductively coupled
plasma source mass spectrometer (LA-ICP-MS)
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Table 3. (continued)
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na 23.60 240 2535 91.08 2.68 0.50 397 10.88 21.25 2.69 12.48 3.37 0.79 4.39 0.60 3.88 0.79 2.51 0.44 2.78 0.50 3.51 3.94 2.38 0.80
22 38.18 707 20.75 60.97 3.39 1.17 1238 8.70 18.65 2.85 12.63 3.29 1.13 3.70 0.59 3.85 0.79 2.20 0.35 2.36 0.35 1.78 3.03 0.80 0.39

51 338 358 59 3.11 235 33.04 143.87 8.53 0.11

31 210 na
54 362 341

DBO05-067 Diorite

DBO05-088 Basaltic trachyandesite 36 374 72

DB06-052 Basalt

105 15.41 34.68 4.41 20.30 4.68 1.74 5.35 0.85 5.81 1.18 3.53 0.50 3.21 0.50 3.44 0.74 1.06 0.34

14.74 3496 4.65 20.14 491 1.63 542 093 6.13 1.33 3.87 0.59 3.74 0.54 3.69 2.58 1.01 0.37

58 240 192 35.54 14936 9.11 0.05 83

DB06-105 Gabbro

15.12 2.15 9.70 2.44 0.83 2.70 0.41 2.86 0.59 1.74 0.27 1.86 0.27 2.12 3.01 1.51 0.44

292 0.13 507 791

11.99 304 17.66 88.81

31 265 360 51

DBO06-123 Trachyandesite

instrument equipped with a 193 nm ArF excimer
laser (Lambda Physik, Germany) interfaced to an
ELAN 6100 DRC quadrupole ICP-MS (Perkin
Elmer, Canada. Operating conditions of the laser
included a 170 mJ output energy, 10 Hz repetition
rate, and 120 pm ablation pit size. Helium was used
as a cell gas. Dwell time per isotope ranged from 10
to 20 ms; peak hopping mode was employed. An
SRM 612 glass from NIST was used as an external
standard. Three ablations per tetraborate glass bead
were made to obtain the trace element contents. A
list and field location of the analyzed samples are
given in Table 1. Major, minor, and trace element
contents are presented in Tables 2 and 3. More ana-
lytical procedure details are given in Appendix A.

5. Results

5.1. Revised Tectonostratigraphy of
Southern Costa Rica and Western Panama

[13] We subdivided basement rocks outcropping in
the fore arc between southern Costa Rica and
western Panama into (1) the Golfito Complex,
(2) the Inner Osa Igneous Complex, (3) the Outer
Osa Igneous Complex, (4) the Osa Mélange, (5) the
Azuero Accretionary Complex, and (6) the Azuero
Marginal Complex (Figures 2 and 3). We focus
here on summary descriptions of the Golfito Complex
and Azuero Marginal Complex that provide an
insight into arc initiation. Other igneous complexes
of the area are also briefly described to clarify
dissimilarities with the Azuero and Golfito com-
plexes. Full tectonostratigraphic details of these
complexes and development of the south Costa
Rican and western Panamanian margins subse-
quently to subduction initiation are provided by
Buchs et al. [2009] and in a forthcoming paper.

5.1.1. Inner Osa Igneous Complex

[14] The Inner Osa Igneous Complex is exposed in
the Osa and Burica peninsulas (south Costa Rica,
Figure 2). It is composed of Coniacian-Santonian
(89.3 to 83.5 Ma) sequences of an oceanic plateau
[Buchs et al., 2009] (Figure 3). This complex was
formerly interpreted as an exposure of the CLIP
[Hauff et al., 2000]. Our new tectonostratigraphic
data suggest the Inner Osa Igneous Complex
originated in the Pacific before being accreted to
the CLIP margin in the Paleocene [Buchs et al.,
2009]. Protoarc dykes have not been encountered
in the Inner Osa Igneous Complex, whereas they
occur in an autochtonous oceanic plateau part of
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Figure 3. Synthetic tectonostratigraphic chart showing the igneous complexes exposed along the south Costa Rican—
west Panamanian fore arc. Details on the nature of the units are given by Buchs et al. [2009] and by D. M. Buchs et al.
(Late Cretaceous to Miocene tectono-stratigraphy of the Azuero area (west Panama) and the discontinuous accretion
and subduction erosion along the Mid-American Margin, submitted to Tectonophysics, 2010). A summary of the new
tectonostratigraphy is provided in section 5.1. Major tectonic events recorded in the stratigraphy are (1) arc initiation
in south Central America, (2) possible accretion of the Inner Osa Igneous Complex, (3) retreat of the arc front and
subsequent accretion of the bulk of the Azuero Accretionary Complex in western Panama and accretion of the bulk of
the Outer Osa Igneous Complex in southern Costa Rica, and (4) arrival of the Cocos Ridge at the subduction zone.

the Azuero Marginal Complex (i.e., the “Azuero
Plateau,” see below).

5.1.2. Outer Osa Igneous Complex

[15] The Outer Osa Igneous Complex is exposed in
the outer part of the Osa Peninsula (Figure 2). It
comprises several imbricate units consisting of
Campanian to Eocene fragments of seamounts and
oceanic islands, emplaced along the margin between
the Paleocene and middle Eocene (Figure 3) [Buchs
et al., 2009].

5.1.3. Azuero Accretionary Complex

[16] The Azuero Accretionary Complex forms the
SW edge of the Azuero Peninsula (Figures 2 and 4).

It represents an accretionary complex composed of
Cretaceous to Eocene accreted seamounts and
oceanic islands [Hoernle et al., 2002; Lissinna,
2005; Hoernle and Hauff, 2007; Buchs, 2008]
(Figure 3). The suture between the Azuero Accre-
tionary Complex and arc sequences of the Azuero
Marginal Complex (i.e., the “Azuero Arc Group,”
see below) coincides with a ~2 km thick tectonic
mélange shown as the “Azuero Mélange” in Figure 4.

5.1.4. Golfito Complex

[17]1 The Golfito Complex exposed in southern
Costa Rica is separated by fault zones from the
Inner Osa Igneous Complex in the SW and the
Paleogene Fila Costefia Thrust Belt in the NE [Di
Marco, 1994; Mende and Astorga, 2007; Morell
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A
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I:I Azuero Arc Group (Maastrichtian to Middle Eocene)
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Azuero Arc Group (Maastrichtian to Middle Eocene)
Intrusives

Ocu Formation (Campanian-Maastrichtian)
Hemipelagic limestones

- Azuero Plateau (Albian? to Coniacian-Early Santonian)

Figure 4. Simplified geological map of the Azuero Marginal Complex (modified after Direccion General de
Recursos Minerales [1991]). Numbers 1-4 show occurrences of protoarc- and arc-related dykes encountered in
the Azuero Plateau: 1 indicates Torio (504495/832730, Plate 1b), 2 indicates Rio Joaquin (560250/831725, Plate 1c),
3 indicates Rio Quebro (522705/830475), and 4 occurs along the road between Tonosi and La Miel (567460/829260)
(UTM WGS84 coordinates). Numbers 5 and 6 show occurrences of protoarc- and arc-related dykes found in the Ocu
Formation: 5 indicates Rio Torio (~507610/834635) and 6 indicates NW Coiba Island (415710/844800) (UTM

WGS84 coordinates).

et al., 2008; Buchs, 2008] (Figure 2). The Golfito
Complex is composed of a sequence of Late Creta-
ceous to Paleogene volcanic rocks, hemipelagic se-
diments, and volcano-sedimentary deposits [Dengo,
1962; Schmidt-Effing, 1979; Obando, 1986; Di
Marco, 1994; Di Marco et al., 1995]. We follow

here the stratigraphic subdivision of Di Marco et al.
[1995] wherein three tectonostratigraphic units
are defined: (1) an Igneous Basement, pre—late
Campanian or late Campanian lava flows; (2) the
Golfito Formation, a volcano-sedimentary sequence
of interlayered lava flows and late Campanian to
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Figure 5. Outcrops showing typical stratigraphic relationships used in our study to constrain the earliest develop-
ment of the south Central American Arc. (a) interlayered Campanian-Maastrichtian hemipelagic limestones and pro-
toarc igneous rocks of the Golfito Formation, both crosscut by a dyke of protoarc igneous rock (Punta Curupacha,
Costa Rican coordinates 549.5/287.3). (b) Exposure of the Azuero Plateau (top) in contact with a dyke of protoarc
basalt exhibiting porphyritic texture and clear chilled margin (bottom) (Torio, 504495/832730, UTM WGS84 (loca-
tion indicated by 1 in Figure 4)). (¢) Dyke of a protoarc basalt within the Azuero Plateau, in the vicinity of the Azuero
Arc group (Rio Joaquin, 560250/831725, UTM WGS84 (location indicated by 2 in Figure 4)). (d) Soft deformation of
late Campanian (~75-73 Ma) hemipelagic limestones intruded by a dyke of protoarc igneous rock (NW Coiba Island,
415710/844800, UTM WGS84 (location indicated by 3 in Figure 4)).

