

Open access • Journal Article • DOI:10.1038/NATURE12448

Late Miocene threshold response of marine algae to carbon dioxide limitation — Source link

Clara T Bolton, Heather Stoll

Institutions: University of Oviedo

Published on: 29 Aug 2013 - Nature (Nature Research)

Topics: Carbon dioxide in Earth's atmosphere, Carbon dioxide, Isotopes of carbon, Coccolithophore and Photosynthesis

Related papers:

- A 40-million-year history of atmospheric CO2
- Perturbing phytoplankton : response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species
- Decrease in coccolithophore calcification and CO2 since the middle Miocene.
- Stable isotope 'vital effects' in coccolith calcite
- Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present

Late Miocene threshold response of marine algae to carbon dioxide limitation

Clara Bolton, Heather M. Stoll

▶ To cite this version:

Clara Bolton, Heather M. Stoll. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature, Nature Publishing Group, 2013, 500 (7464), pp.558 - 562. 10.1038/nature12448 . hal-01667995

HAL Id: hal-01667995 https://hal.archives-ouvertes.fr/hal-01667995

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Clara T. Bolton and Heather M. Stoll
Clara T. Bolton and Heather M. Stoll
Geology Department, University of Oviedo, Jesus Arias de Velasco S/N, 33005,
Oviedo, Asturias, Spain
Coccolithophores are marine algae that use carbon for calcification and
photosynthesis. The long term adaptation of these and other marine algae to
decreasing carbon dioxide levels during the Cenozoic era ¹ has resulted in modern
algae capable of actively enhancing carbon dioxide at the site of photosynthesis.
This enhancement occurs through the transport of dissolved bicarbonate (HCO ₃ ⁻)
and with the help of enzymes whose expression can be modulated by variable
aqueous carbon dioxide concentration, [CO ₂], in laboratory cultures ^{2,3} .
Coccolithophores preserve the geological history of this adaptation because the
stable carbon and oxygen isotopic compositions of their calcite plates (coccoliths),
which are preserved in the fossil record, are sensitive to active carbon uptake and
transport by the cell. Here we use a model of cellular carbon fluxes and show that
at low [CO ₂], the increased demand for HCO ₃ ⁻ at the site of photosynthesis results
in a diminished allocation of HCO ₃ ⁻ to calcification, which is most pronounced in
larger cells. This results in a large divergence between the carbon isotopic
compositions of small versus large coccoliths only at low [CO2]. Our evaluation of
the oxygen and carbon isotope record of size-separated fossil coccoliths reveals
that this isotopic divergence first arose during the late Miocene to the earliest
Pliocene epoch (about 7-5 million years ago). We interpret this to be a threshold

26	response of the cells' carbon acquisition strategies to decreasing [CO2]. The
27	documented coccolithophore response is synchronous with a global shift in
28	terrestrial vegetation distribution between 8 and 5 Myr ago, which has been
29	interpreted by some studies as a floral response to decreasing partial pressures of
30	carbon dioxide (pCO_2) in the atmosphere ⁴⁻⁶ . We infer a global decrease in carbon
31	dioxide levels for this time interval that has not yet been identified in the sparse
32	pCO ₂ proxy record ⁷ but that is synchronous with global cooling and progressive
33	glaciations ^{8,9} .

34

35 Coccolithophores are unique among algae in that they use carbon both for calcification 36 and for photosynthesis. Cultures of coccolithophores grown under ambient, CO₂-37 limiting conditions show an unusually large array (up to 5 ‰) of non-equilibrium carbon and oxygen stable isotopic fractionations (δ^{13} C and δ^{18} O)^{10,11}. These isotope 38 39 'vital effects', so-called because they are thought to result from biological processes, are 40 also evident in coccoliths from recent sediments and sediment traps. The isotopic 41 difference between small and large coccoliths diminishes in cultures grown at elevated $[CO_2]$ (increased dissolved inorganic carbon concentration at constant pH)¹² (Fig. 1b) 42 43 and is absent in fossil coccoliths from past Palaeocene greenhouse climates^{13,14}. We 44 assert that vital effects reflect the adaptation of cellular carbon fluxes to aqueous CO₂ 45 availability, and in a new model we reveal the origin of carbon isotope vital effects. We 46 then evaluate the timing of the emergence of vital effects in the fossil record and its 47 relationship to Cenozoic climate evolution and the long-term decrease in pCO_2 . 48

Photosynthesis in large cells may be more sensitive to limitation by diffusive CO₂
supply because of the lower ratio of surface area to volume (Supplementary Fig. 2).

51	Active transport of HCO_3^- for photosynthesis is expected to be driven by the extent of
52	diffusive CO ₂ limitation, and may therefore differ between small and large cells. A new
53	model (Supplementary Discussion) reveals the active HCO_3^- fluxes to the cell, the site
54	of photosynthesis (chloroplast) and the site of calcification (coccolith vesicle, CV)
55	required to explain the observed array of carbon isotopic fractionation into organic
56	matter and coccolith calcite, ϵ_p and $\epsilon_{coccolith}$ respectively, observed in coccolithophore
57	species of different sizes grown in culture at variable $[CO_2]^{12,15}$ (Fig. 1). The model
58	confirms that at low $[CO_2]$, active HCO_3^- transport to the chloroplast is increased at the
59	expense of active HCO_3^- transport to the coccolith vesicle. A similar competitive
60	reallocation of HCO_3^- to photosynthesis from calcification at low $[CO_2]$ has been shown
61	in the laboratory ¹⁶ . As a consequence, at low $[CO_2]$, a smaller proportion of calcification
62	is supported by a direct influx of HCO ₃ ⁻ to the coccolith vesicle, decreasing $\varepsilon_{coccolith}$.
63	This process is amplified in larger cells, which at low [CO ₂] feature the lowest
64	proportion of calcification supported by direct influx of HCO ₃ ⁻ to the coccolith vesicle.
65	Consequently, the difference in $\varepsilon_{coccolith}$ between large and small coccolithophores is
66	greater at low [CO ₂]. Culture data and our model indicate that this relationship is non-
67	linear, with the steepest dependence of $\epsilon_{coccolith}$ on $[CO_2]$ over the range 12-19 μM (Fig.
68	1b). Vital effects in δ^{18} O have previously been ascribed to changes in the relative
69	contribution of carbonate $(CO_3^{2^-})$ and HCO_3^{-1} to coccolith calcite ¹⁷ , which produces an
70	effect analogous to that generated by variable relative influx of CO_2 and HCO_3^- to the
71	coccolith vesicle predicted by our δ^{13} C model (Supplementary Discussion).
72	

Final Section 73 Evaluation of δ^{18} O and δ^{13} C in size-separated coccoliths from five (Integrated) Ocean Drilling Program sites (Supplementary Methods and Supplementary Fig. 9) shows that vital effects of stable isotopes in coccoliths were minimal before and after the Eocene-

76	Oligocene (about 34 Myr ago) and Oligocene-Miocene (about 23 Myr ago) transitions,
77	and that large (more than 1‰) vital effects first appeared during the late Miocene to
78	earliest Pliocene (about 7-5 Myr ago). A striking divergence in isotopic composition in
79	different-sized coccoliths is demonstrated in records from two widely separated sites,
80	Caribbean Site 999 and sub-Antarctic Site 1088 (Figs 2 and 3). In samples pre-dating 7
81	Myr ago, only small δ^{18} O and δ^{13} C differences (less than 0.75‰) between size fractions
82	are observed. After the divergence, which begins at 6-7 Myr ago at Site 999 and 4-5
83	Myr ago at Site 1088, persistent vital effects of 1.5-3‰ in δ^{18} O and δ^{13} C are recorded,
84	with large coccoliths consistently recording lighter $\delta^{18}O$ and $\delta^{13}C$ relative to smaller
85	coccoliths (Fig. 2). We interpret this diachrony as a real lag that is too large to result
86	from age model discrepancies (Supplementary Methods and Supplementary Fig. 11).
87	We note that temporal changes in mean coccolith size in the sediments do not affect our
88	data from restricted coccolith size classes.

89

90 The marked increase in vital effects in coccoliths in the late Miocene cannot reflect an expansion into a wider range of depth habitats, because the δ^{18} O and δ^{13} C values in 91 92 different-sized coccoliths are positively correlated (Fig. 2, Supplementary Fig. 10), not 93 negatively correlated as would be expected from depth segregation in the photic $zone^{13}$. 94 We also find no cause to suggest that the depth habitat of all coccolithophores at both 95 sites migrated from deeper CO₂-enriched to shallower CO₂-depleted waters within the 96 photic zone (Supplementary Discussion). At Site 999, it is possible that circulation 97 changes associated with the gradual closure of the Central American Seaway about 14 98 to 3 Myr ago (ref. 18) stemmed the eastward flow of CO₂-rich upwelled water from the 99 equatorial Pacific; however, the emergence of the Panama Isthmus is not modelled to 100 strongly affect circulation near Site 1088 (ref. 19). The shift to a large array of vital