middle Maastrichtian (~75-66 Ma) tuffaceous
hemipelagic limestones, resting on the Igneous
Basement; and (3) the Achiote Formation, a middle
Maastrichtian to Paleocene volcaniclastic-tuffitic
sequence, containing material related to a nearby
silicic volcanism, deposited on top of the Golfito
Formation (Figure 3). Although recent tectonics has
disturbed the arrangement of these units, they have
been considered by several authors to form a con-
tinuous sequence from the Late Cretaceous to the
Paleocene [Obando, 1986; Di Marco, 1994; Di
Marco et al., 1995; Mende, 2001].

[18] Some Golfito Formation sediments were depos-
ited concurrently in the late Campanian—middle
Maastrichtian with emplacement of basaltic lava
flows [Obando, 1986; Di Marco, 1994; Buchs,
2008]. Hemipelagic limestones also occur as xeno-
liths embedded within the lavas flows and the
sequence is crosscut by volcanic dykes (Figure 5a).
The hemipelagic limestones locally contain a tuffa-
ceous component and primary quartz grains that
probably relates to an intermediate-silicic volcanism
distinct from the Golfito Complex [Mende, 2001;

Buchs, 2008]. These limestones exhibit strong simi-
larities with the Campanian-Maastrichtian hemi-
pelagic limestones in the area of the Rio Changuinola
[Fisher and Pessagno, 1965; Mende, 2001].

[19] Paleomagnetic data for limestone exposures of
the Golfito Formation indicate the Golfito Complex
formed at ~5°N [Frisch et al., 1992; Di Marco et al.,
1995]. At most, the complex has subsequently
moved ~4° degrees further north. This is unlike
other plateau-like igneous complexes of Costa Rica,
such as the Nicoya and Inner Osa Igneous complex,
which formed in the Southern Hemisphere between
~6°S and ~17°S [Di Marco et al., 1995].

[20] The lavas from the Golfito Complex include
basalt, basaltic andesite, basaltic trachyandesite,
and trachyandesite [Di Marco, 1994; Hauff et al.,
2000]. An oceanic plateau affinity has been
inferred from trace element abundance systematics
and radiogenic isotopes of three samples, suggest-
ing an association of the complex with the CLIP
[Hauff et al., 2000; Hoernle and Hauff, 2007]. We
show below that the igneous rocks from Golfito have
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major and trace element compositions ranging from
those for plateau-like to more arc-like compositions.

5.1.5. Azuero Marginal Complex

[21] The Azuero Marginal Complex is defined here
as the area encompassing the Coiba Island, Sona
Peninsula, and Azuero Peninsula, with exception of
the SW corner of the Azuero Peninsula that com-
prises the Azuero Accretionary Complex (Figures 2
and 4). This area is generally regarded as an assem-
blage of CLIP exposures, accreted ocean islands, and
arc-related sequences [e.g., Denyer et al., 2006;
Hoernle and Hauff, 2007]. We subdivided it into
four mappable lithostratigraphic units: (1) the Azuero
Plateau, (2) the Ocu Formation, (3) the Azuero Pro-
toarc Group, and (4) the Azuero Arc Group (Figures 3
and 4). The units are locally capped by Eocene and
younger overlap sequences.

[22] The Azuero Plateau is dominated by massive
and pillowed lava flows of plateau-like affinities
(i.e., flat patterns on primitive mantle-normalized
multielementary and chondrite-normalized rare
earth element diagrams) [Lissinna, 2005; Worner et
al., 2009], with scarce occurrences of interbedded
radiolarite [Kolarsky et al., 1995] (Figure 3). The
age of the Plateau is Coniacian—early Santonian
(~89-85 Ma) on the basis of radiolarite ages
[Kolarsky et al., 1995; Buchs et al., 2009], in broad
agreement with “°Ar/*°Ar incremental heating ages
for low-K, tholeiitic basalts (93.5 £ 5.3 to 82.6
3.2 Ma) [Lissinna, 2005]. A low-K tholeiitic basalt
from Sona Peninsula gave a 71.3 + 2.1 Ma matrix
total fusion age [Hoernle et al., 2002]. A K/Ar date
of ~98 Ma has been obtained for a basalt south of
the Azuero Peninsula (Playa Venado) [Bourgois et
al., 1982]. Dykes of the Azuero Protoarc and
Azuero Arc groups crosscut the Plateau at several
sites (Figures 4, 5b, and 5c¢).

[23] The Oct Formation is composed of foraminif-
era-bearing, Campanian-Maastrichtian hemipelagic
limestones [del Giudice and Recchi, 1969; Tournon
et al., 1989]. The formation probably rests upon the
Azuero Plateau (Figure 4). Paleomagnetic data
indicate the Oct Formation formed at ~2°N, at
paleolatitudes similar to the Golfito Complex and
SW Caribbean Plate (Colombian Basin) [Di Marco
et al., 1995; Acton et al., 2000]. Foraminifera of
two limestones samples from the Ocu type locality
(525844/873241, UTM WGS84) provide a Cam-
panian age for the formation (see Appendix B, with
comments and illustrations). The Ocu Formation
limestones, similar to limestones of the same age in

the Golfito Formation and sediments outcropping
in the Rio Changuinola area, locally contain a
tuffaceous component and volcanic clasts derived
from an intermediate-silicic volcanic source [del
Giudice and Recchi, 1969] (see also Appendix C).
The Ocu Formation locally contain fragments of
larger benthic foraminifera [del Giudice and
Recchi, 1969] (see also Appendix C), which are
evidence for nearby shallow water environments.
Locally the Ocu Formation contains interbeds of
basaltic lava flows and is crosscut by basaltic
dykes of the Azuero Protoarc Group [del Giudice
and Recchi, 1969; Tournon, 1984] (Figure 4). A
hemipelagic limestone of the Ocli Formation in
NW Coiba Island (location indicated by 6 in
Figure 4 and Figure 5d) is intruded by a mafic dyke
of the Azuero Protoarc Group (415710/844800,
UTM WGS84). We have dated the limestone,
which shows synvolcanic soft deformation, as late
Campanian (~75-73 Ma) (Appendix B); we
conclude this also corresponds to the age of
emplacement of the Azuero Protoarc Group.

[24] The Azuero Protoarc Group occurs as mafic
dykes crosscutting the Azuero Plateau and Ocu
Formation in the vicinity of the Azuero Arc Group,
and mafic lava flows, locally interbedded with
hemipelagic limestones of the Octi Formation
(Figures 4 and 5b—5d).

[2s] The Azuero Arc Group is exposed in the
central and northern Azuero Marginal Complex
(Figures 2 and 4). It is dominantly intermediate to
silicic lavas and related intrusives [del Giudice and
Recchi, 1969; Metti and Recchi, 1976; Kolarsky et
al., 1995; Lissinna, 2005; Worner et al., 2009;
Wegner et al., 2010] (Figures 3 and 4). The igneous
rocks have typical suprasubduction geochemical
signatures (i.e., they are depleted in Nb and Ti
relative to elements of similar peridotite-melt
incompatibility, and enriched in mobile elements
such as Pb and Ba), and represent an extinct vol-
canic arc [Lissinna, 2005; Worner et al., 2009,
Wegner et al., 2010]. The intermediate to differ-
entiated igneous rocks are locally stratigraphically
associated with volcanic, calcareous and tuffa-
ceous sediments [del Giudice and Recchi, 1969].
A K/Ar age of 69 + 10 Ma was obtained for a
quartz diorite from La Pitalosa (Azuero) [del
Giudice and Recchi, 1969]. *°Ar/*’Ar ages of the
igneous arc rocks range from ~66 to 40 Ma
[Lissinna, 2005; Wegner et al., 2010]. An age
trend is observed throughout the Azuero Marginal
Complex and western Panamean Isthmus, with
youngest ‘’Ar/*’Ar ages in the north and oldest
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Figure 6. Geochemical characteristics of the igneous rocks of the Golfito Complex and Azuero Marginal Complex,
with comparison to the “Samara Arc” [Patino et al., 2004], “Morti Arc” [Maury et al., 1995], East Pacific Rise
MORBEs (EPR) [Su and Langmuir, 2003], Nicoya Complex (oceanic plateau) [Hauff et al., 2000], Tonga Arc [Turner
and Hawkesworth, 1997], Lau Basin [Turner and Hawkesworth, 1997], Mariana Arc and Trough (GEOROC online
database), and CLIP basalts from the Caribbean Sea (locations in Figure 1) [Sinton et al., 1998; Reévillon et al., 2000;
Kerr et al., 2002, 2009]. (a) FeO*-SiO, diagram after Arculus [2003]. (c—e) Mg # = 100 x mol [MgO]/(mol [MgO] +
mol [FeO*]). (f) Primitive mantle after McDonough and Sun [1995]. Analyses were plotted on an anhydrous basis for

Figures 6a—6e.

ages in the south. On the basis of these ages, it
has been proposed a progressive shift of the vol-
canic front toward the Caribbean Plate occurred
during the Cenozoic, possibly as a response to

subduction erosion and/or slab flattening [Lissinna
et al., 2002]. That migration has resulted in good
exposure of the oldest South Central American
Volcanic Arc in western Panama.
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Figure 7. Chondrite-normalized REE diagrams. Chondrite abundances from McDonough and Sun [1995]. Samara
Arc after Patino et al. [2004], Morti Arc after Maury et al. [1995], and Nicoya Complex after Hauff et al. [2000].

5.2. Igneous Rocks of the Golfito Complex
and Azuero Marginal Complex

[26] We describe here the igneous rocks forming
parts of the Golfito Complex and Azuero Marginal
Complex. New geochemical data for the Golfito
Complex are integrated with previous data by Di
Marco [1994] and Hauff et al. [2000] to illustrate
geochemical similarities and/or differences between
igneous rocks from the Golfito Complex, Azuero
Plateau, Azuero Protoarc Group, and Azuero Arc
Group. Igneous rocks from distinct origins are also
used for comparison (Figures 6—8). The Tonga Arc,

Lau Basin, and Mariana Arc and Trough are used
as compositional end-members of Pacific in-
traoceanic volcanic arcs and related back-arc basins.
Although the CLIP and oceanic plateaus in general
exhibit a large compositional variability with both
enriched and depleted signatures [e.g., Petterson
et al., 1999; Kerr et al., 2009], we use here a
restricted, consistent geochemical data set from the
Nicoya Complex after Hauff et al. [2000] as a proxy
for plateau-like affinities observed in the bulk of
an oceanic plateau. This approach is motivated by
several reasons: (1) oceanic LIPs are predominantly
composed by igneous rocks with plateau-like
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[2000].

affinities [Kerr, 2003], (2) some circum-Caribbean
igneous complexes interpreted to be part of the CLIP
have a controversial origin and may pertain to distinct
oceanic plateaus [e.g., Kerr, 2005; Baumgartner et
al., 2008], and (3) high compositional variability
of CLIP basalts recovered by drilling and dredging
in the Caribbean Sea is observed at a scale much
larger than that of the Azuero Marginal Complex
and is not observed at individual sites [Sinfon et al.,
1998; Révillon et al., 2000; Kerr et al., 2002, 2009]
(see also ODP and IODP sites in Figures 1 and 6).

5.2.1. Golfito Complex

[27] Volcanic rocks ranging from basalt to tra-
chyandesite occur as massive to thin pillowed lava
flows. The mineral assemblages are subhedral pla-
gioclase, euhedral clinopyroxene, and Fe-Ti oxides.
Olivine has not been observed. Some pillow lavas
have a porphyritic texture with clinopyroxene phe-
nocrysts. Spherical vesicles (<3 mm) filled with
calcite, zeolites and/or chlorite are locally present.
A pervasive low-T alteration affected igneous
rocks of the complex. Interstitial glass in the lavas
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has been replaced by palagonite and chlorite, all the
plagioclase is argillitized, and much clinopyroxene
is chloritized. In a few samples, euhedral secondary
quartz minerals are found in interstitial glass and in
close proximity to granophyres. These samples
display anomalously high silica content that is
related to silica enrichment by fluid flows or
assimilation of silica-rich melts/rocks by basaltic
magma (Figure 5a).

[28] The lavas of the Golfito Complex define a
medium-Fe series, distinct from that of typical
oceanic plateaus such as the Nicoya Complex
(Figures 6a and 6b). The Golfito Complex has also
lower CaO and TiO, at a given Mg # (Mg # = 100 x
mol [MgO]/(mol [MgO] + mol [FeO* (Fe total ex-
pressed as FeO)])) than the Nicoya Complex
(Figures 6¢ and 6d). Rare earth element (REE)
abundance systematics of the Golfito Complex
have plateau-like affinities broadly similar to the
Nicoya Complex (Figure 7a). On some primitive
mantle (PM)-normalized multielement diagrams
(Figure 8a), Rb, Ba, U, Pb, and Sr contents show
large variations between the lavas, indicating a
possible remobilization of these mobile elements
during alteration. Ti contents are generally low and
form negative anomalies on the multielement
patterns, which are not observed in the Nicoya
Complex. Similarly, negative Eu anomalies are
observed for some samples of the Golfito Complex.

[29] Variations of incompatible immobile elements
are best illustrated on a (Nb/La)py,-(La/Sm)pyvn
diagram (Figure 6f), which highlights slab-derived
fluid enrichments, mantle wedge source fertility,
and/or various degrees of partial melting. On such a
diagram, the Golfito Complex data are bracketed
by the fields of plateau-like igneous rocks (e.g.,
Nicoya Complex and Azuero Plateau) and Paleo-
gene arc-related igneous rocks from the Azuero
Peninsula. Similarly, in MgO/FeO*-Si0O,, FeO*-
MgO and TiO,-Mg # diagrams, the Golfito Complex
is located between trends for the plateau suites
and Azuero Arc (Figure 6). Note basaltic sample
DBO02-080 (this study) and GO4 of Hauff et al.
[2000] resembles igneous rocks of the Azuero
Plateau, with notably higher (Nb/La)py, and lower
(La/Sm)pn, (Figure 6f) and higher TiO, at a
given Mg # (Figures 6¢, 7, and 8). Location and
discussion of the origin of these samples are
given below.

5.2.2. Azuero Plateau

[30] Volcanic rocks of the Azuero Plateau are sheet
flows and pillow basalts. Rare gabbroic intrusives

have been found in the area of Playa Venado.
Textures of the lavas are ophitic to intersertal, with
ubiquitous plagioclase, clinopyroxene, opaque
minerals and glass, and minor olivine in some
flows. The degree of alteration of the lava is minor
compared to the volcanic rocks of the Golfito
Complex. With the exception of olivine that is
replaced by chlorite and serpentine, minerals are
well preserved. Small clinopyroxene and/or plagio-
clase phenocrysts are rare.

[31] The Azuero Plateau includes 2 geochemical
groups (Group I and II). Group I forms the bulk of
the igneous rocks of the Azuero Plateau, whereas
Group II is restricted to some lava flows and
gabbros NW of Playa Venado (Figure 4). Group I
has a composition very similar to the Nicoya
Complex (Figures 6, 7e, and 8¢) with a high-Fe
(tholeiitic) differentiation trend (Figures 6a and 6b).
Group II has also a tholeiitic affinity, but major
element contents are distinct from those of Group I,
with lower SiO,, Mg # and CaO, and higher TiO,
contents in Group II. Trace element contents of
Group 1 display typical plateau-like affinities,
whereas Group II has a more enriched character
(Figures 7e and 8e). A gabbro sample from Group
II has unusually high Ti and Nb contents probably
related to accumulation of a Ti-Nb-rich mineral
phase. In both groups variations in Rb, Ba, Pb and
Sr contents are observed and result from low-T
alteration. (Nb/La)pp,-(La/Sm)pyy, variations of
Group [ are similar to the Nicoya Complex,
whereas those of Group Il have an enriched char-
acter intermediate between Group I and basalts
from ODP Site 151 (Figure 6f). Igneous rocks
from Group I have lower (Nb/La)pyy, and higher
(La/Sm)ppy, than those from the Golfito Complex
(with exception of sample GO4) and the Azuero
Protoarc Group. Igneous rocks from Group II have
higher (Nb/La)pp, and (La/Sm)pyg, than those from
the Golfito Complex and the Azuero Protoarc
Group.