101 effects in coccoliths occurs at a time when there is no evidence for large changes in 102 coccolithophore growth rate at either site, as indicated by coccolith Sr/Ca records 103 (Supplementary Methods and Supplementary Fig. 5). A shift from predominantly (more 104 than 70%) diagenetic calcite to primary coccolith calcite would be required to homogenise a 1.5% isotopic difference in primary δ^{18} O to the less than 0.6% recorded 105 106 in older sediments (Supplementary Fig. 8). This is not consistent with the moderate to 107 good coccolith preservation throughout the Miocene-Pliocene at both sites evident in scanning electron microscope images (Supplementary Figs 6 and 7), nor with Sr/Ca 108 109 values, which confirm biogenic rather than abiogenic (diagenetic) Sr partitioning 110 throughout the Miocene-Pliocene study interval (Supplementary Discussion). The 111 presence of vital effects at the Pliocene end of both records, and their absence at the 112 Miocene end, is unlikely to result from differences in species contributions in a given 113 size fraction over time. Counts of coccoliths in all size fractions from end-member 114 samples show that, despite changes in species composition and size distribution over the 115 16 Myr study interval, the genera or families dominating each size fraction remain 116 similar (Supplementary Table 3). For example, at Site 1088, smallest and largest 117 coccolith size fractions in both Pleistocene and Miocene end-member samples are 118 dominated (more than 70% CaCO₃) by small reticulofenestrid and *Coccolithus* 119 *pelagicus* coccoliths respectively, yet only the Pleistocene sample records a large array 120 (up to 3‰) of vital effects (Fig. 2). 121 122 Our model of coccolithophore carbon allocation suggests that the late Miocene

emergence of vital effects represents a modification of carbon acquisition strategies of

124 the cells as [CO₂] decreased below a critical threshold (Fig. 1). We propose that a

125 decrease in pCO_2 caused tropical waters (Site 999) to fall below this $[CO_2]$ threshold at

```
126 about 7 Myr ago. Because CO_2 is more soluble in cold waters, a continued pCO_2 decline
127 into the early Pliocene (about 5 Myr ago) was required before a similar limiting [CO_2]
128 was reached in the cooler sub-Antarctic waters of Site 1088 (Supplementary Fig. 12).
129
```

130 The emergence of large-scale vital effects in coccoliths in the late Miocene, rather than 131 at earlier transitions such as the Eocene-Oligocene or Oligocene-Miocene, for which 132 important step decreases in pCO_2 are estimated from proxies and inferred from climate records²⁰⁻²³, is consistent with culture data¹², which suggest low sensitivity of $\varepsilon_{coccolith}$ to 133 134 [CO₂] variation above 19 µM. At typical concentrations of dissolved inorganic carbon 135 in the surface ocean (2050 μ M) and estimated production temperatures for a typical 136 mid-latitude site (20 °C; Supplementary Fig. 5), the range of maximum sensitivity (12-137 19 μ M [CO₂]) corresponds to pCO₂ in the range 575-375 parts per million by volume 138 (p.p.m.v.). As [CO₂] decreases below 20 µM there is an exponential increase in the 139 requirement for active HCO₃⁻ transport to the chloroplast (Supplementary Fig. 4). Since 140 the late Miocene, further decreases in pCO_2 , even to low values typical of the last glacial¹³, have not resulted in a subsequent increase in the magnitude of size-related 141 142 vital effects. One explanation could be that further decreases in [CO₂] were 143 accompanied by a decrease in cellular calcification, thereby limiting further decreases in 144 the supply of HCO_3^- to the coccolith vesicle relative to calcification. Decreased 145 calcification in coccoliths of a given size over the Cenozoic could support the operation of such a mechanism 24,25 . 146 147 Few pCO_2 proxy reconstructions cover the interval leading up to the divergence of vital 148 effects in coccoliths (12-5 Myr ago). Alkenone-based records suggest low and stable 149 pCO_2 during this interval (Fig. 3b). However, these estimates could be too low because

- 150 of the nature of the applied corrections for temperature and phosphate

151	concentrations ^{22,26} . New alkenone-based pCO_2 estimates from the western tropical
152	Atlantic covering the mid to late Miocene, although low in resolution, suggest
153	substantially higher values (400-500 p.p.m.v.) ²⁷ . Although uncertainties remain large,
154	stomatal proxies indicate a pCO_2 decrease ⁷ , consistent with inverse modelling of climate
155	data ⁸ (Fig. 3b). Our data suggest that substantial surface ocean cooling over the last 15
156	Myr, up to 14 °C in the subtropics ²⁸ , may reflect an important global pCO_2 decrease that
157	is poorly resolved by existing pCO_2 proxy records, rather than a decoupling of
158	atmospheric CO_2 forcing and climate as suggested by some authors ²⁸ .
159	
160	The appearance of large-scale vital effects in coccoliths between 7 and 5 Myr ago is
161	synchronous with a global expansion in terrestrial C_4 plants (that is, those using the C_4
162	photosynthetic pathway; mostly tropical grasses) relative to C ₃ plants (primarily trees)
163	in low-latitudes and mid-latitudes ^{4-6,29} (Fig. 3a). In some regions, such as the Himalayan
164	foreland and Arabian Peninsula, it has been suggested that a shift to increasingly arid
165	conditions was the dominant driver of the late Miocene rise in C_4 plants ²⁹ . However, the
166	shift to C ₄ dominance has also been widely interpreted as a response to decreasing
167	pCO_2 , because at low ratios of atmospheric CO ₂ to O ₂ concentrations C ₄ plants have a
168	competitive advantage over C_3 plants ⁴⁻⁶ . The presence of a biochemical carbon-
169	concentrating mechanism allows C4 plants to decrease energetically costly
170	photorespiration rates, and also to decrease stomatal conductance (a measure of the rate
171	at which water and CO_2 can diffuse in or out of the leaf), thus decreasing water loss.
172	Conditions that favour C_4 over C_3 plants are suggested to occur below a pCO_2 of about
173	500 p.p.m.v. when accompanied by high temperatures during the growing season (that
174	is, at low latitudes), or at lower pCO_2 in cooler climates ^{4,5} . Thus, both terrestrial and
175	marine photosynthesizers may be showing adaptation at a common pCO_2 threshold.

176

177	We show that the large array of isotopic fractionations in modern coccolith carbonate is
178	indicative of the operation of strong carbon-concentrating mechanisms in
179	coccolithophore cells, which became highly significant since the latest Miocene. We
180	speculate that this change occurred as a threshold response to increased CO ₂ limitation,
181	beginning in the late Miocene in the tropical oceans and progressing to higher latitudes
182	by the earliest Pliocene. This increase in the degree of active carbon uptake by
183	coccolithophores will need to be accounted for in the application of ϵ_p to estimates of
184	$[CO_2]$ (ref. 30). The relatively low $[CO_2]$ threshold suggested to have driven the late
185	Miocene diversification of coccolithophore carbon acquisition strategies is consistent
186	with estimates of less than 500 p.p.m.v. pCO_2 required to promote the tropical C ₄ -
187	dominated ecosystems that also expanded over this interval ⁴⁻⁶ . We speculate that such a
188	low pCO_2 threshold, affecting both marine and terrestrial primary producers, could be
189	reversed within decades as a result of rapid anthropogenic CO ₂ release and absorption
190	by the ocean.

191

192 Methods summary

We adapt a model for the δ^{13} C composition of photosynthetically fixed carbon in 193 diatoms³¹ with an additional module for the coccolith vesicle, allowing us to simulate 194 the δ^{13} C of coccolith calcite as a function of the passive and active carbon fluxes into 195 196 the coccolith vesicle and cell (model ACTI-CO; see Supplementary Discussion). 197 Coccolith size fractions were separated from bulk IODP sediment samples using site-198 specific and interval-specific settling and microfiltration protocols (Supplementary Methods). Coccolith δ^{18} O and δ^{13} C were measured on a Nu Perspective dual-inlet 199 200 isotope ratio mass spectrometer connected to a NuCarb carbonate preparation system,

201	with an analytical precision of 0.06‰ for $\delta^{18}O$ and 0.05‰ for $\delta^{13}C$ (1 σ), at Oviedo
202	University. Mean reproducibility, based on duplicate analyses of splits of 21 random
203	samples from Sites 999 and 1088, is 0.08‰ for $\delta^{18}O$ and 0.06‰ for $\delta^{13}C$ (1 σ). Sr/Ca
204	was determined in two coccolith size fractions at both Sites 999 and 1088. Reducing
205	and ion-exchange treatments were first applied to clean the samples, followed by gentle
206	dissolution in acetic acid with an ammonium acetate buffer for 12 h. Calcium content
207	was measured on a split of all samples, which were then diluted to constant calcium
208	concentrations for Sr/Ca analysis by inductively coupled plasma optical emission
209	spectroscopy on a Thermo ICAP DUO 6300 at Oviedo University. Sr/Ca data were
210	corrected for site-specific variations in sea surface temperature (Supplementary
211	Methods). All coccolith counts were performed on standard smear slides with a light
212	microscope under cross-polarized light at x1250 magnification. To assess preservation,
213	coccolith samples on polycarbonate filters were mounted onto a stub, coated with gold
214	and imaged on a JEOL 6610LV scanning electron microscope.