5.2.3. Azuero Protoarc Group

[32] Igneous rocks of the Azuero Protoarc Group
consist of basaltic to basaltic trachyandesitic lava
flows and dykes. Their texture and mineralogy
exhibit a large variability, with subophitic, inter-
sertal and porphyritic textures. The igneous rocks
contain clinopyroxene, plagioclase, opaque min-
eral, orthopyroxene, amphibole, alkali-feldspar and
glass. The phenocryst content ranges from <1% to
~45%, and rocks are well preserved.
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[33] The Azuero Protoarc defines a high-Fe
(tholeiitic) differentiation trend dissimilar to the
Azuero Plateau, Golfito and Nicoya complexes
(Figures 6a—6e). Incompatible element contents of
the Azuero Protoarc are similar to the igneous rocks
of the Golfito Complex on (Nb/La)ppi,-(La/Sm)ppin,
chondrite-normalized REE, and PM-normalized
multielementary diagrams (Figures 6h, 7, and 8).

[34] Rocks classified here as “Azuero Protoarc
Group” are similar in terms of geochemical com-
position to “enigmatic CLIP arc rocks” reported by
Wérner et al. [2009] from the Chagres Igneous
Complex (central Panama, Figure 2) and some
samples from the “Sona-Azuero Arc” by Wegner et
al. [2010], which includes both our Azuero Pro-
toarc and Azuero Arc groups. In detail, samples
similar to our “Protoarc Group” are classified by
Worner et al. [2009] and Wegner et al. [2010]
either as “CLIP oceanic basement,” “Early arc”
or “CLIP arc.” Other samples classified as “CLIP
arc” by Worner et al. [2009] are similar to our
“Azuero Arc Group” (see below).

5.2.4. Azuero Arc Group

[35] The Azuero Arc Group comprises a large
variety of volcanic rocks ranging in composition
from basalt to dacite. Lava flows have been
observed in association with large intrusive com-
plexes and eroded lava domes. Large intrusives are
generally associated with elevated topographic
relief. In the central Azuero Marginal Complex,
granodioritic intrusives cover large areas and are
distributed along a well-defined NW-SE trend
(Figure 4). Andesite aa flows are common. Well
preserved volcanic morphologies tend to indicate
younger volcanism occurred in the northern part
of the Azuero Marginal Complex and possibly
developed along rifted/faulted zones. Lavas have
typical intergranular to porphyritic textures. Mul-
tiply zoned plagioclase, alkali feldspar, greenish
clinopyroxene, amphibole, and quartz are typical
phenocrysts in the porphyritic lavas. Intrusive
complexes are formed by mafic and silicic igneous
rocks. The differentiated intrusives frequently
contain large amphibole and zircon.

[36] Major and minor element contents of igneous
rocks of the Azuero Arc Group show affinities similar
to low-Fe differentiation trends (Figures 6a—6¢). In
terms of major element contents, the igneous rocks
of the Azuero Arc Group are similar to arc-related
lavas from the Rio Morti (eastern Panama). Arc-
related rocks from Punta Samara (northern Costa
Rica) also share some similarities with the Azuero

Arc Group in terms of SiO,, TiO,, FeO*, Na,O and
K5O contents. The “Samara Arc” has on the other
hand a globally lower MgO content and much
higher CaO and Al,O; contents at the same Mg #
(Figure 6). Trace element contents of the igneous
rocks of the Azuero Arc Group are typical of island
arcs with a progressive enrichment in most
incompatible elements, negative Nb-Ti anomalies
and positive Pb anomalies on a PM-normalized
multielementary diagram (Figure 8b). Trace ele-
ment contents of the igneous rocks of the Azuero
Arc Group are similar to those of the Samara and
Morti arcs (Figures 7 and 8). On a (Nb/La)pym,-
(La/Sm)ppy, diagram, igneous rocks of the Azuero
Arc Group, Samara Arc and Rio Morti plot in the
field of the Mariana Arc (i.e., a typical high-Fe
medium-K arc suite), and distinct from the Tonga
Arc (i.e., a typical high-Fe low-K arc suite)
(Figure 6f).

6. Origins of the Golfito Complex
and Azuero Marginal Complex

[37] New interpretations on the origins of the Golfito
Complex and Azuero Marginal Complex are pre-
sented below based on integration of new and ex-
isting tectonostratigraphic and geochemical data.

6.1. Origins of the Golfito Complex

[38] The Golfito Complex is currently regarded as
an uplifted sequence of an oceanic plateau [Hauff et
al., 2000]. This interpretation is in disagreement
with the stratigraphic record and geochemical data.
Sedimentary deposits in the Golfito Complex and
younger overlap sequences are indicative of a near-
volcanic, shelf environment from the Campanian
(~75 Ma) to present, distinct from intraoceanic
settings generally characteristic of oceanic plateaus
[e.g., Kerr, 2003]. Furthermore, quartz grains and
tuffaceous deposits in the sediments of the Golfito
Formation provide evidence for close, subaerial
intermediate-silicic volcanism at least in part con-
temporaneous with formation of the Golfito Complex.
Such volcanism has not been reported so far in
typical oceanic plateaus. Finally, major, minor and
some trace element contents range from those typical
of oceanic plateaus, such as the Nicoya Complex and
the bulk of the CLIP, to those similar to subduction-
related volcanic rocks (Figure 6).

[39] We propose the bulk of the Golfito lavas were
formed above a nascent subduction zone along the
margin of an oceanic plateau. Liquids were pro-
duced by introduction of slab-derived fluids into a
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Figure 9. Model of the arc development in south Central America between the Late Cretaceous and the Eocene.
(a) Situation prior to the arc initiation, with the Coniacian—early Santonian (~89-85 Ma) Azuero Plateau resting
on “normal” oceanic crust. Arrows indicate possible compression along the edge of the plateau in the late Campanian.
(b) Onset of subduction initiation along the Azuero Plateau in the late Campanian (~75-73 Ma). Dehydrating slab
causes melting of the subplateau mantle. (c) Maturation of the arc and partial development of subaerial volcanism
in the Maastrichtian. (d) Further maturation of the arc and possible continentalization of the Azuero Plateau in the
Paleocene. Incoming of an exotic, latest Cretaceous oceanic plateau that accretes to form the Inner Osa Igneous Complex
(southern Costa Rica). (e) In western Panama, subduction erosion and possible slab flattening induces a migration of the
arc front toward the Caribbean in the middle Eocene (~45 Ma) [Lissinna et al., 2002]. The bulk of the Azuero
Accretionary Complex accretes after the migration of the arc front, more or less concurrently with the emplacement of

the Outer Osa Igneous Complex (southern Costa Rica).

fertile, persistently hot mantle associated with the
oceanic plateau (Figure 9). This model accounts
well for the most important features of the Golfito
Complex: (1) the stratigraphy is consistent with
nearshore, contemporaneous emplacement of mafic
and intermediate-silicic volcanism; (2) the Golfito
lavas are associated with some of the oldest sedi-
ments derived from silicic volcanism in southern

Costa Rica; (3) igneous rocks define a differentia-
tion trend characterized by an increase of silica
content in most evolved samples, which may have
been controlled by early fractionation of iron oxides;
(4) some samples have typical suprasubduction
signatures with negative Nb-Ti anomalies on a
PM-normalized multielementary diagram; (5) most
of the igneous rocks have incompatible element
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contents (e.g., Nb, Ti, La and Sm) intermediate
between oceanic plateaus and intraoceanic arcs
(Figures 6-8); and (6) the Golfito Complex was
probably deposited on top of an oceanic plateau
(see below). Furthermore, the trace element char-
acteristics of fresh clinopyroxene analyzed by
La-ICP-MS clearly point toward a suprasubduction
signature in some of the igneous rocks of the
Golfito Complex [Buchs, 2008]. Immobile radio-
genic isotopes data by Hauff et al. [2000] (i.e., Sm-
Nd system) and our results from western Panama
(see below) are consistent with this interpretation.

[40] Samples GO4 [Hauff et al., 2000] and DB02-
080 (this study) are geochemically distinct from
other igneous samples of the Golfito Complex and
are characterized by major, minor and trace ele-
ment contents similar to typical oceanic plateaus
(Figures 6, 7a, and 8a). These two samples were
recovered from one of the major fault zones in
Golfito, in the lowest parts of the exposed volcanic
sequence [Mende and Astorga, 2007; Buchs,
2008]. We propose samples GO4 and DB02-080
represent the upper parts of an oceanic plateau
forming the basement of the Golfito Complex. This
oceanic plateau may be part of an extension of the
Azuero Plateau, as suggested by tectonostrati-
graphic similarities between the Golfito Complex
and Azuero Marginal Complex (see below).

6.2. Origins of the Azuero Marginal
Complex

[41] We interpret the Azuero Marginal Complex as
an autochthonous sequence containing from bot-
tom to top (1) the Azuero Plateau, a Coniacian—
early Santonian (89-85 Ma) oceanic plateau;
(2) the Late Cretaceous Oct Formation locally in-
terlayered with the Azuero Protoarc Group; (3) the
Azuero Protoarc Group that represents protoarc
igneous rocks emplaced within and on top of the
Azuero Plateau; and (4) the Azuero Arc Group
representing a mature arc developed on top of the
Azuero Protoarc Group, Ocu Formation, and
Azuero Plateau.

[42] On the basis of major, minor and trace element
similarities, the Azuero Plateau is interpreted to be
an oceanic plateau, as previously suggested for
some igneous rocks of the area by Lissinna [2005]
(Figures 6-8). Igneous rocks from the Group I form
the bulk of the exposed Azuero Plateau and are
characterized by typical plateau-like affinities,
whereas those of the Group II are restricted to a
minor part of the unit (NW of Playa Venado) and
display enriched signatures interpreted to reflect

melting of an enriched source component. Sedi-
mentary and stratigraphic observations indicate
high rates of eruption in a pelagic environment,
consistent with an oceanic plateau origin. High-
MgO lavas identified in the deeper parts of some
plateaus [e.g., Kerr, 2003] have not been observed
in the area; present exposures likely represent only
the upper layers of the original Azuero Plateau. The
age of the Azuero Plateau is defined based on
biochronologic data to the Coniacian—early Santonian
(~89-85 Ma) [Kolarsky et al., 1995; Buchs et al.,
2009] YOA1/*°Ar ages of basalts obtained by incre-
mental heating are overall in good agreement with a
Coniacian—early Santonian age of formation for the
bulk of the Azuero Plateau [Lissinna, 2005]. Older
K/Ar date of ~98 Ma reported for a basalt of Playa
Venado [Bourgois et al., 1982] may indicate the
South Azuero Peninsula includes an older plateau
sequence, as also suggested by local occurrence of
compositionally unusual basalts and §abbros of the
Group II. A younger 71.3 + 2.1 Ma *°Ar/*’Ar date
obtained by total matrix fusion of a low-K basalt in
Soné Peninsula [Hoernle et al., 2002] has probably
been affected by loss of radiogenic Ar and, thus,
represents only a minimal possible age of formation
for the Azuero Plateau. Similar losses of radiogenic
Ar have been identified in accreted sequences in
south Costa Rica on the basis of tectonostratigraphic
and biochronologic data [Buchs et al., 2009].
Clearly, the tectonostratigraphy of the Golfito
Complex and Azuero Marginal Complex indicates
formation of the Azuero Plateau ceased prior to
emplacement of protoarc igneous rocks.

[431 A protoarc origin for the Azuero Protoarc
Group is supported by stratigraphic observations
and geochemical observations. It is clear from our
field observations this Group was emplaced within
and on top of the Azuero Plateau through the late
Campanian (~75-73 Ma), most probably ~10 Ma
after formation of the youngest sequences of the
Azuero Plateau. Although the Azuero Protoarc
Group has higher FeO*, CaO and Al,O; contents
than igneous rocks from the Golfito Complex
(Figures 6b, 6d, and 6¢), the bulk of Azuero Pro-
toarc Group has geochemical characteristics similar
to those of the Golfito igneous rocks (Figures 6-8).
These characteristics and the stratigraphy are con-
sistent with the hypothesis that the Azuero Protoarc
Group is part of a primitive island arc developed on
top of the Azuero Plateau. Porphyric texture and
mineral accumulation (e.g., zoned feldspar and clin-
opyroxene) in the igneous rocks of the Azuero Pro-
toarc Group indicates magma chambers developed
rapidly in western Panama after subduction initiation.

23 of 35



" e Geochemistry
~ Geophysics Y
~ | Geosystems | 1

BUCHS ET AL.: SOUTH CENTRAL AMERICAN ARC INITIATION

10.1029/2009GC002901

[44] The Azuero Arc Group has been previously
interpreted as an island arc that experienced a
complicated evolution between the Maastrichtian
and the Eocene [Lissinna, 2005; Wérner et al.,
2009; Wegner et al., 2010]. Our geochemical data
are in good agreement with this interpretation and
indicate the Azuero Arc Group is an assemblage of
distinct magmatic suites that remain to be described
in detail. Based on our stratigraphic observations,
we propose Maastrichtian igneous rocks of the
Azuero Arc Group (this study) and a large portion
of the “Sona-Azuero Arc” by Worner et al. [2009]
and Wegner et al. [2010] contain mature supra-
subduction zone igneous rocks formed mostly after
the Azuero Protoarc Group. The earliest evolution
of the South Central American Arc was accompa-
nied by development of a restricted volcanic front
delineated by silicic intrusives of the Azuero Arc
Group (Figure 4). In Costa Rica and Panama, in-
terbeds of protoarc lavas and hemipelagic lime-
stones bearing quartz grains and a tuffaceous
component [del Giudice and Recchi, 1969;
Obando, 1986; Mende, 2001; this study] suggest
earliest arc-related mafic lavas (Azuero Protoarc
Group) and silicic lavas (Azuero Arc Group) were
at least in part emplaced contemporaneously during
the Maastrichtian. Coeval emplacement of arc-
related mafic and acidic lavas in Panama is also
supported by similarity of our ages for the Azuero
Protoarc Group (~75-73 Ma) with new “°Ar/*°Ar
ages (67.94 £ 2.25 and 71.68 + 2.77 Ma) obtained
by averaged incremental heatings on amphiboles
from two dacite samples in the Azuero Arc Group
[Wegner et al., 2010].

7. Arc Initiation in South Central
America and Some Implications

[45] Though ~250 km distant from each other, the
Golfito (southern Costa Rica) and Azuero (western
Panama) complexes share several features in terms
of their nature and tectonostratigraphic develop-
ment: (1) the basement of the Azuero Marginal
Complex comprises an oceanic plateau, which may
also outcrop in the Golfito Complex; (2) the
basement of the two complexes is overlapped by
igneous rocks interpreted to be a protoarc with
atypical affinities developed on top of the oceanic
plateau; (3) protoarc igneous rocks of both complexes
are partly interbedded with late Campanian—early
Maastrichtian hemipelagic limestones that locally
comprise a tuffaceous component and epiclasts from
an intermediate-silicic volcanic source; (4) the
limestones and Late Cretaceous volcano-sedimen-

tary sequences from the Caribbean Plate (ODP Leg
165, sites 999 and 1001) indicate the two complexes
and the Caribbean Plate were located under similar,
subequatorial paleolatitudes in the Late Cretaceous
[Di Marco et al., 1995; Acton et al., 2000]; and (5) the
two complexes are overlapped by Maastrichtian to
middle Eocene, arc-related volcano-sedimentary
sequences and fore-arc sediments. As a conse-
quence, we propose the Golfito Complex and Azuero
Marginal Complex are autochthonous sequences
preserving the earliest history of the South Central
American Arc. The Arc initiated at least in the late
Campanian (~75-73 Ma) on top of the Azuero
Plateau. The Azuero Plateau forms part of the
CLIP, formed during the Conacian—early Santonian
(~85—83 Ma), with possible older magmatic events,
and served as a nucleus for accretion of other
oceanic plateaus, seamounts, and oceanic islands in
south Central America [e.g., Hoernle et al., 2002;
Buchs et al., 2009]. Figure 9 illustrates a possible
scenario for the arc initiation and subsequent
evolution.

[46] The CLIP in south Central America (i.e.,
Azuero Plateau) is principally composed of basalts
with plateau-like affinities, and minor amounts of
enriched basalts and gabbros that display some
similarities in terms of incompatible element con-
tents with Caribbean basalts at ODP Site 151
(Figure 6f). As already pointed out by many con-
tributions [e.g., Révillon et al., 2002; Kerr et al.,
2009], occurrence of depleted and enriched igne-
ous rocks in the CLIP supports existence of a
heterogeneous mantle source for the formation of
the plateau. However, scarce exposures of enriched
igneous rocks in the Azuero Plateau, high consis-
tency of REE contents in protoarc igneous rocks
between southern Costa Rica and western Panama,
and scarcity of enriched CLIP basalts in the circum-
Caribbean, suggest the following: (1) plateau-like
liquids are the principal melting product of fertile
CLIP mantle in south Central America and (2) the
mantle wedge at the onset of subduction was
essentially homogenous. Distinct differentiation
trends of protoarc magmas in Costa Rica and west-
ern Panama reflect along-strike heterogeneity of
petrologic processes, which we interpret as a pos-
sible response to a compositionally heterogeneous
subducting plate, distinct directions and rates of
subduction of the slab, and/or crustal thickness
variations of the Azuero Plateau at the onset of
subduction.

[47]1 Ages of interlayered sediments in protoarc
igneous lavas of the Golfito Complex and Azuero
Marginal Complex [del Giudice and Recchi, 1969;
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Di Marco et al., 1995; this study] and OArPAr
dates [Lissinna, 2005; Wegner et al., 2010] indicate
the protoarc evolved rapidly (possibly in less than
5 Ma) toward a mature volcanic arc represented by
the earliest silicic lava flows and intrusives of the
Azuero Arc Group. Fragments of larger benthic
(shallow water) foraminiferans in the Oct Formation
[del Giudice and Recchi, 1969] (Appendix C) indi-
cate early arc volcanism occurred partly under sub-
aerial conditions in the Campanian-Maastrichtian.
Occurrence of quartz grains and/or greenish clin-
opyroxenes in hemipelagic limestones of the Golfito
Formation [Mende, 2001; Buchs, 2008] and Ocu
Formation (Appendix C) supports reworking of
acidic igneous rocks from the Azuero Arc Group and
an unknown equivalent in southern Costa Rica
during emplacement of at least some of the protoarc
mafic igneous rocks. These observations suggest
that, in detail, the transition from a mafic protoarc
toward a felsic, more mature arc have been com-
plicated, with partly overlapping emplacement of
these two types of arc-related igneous rocks. Such
an overlap is in agreement with our model that
implies progressive compositional evolution of
the mantle wedge during early subduction in
response to reorganization of the mantle flow
and introduction of slab-derived fluids into the
mantle (Figure 9).

[4s] Undated (probably latest Cretaceous) igneous
rocks with protoarc signatures similar to protoarc
rocks of western Panama and southern Costa Rica
have been sampled in the Chagres area, and inter-
preted as part of the early South Central American
Arc [Worner et al., 2005, 2009; Wegner et al.,
2010]. Based on geochemical data by Worner et
al. [2009] we believe that protoarc-like igneous
rocks of the Chagres area pertain to the earliest arc
sequences and, as a consequence, occurrence of
these igneous rocks may indicate the Azuero Plateau
extend to central Panama and underlies a ~500 km
along-strike arc segment.

[40] Exact origins of the onset of subduction along
the SW margin of the Caribbean Plate are obscure.
However, it has been demonstrated rheologic
contrasts in the lithosphere along the edges of
oceanic plateaus [Niu et al., 2003] or intraoceanic
transforms [e.g., Toth and Gurnis, 1998; Hall et al.,
2003; Stern, 2004] may trigger the onset of sub-
duction if they are associated with a compressive
tectonic regime. This suggests the onset of subduc-
tion along the SW Caribbean Plate was facilitated by
the arrival of the Azuero Plateau. We propose sub-
duction was initiated as a response to compression of
the thickened Caribbean Plate during westward

migration of the Americas [e.g., Pindell et al., 2005,
2006; Mann, 2007]. Compression along the Plateau
may have been facilitated by collision of the thick-
ened Caribbean Plate with South America [Luzieux
et al., 2006; Vallejo et al., 2006; Vallejo, 2007].

[s0] Finally, we point out the exposures in the
western Panamanian and southern Costa Rican fore
arc provide a significant opportunity to explore the
role of oceanic plateaus in the growth of conti-
nental crust. Some models have proposed early
coalescence or accretion of oceanic plateaus over-
printed by suprasubduction processes may be crit-
ical in the development of the continental crust [e.g.,
Kroenke, 1974; Ben-Avraham et al., 1981; Niu et
al., 2003; Kerr and Mahoney, 2007]. Exposures in
south Central America can provide the opportunity
to investigate the link between oceanic plateaus and
the continental crust by stressing out the foundering
role of LIPs at convergent margins. Studying pet-
rologic processes leading to crustal thickening of
LIPs in suprasubduction zone environments, and
estimating volumes of mafic and silicic magma
produced through time with characterization of
related changes of the bulk crustal composition is
fundamental to assess possible roles of oceanic
plateaus during formation of the continental crust.
We believe this study can be carried out in the
Azuero area through integration of new detailed
field observations, datings and geochemical anal-
yses of the Azuero Plateau, Azuero Protoarc Group
and early Azuero Arc Group.

8. Summary and Conclusions

[s1] The Golfito Complex includes (1) a (pre—)late
Campanian igneous basement, (2) a late Campanian
to Maastrichtian volcano-sedimentary formation,
and (3) younger fore-arc sedimentary deposits. The
Golfito Complex is possibly underlain by an oceanic
plateau defined in western Panama as the Azuero
Plateau. Lower sequences of the Golfito Complex
are interpreted as a protoarc that developed on top
of an oceanic plateau between the late Campanian
and the Maastrichtian (~75-66 Ma). In the Maas-
trichtian and Paleogene, protoarc magmatism
ceased in the Golfito area which was progressively
buried under younger deposits derived from a
maturing volcanic arc nearby.

[521 The Azuero Marginal Complex is composed of
(1) an autochthonous basement made of a Coniacian—
early Santonian (~89—85 Ma) oceanic plateau, (2) a
late Campanian (~75-73 Ma) to Maastrichtian pro-
toarc emplaced on top of the plateau, (3) a Late
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Cretaceous to Eocene (~70 to 45 Ma) arc that followed
the development of the protoarc, and (4) a younger
regional overlap sequence. A late Campanian to
Maastrichtian (?) protoarc formed on top of a
Coniacian—early Santonian (~89-85 Ma) oceanic
plateau defined here as the “Azuero Plateau.” In
the Maastrichtian, the protoarc was progressively
replaced by a more mature arc.

[53] Arc initiation in south Central America occurred
in the late Campanian (~75-73 Ma) along the Late
Cretaceous (~89-85 Ma) Azuero Plateau.

[s4] The onset of subduction along the Azuero
Plateau produced unusual suprasubduction igneous
rocks that are exposed from southern Costa Rica
to western Panama (this study) and central Panama
[Wérner et al., 2009]. These rocks are part of
protoarc sequences. Protoarc igneous rocks are
characterized by unusual geochemical composi-
tions intermediate between typical oceanic plateaus
and intraoceanic island arcs. Due to high thermal
gradients in the subplateau lithosphere at the onset
of arc magmatism, and variable influences of slab-
derived fluids in the earliest suprasubduction mag-
mas, some protoarc igneous rocks are very similar,
and sometimes almost indistinguishable, from
typical oceanic plateaus.

[5s] Dykes of protoarc igneous rocks within the
Azuero Plateau and occurrences of protoarc igne-
ous rocks from southern Costa Rica to central
Panama are indicative of an oceanic plateau form-
ing the basement of the South Central American
Arc. The Azuero Plateau may extend further
toward the Colombian Basin and relate to the
thickened Caribbean crust. It served as a nucleus
for accretion of oceanic plateaus, oceanic islands,
and seamounts of Pacific origins.

[s6] In the Azuero Marginal Complex, a unique
sequence is preserved composed of an oceanic
plateau at the base and younger arc-related intru-
sive and extrusive rocks emplaced into and above
the plateau. This provides the rare opportunity to
explore possible petrologic mechanisms linking
oceanic plateaus to continental evolution.

Appendix A: Supplemental Information
Related to the Laser Ablation ICP-MS
Analysis of Lithium Tetraborate Glasses

[57] The analysis of lithium tetraborate glasses
was carried out according to the existing practice
[Sylvester, 2001; Eggins, 2003], implying that the
background intensities were measured as a ‘“gas

blank.” This method does not account for impuri-
ties contained in the lithium tetraborate itself and
is only admissible provided the lithium tetraborate
contains nearly no trace element impurities.

[ss] The quality of lithium tetraborate (Li,B40-)
used for the preparation of lithium tetraborate glasses
likely depends upon manufacturer. In our laborato-
ries, Lithium Tetraborate Spectromelt A 10 from
Merck, Cat. Nr. 1.10783.5000, is used. We regularly
test its quality by LA-ICPMS using either blank
glasses containing 100% of lithium tetraborate or
glasses doped with silica (16.67% SiO,, 83.33%
Li,B40O5). The results of one such test are given in
Table Al.

[s9] These are typical results reflecting the quality
of lithium tetraborate used in our laboratories.
Li was used for internal standardization, its value
having been estimated based on the stoichiometry of
lithium tetraborate. The SRM 610 glass from NIST
was used for external standardization. Whether Li is
a good internal standard for most elements can, of
course, be discussed (see Eggins [2003]), as well
as the propagation of errors during the calculation,
as the average Li,O and B,O; contents in the SRM
610 glass are 0.104 and 0.115 wt %, respectively.
The exact values for lithium (and boron, as well as
for most other elements) in the SRM 610 glass can
also be discussed, together with the quality of our
dual detector calibration for boron. The latter was
established by the inter;)olation of the dual calibra-
tion coefficients for Li’ and Na”* instead of direct
measurement. This compromises the accuracy of
boron determinations in samples extremely enriched
in boron, such as lithium tetraborate glasses.

[¢o] However, the technical aspects briefly men-
tioned above do not change the main outcome of our
tests: nearly all trace elements, including such con-
taminants as Pb and REE, are very depleted. This is
fully consistent with the counting statistics. The
background signal intensity for Pb in the measure-
ments above is ~2.7 counts per second (cps), while
on the ablation peaks, the maximum intensity of
Pb is <15.3 cps. For comparison, a glass containing
10-20 ppm of Pb on sample basis will yield several
thousands cps on the ablation peak provided the
adjustment of the laser and the sensitivity of the ICP
spectrometer remain unchanged. Basically the same
holds true for the REE. Typical background signals
for the REE were significantly lower then 2 cps,
the highest of the ablation peak signals amounted to
56.4 cps.

[61] Only the V and Sc values in rocks depleted in
these elements can be seriously influenced by the

26 of 35



it | Geochemistr 3
|~ Geophysics Y
| Geosystems Wi

BUCHS ET AL.: SOUTH CENTRAL AMERICAN ARC INITIATION

10.1029/2009GC002901

Table Al. Analysis of Blank Glasses Containing 100% of Lithium Tetraborate or Glasses Doped With Silica®
Analyte Mass Unit 0c2%h03 0c29h04 0c29h05 Average lo StD
Li,O 6 wt % 17.67 17.67 17.67 17.67

Be 9 ppm 0.110 0.118 0.168 0.132 0.026
B,0; 10 wt % 78.87 77.60 74.08 76.8 2.0
Al,O4 27 wt % 0.0036 0.0038 0.0037 0.0037 0.0001
CaO 42 wt % 0.059 0.077 0.063 0.066 0.008
Sc 45 ppm 0.442 0.449 0.311 0.401 0.063
\Y 51 ppm 2.091 2.328 2.122 2.18 0.11
Cr 53 ppm 1.629 1.398 1.264 1.43 0.15
MnO 55 wt % 0.00002 <0.000 <0.000 0.00002

Co 59 ppm <0.013 <0.013 <0.010 <0.013

Ni 61 ppm <0.604 <0.594 <0.475 <0.604

Cu 65 ppm 0.261 0.211 0.362 0.278 0.063
Zn 66 ppm 3.410 3.356 3.388 3.385 0.022
Ga 69 ppm 0.111 0.100 0.131 0.114 0.013
Rb 85 ppm <0.027 <0.026 <0.021 <0.027

Sr 88 ppm 0.019 0.024 0.029 0.024 0.004
Y 89 ppm 0.027 0.022 0.028 0.026 0.003
Zr 90 ppm <0.011 0.015 0.010 0.013 0.003
Nb 93 ppm <0.003 <0.003 0.004 0.004

Cs 133 ppm <0.010 <0.010 <0.008 <0.010

Ba 137 ppm 1.800 2.042 1.939 1.93 0.10
La 139 ppm 0.003 0.005 0.011 0.006 0.003
Ce 140 ppm <0.004 <0.004 0.011 0.011

Pr 141 ppm <0.004 <0.004 <0.003 <0.004

Nd 143 ppm 0.009 <0.017 0.006 0.008 0.002
Sm 147 ppm <0.014 <0.014 <0.011 <0.014

Eu 151 ppm <0.003 0.005 0.012 0.009 0.004
Gd 157 ppm <0.014 <0.014 <0.011 <0.014

Tb 159 ppm <0.003 0.003 0.005 0.004 0.001
Dy 163 ppm <0.010 <0.009 <0.008 <0.010

Ho 165 ppm 0.004 <0.003 <0.002 0.004

Er 166 ppm <0.005 <0.005 <0.004 <0.005

Tm 169 ppm <0.006 <0.006 <0.005 <0.006

Yb 173 ppm <0.009 <0.009 <0.007 <0.009

Lu 175 ppm <0.002 <0.002 <0.002 <0.002

Hf 178 ppm <0.009 <0.009 <0.007 <0.009

Ta 181 ppm <0.002 <0.002 <0.002 <0.002

Pb 208 ppm 0.015 <0.009 0.012 0.014 0.002
Th 232 ppm <0.002 0.0034 0.0032 0.0033 0.0001
U 238 ppm <0.002 0.0026 <0.002 0.0026

16.67% SiO,, 83.33% Li,B,0;. 100% Li,B40; glass, Elan 6100 DRC and GeoLas 200M, 120 ym (Pit size, 10 Hz, and 140 mJ Eqygput- A7,
VSI, Ca42, and Sc* values may be somewhat elevated due to polyatomic interferences (BI 1016+, BAr* +, LiﬁAr36+, and Li7Ar3R+, respectively),

important only for samples depleted in Al, V, Ca, and Sc.

lithium tetraborate matrix. On a quadrupole mass
spectrometer, V! and Sc*® peaks cannot be resolved
from those of polyatomic argide ions B''Ar*” and
Li’Ar’*®, respectively. Thus, the V and Sc values
can be overestimated. As the concentration of the Li
and B argides in the plasma does not depend much
on the chemical composition of the rock dissolved in
lithium tetraborate, the accuracy of the V and Sc
values is mainly concerned with the concentrations
of these elements in the studied rock. The higher the
V and Sc whole rock concentrations are, the lower is
the relative contribution of the B! Ar*® and Li’ Ar*®-
related overlaps. In our experience, V and Sc whole
rock values from ~30-35 and 8-10 ppm are little

influenced by the argide overlaps, at least for the
spectrometer optimizations that we use (see apparent
V and Sc contents in Table Al).

[2] We conclude, therefore, that the contents of
nearly all trace elements in lithium tetraborate used
in our laboratories are very low and cannot affect
the measured concentrations for all but the most
strongly depleted geological samples (e.g., some
peridotites and serpentinites of the oceanic mantle).
The trace element contents in the igneous rocks
discussed in the manuscript are much higher com-
pared with those in the lithium tetraborate blank
glass.
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[63] Atthe same time, the lead abundances measured
by LA-ICPMS are prone to contamination issues.
Actually, we sometimes encounter lithium tetraborate
glasses that yield unusually high Pb intensities in the
beginning of the ablation peak, with the Pb intensity
decreasing fast toward the end of the ablation interval.
Zn and, less frequently, Cu can behave similarly to
lead. This is surface contamination that can be easily
recognized in the ablation signal. The extent of this
contamination usually varies within a small piece of
the glass (<0.25-0.4 cm?).

[64] We are certain that in many cases this type of
contamination is caused by touching the surface
to be analyzed with fingers. Zinc is known to
be associated with human skin. Furthermore, in
those of the contaminated samples that are strongly
depleted in phosphorus (<0.1 wt % P,Os, typical of
many depleted ultrabasic rocks), P also exhibits an
intensity increase in the beginning of the ablation
interval, behaving similarly to Pb and Zn. In P-rich
samples, this effect is more difficult to detect. Some-
times, the contamination of the surface with Pb and
Zn appears to be related to the quality of abrasive
materials used to polish the slices of lithium tetra-
borate glasses before analysis. In our experience,
this source of contamination is less important.

[6s] We emphasize that the visual inspection of
each spectrum during the analysis and further con-
trol of the variability of the concentration values for
Zn and Pb (£Cu and P) are prerequisites during the
analysis of lithium tetraborate glasses. If the Pb and
Zn intensities suggest some level of contamination,
even moving the signal integration window toward
the end of the ablation interval, an approach ques-
tionable by itself, cannot ensure the correctness
of the data (though a preablation may help). The
only direct and simple way to ensure that Pb and Zn
values are correct is to have no surface contam-
ination at all. This is the case with all LA-ICPMS
measurements carried out for the present manu-
script, as Pb and Zn never exhibited any abnormal
intensity increase in the beginning of the signal, their
intensities were nearly parallel to those of other
elements during the whole ablation interval and the
variability of the Pb and Zn values calculated on the
basis of three to four measurements per sample was
always low.

Appendix B: New Biostratigraphic Ages
of the Oct Formation

[6s] We provide here new biochronologic data with
illustration of some taxa (Figure B1). The hemipelagic

limestone forming the Octi Formation (sample 05-02-
14-02, active quarries south of Ocu, 525844/873241,
UTM WGS84) yielded rich and well preserved
assemblages of planktic foraminifera. The biochro-
nologic age of the samples can be constrained by
the co-occurrence of Globotruncana ventricosa and
Globotruncanita elevata to the G. ventricosa and to
the lower half of the Radotruncana calcarata Zones
[Robaszynski et al., 1984]. This corresponds to a
Campanian age, or much of magnetic zone 33n
(approximately 79 to 73 Ma).

[¢71 The most abundant planktic foraminifera are
the serial forms such as Heterohelix spp. with bi-
serial and triserial forms with inflated globular
chambers. In the Globotruncanidae, the mono-
keeled, conical trochospiral forms are dominant
and these forms belong to the Globotruncanita
genus. We distinguished Globotruncanita stuarti-
formis and Globotruncanita elevata. We also found
some inflated forms with two well developed and
widely spaced keels: Globotruncana ventricosa and
G. sp. cf. G. hilli. Others identified include Hedber-
gella holmdelensis and Archaeoglobigerina cretacea.

[s] A Campanian-Maastrichitan age has been
proposed for the Oct Formation by del Giudice
and Recchi [1969] on the basis of the following
species: Globotruncana lapparenti (ranging from
the upper part of the Dicarinella asymetrica Zone
to the base of the Globotruncana aegyptica Zone,
Santonian to early Maastrichtian), Globotruncana
ventricosa (ranging from the G. ventricosa Zone
to the middle of the Gansserina gansseri Zone,
early Campanian to middle Maastrichtian), Rosita
contusa (ranging from the upper G. gansseri
Zone to the Abadhomphalus mayaroensis Zone,
late Maastrichtian). The first two cited species
correspond to a range similar to the range of our
samples, but the presence of R. contusa clearly
indicates a late Maastrichtian age.

[69] A hemipelagic limestone attributed to the Octu
Formation from NW Coiba Island (sample DB06-
114,415710/844800, UTM WGS84), yielded scarce
and fragmented planktic Foraminifera. Although
preservation is poor, and entire specimens rare, the
presence of Radoglobotruncana calcarata constrains
the age of this sample to the R. calcarata Zone,
corresponding to the late Campanian, upper part of
magnetic zone 33n (approximately 75—73 Myr).

[70] Planktic Foraminifera are mixed with spu-
mellarian and multisegmented nasselarian radi-
olarians. Planomalinidae comprise some forms with
low trocospire and a smooth wall, with globular
chambers which increase in size rapidly in the last
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Figure B1. Photomicrographs of Campanian planktic Foraminifera in thin sections. Scale bar for all photomicro-
graphs is 200 um. Hemipelagic limestone from the Octi Formation, sample DB06-114 (Coiba Island). R. calcarata
zone, upper Campanian, upper part of magnetic Zone 33n (75-73 Ma). (a) Globotruncanita sp. cf. G. stuartiformis.
(b and d) Fragments of Radotruncana calcarata. (c) Fragment of Globotruncana sp. cf. G. fornicata. (e) Globotrun-
cana linneiana. (f) Pseudoguembelina sp. (g) Fragment of G. linneiana. (h) Multicyrtid Nasselaria (radiolarian). (i and
1) Globigerinelloides prairiehillensis. Pelagic limestone, sample 05-02-14-02, Oct Formation, from quarry south of
Ocu, lower half of the R. calcarata zone, lower to upper Campanian, magnetic Zone 33n (79 to 73 Myr): (k) Globo-
truncana ventricosa, (1) Globotruncana sp. cf. G. hilli Pessagno, (m) Archaeoglobigerina cretacea, (n) Globotrunca-
nita sp. cf. G. elevate, (0) fragment of G. sp. cf. G. elevata, (p) Globotruncana sp. cf. G. lapparenti, (q and 1)
Globotruncanita sp., (s) Hedbergella holmdelensis Olsson, (t) Globotruncanita elevata (Brotzen), (u) Globotrunca-
nita sp. cf. G. stuartiformis, and (v) Heterohelix globulosa.

whorl. We determined some forms as Globiger-  truncanella sp., Globigerinelloides prairiehillensis,
inelloides cf. prairiehillensis. The Globotruncanidae ~ and Pseudoguembelina sp.

are rare but the taxa mentioned above are asso-

ciated with monokeeled and double keeled flat

forms, such as Globotruncana linneiana. Few Appendix C: Petrographic

forms with trapezoidal chambers and slightly con-  Characteristics of the Oci Formation
vex spiral are also present. Furthermore, we dis-

tinguished Globotruncana sp. cf. G. fornicata,  [71] The Campanian-Maastrichtian Octi Formation
Globotruncanita sp. cf. G. stuartiformis, Globo-  includes a wide range of lithologies that remain to
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Figure C1. (a) Typical hemipelagic limestone of the Ocui Formation with bioturbations (arrow) (quarry south of
Ocu, 525845/873240, UTM WGS84). (b) Hemipelagic limestones with red shale interbed (same locality as
Figure Cla). Inset shows altered basaltic pebbles embedded in the red shales. (c) Hemipelagic limestones with detrital
layers (indicated by 1), a tuffaceous component (indicated by 2), and a biomicritic component (Rio Giierra, ~537230/
834090, UTM WGS84) (indicated by 3). (d) Greenish tuffaceous limestones (top part), with detrital interbeds
(arrows), and bioturbated hemipelagic limestone (bottom part) (same locality as Figure Clc). Fragments of shallow
water foraminifera have been reported from the same locality by del Giudice and Recchi [1969].

be dated and described in detail. In general, the
formation is composed of hemipelagic biomicrite
that includes various amounts of clastic and tuffa-
ceous material (Figure C1). The biomicrite is
composed of a calcareous matrix that bears planktic
foraminifera, radiolaria and sponge spicules
(Figure C2a). Reworking and breaking of the fos-
sils is locally observed and probably occurred in

response to bottom sea currents. Locally the lime-
stones have an abundant siliceous component of
biogenic origin. Bioturbation of the sediment is
common.

[72] Tuffaceous and detrital components of the Ocu
Formation include sandy and silty grains of plagio-
clase, pyroxene, quartz, Fe oxide/sulfide minerals,
amphibole, fragmented larger benthic (shallow

Figure C2. Microscope pictures showing typical compositional end-members of the Oct Formation (scale bar is
1 mm, transmitted polarized light). (a) Biomicrite with planktic foraminifera and radiolaria (indicated by 1), sponge
spicules (indicated by 2), and scarce broken larger benthic foraminifera (road Tonosi-La Miel, 567790/829855, UTM
WGS84) (indicated by 3). (b) Bioturbated arenite and biomicrite. The arenite includes greenish clinopyroxenes not
observed in the Azuero Plateau (indicated by 1) and feldspar and quartz (upper Rio Quebro, Azuero Peninsula) (indi-
cated by 2).
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water) foraminifera, and pumice (Figure C2a). The
detrital component is 3—10 cm sized turbiditic layers
(Figure Clc). An ashy component is recognized in
the field by a greenish color of the limestone that
results from the alteration of glass into chlorite
(Figure Cl1d). Rarely, red shales and rounded
basaltic pebbles occur in the limestones, and attest
to an increased terrigenous influence (Figure C1Db).
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