215

216 **References**

217	1	Tortell, P. D. Evolutionary and Ecological Perspectives on carbon acquisition in
218		phytoplankton. Limnology and Oceanography 45, 744-750 (2000).

- 219 2 Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal and aquatic
 220 plant carbon concentrating mechanisms in relation to environmental change.
 221 *Photosynthesis Research* 109 (2011).
- Reinfelder, J. R. Carbon Concentrating Mechanisms in Eukaryotic Marine
 Phytoplankton. *Annual Review of Marine Science* 3, 291-315 (2011).

224	4	Cerling, T. E. et al. Global vegetation change through the Miocene-Pliocene
225		boundary. Nature 389, 153-158 (1997).
226	5	Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C ₄ photosynthesis,
227		atmospheric CO ₂ , and climate. <i>Oecologia</i> 112 , 285-299 (1997).
228	6	Zhang, C. et al. C4 expansion in central Inner Mongolia during the latest
229		Miocene and early Pliocene. Earth and Planetary Science Letters 287, 311-319
230		(2009).
231	7	Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature
232		Geoscience 4 , 418-420 (2011).
233	8	van de Wal, R. S., de Boer, B., Lourens, L. J., Köhler, P. & Bintanja, R.
234		Reconstruction of a continuous high-resolution CO ₂ record over the past 20
235		million years. Climate of the Past 7, 1459-1469 (2011).
236	9	Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on
237		greenhouse warming and carbon-cycle dynamics. <i>Nature</i> 451 , 279-283 (2008).
238	10	Dudley, W. C., Blackwelder, P., Brand, L. & Duplessy, J. C. Stable isotopic
239		composition of coccoliths. <i>Marine Micropaleontology</i> 10 , 1-8 (1986).
240	11	Ziveri, P. et al. Stable isotope "vital effects" in coccolith. Earth and Planetary
241		Science Letters 210, 137-149 (2003).
242	12	Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton:
243		response and isotopic fractionation with changing carbonate chemistry in two
244		coccolithophore species. Climate of the Past 6, 771–785 (2010).

245	13	Bolton, C. T., Stoll, H. M. & Mendez Vicente, A. Vital effects in coccolith
246		calcite: Cenozoic climate- p CO ₂ drove the diversity of carbon acquisition
247		strategies in coccolithophores? Paleoceanography 27 (2012).
248	14	Stoll, H. M. Limited range of interspecific vital effects in coccolith stable
249		isotopic records during the Paleocene-Eocene thermal maximum.
250		Paleoceanography 20, PA1007 (2005).
251	15	Rost, B., Zondervan, I. & Riebesell, U. Ligh-dependent carbon isotope
252		fractionation in the coccolithophorid Emiliania huxleyi. Limnology and
253		Oceanography 47, 120-128 (2002).
254	16	Bach, L. T. et al. Dissecting the impact of CO ₂ and pH on the mechanisms of
255		photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New
256		Phytologist 199, 121-134. doi: 10.1111/nph.12225 (2013).
257	17	Ziveri, P., Thoms, S., Probert, I., Geisen, M. & Langer, G. A universal carbonate
258		ion effect on stable isotope ratios in unicellular planktonic calcifying organisms.
259		Biogeosciences 9, 1025-1032 (2012).
260	18	Kameo, K. & Sato, T. Biogeography of Neogene calcareous nannofossils in the
261		Caribbean and the eastern equatorial Pacific- floral response to the emergence of
262		the Isthmus of Panama. Marine Micropaleontology 39, 201-218 (2000).
263	19	Schneider, B. & Schmittner, A. Simulating the impact of the Panamanian
264		seaway closure on ocean circulation, marine productivity and nutrient cycling.
265		Earth and Planetary Science Letters 246, 367-380 (2006).
266	20	Kürschner, W. M., Kvacek, Z. & Dilcher, D. L. The impact of Miocene
267		atmospheric carbon dioxide fluctuations on climate and the evolution of

- terrestrial ecosystems. *Proceedings of the National Academy of Sciences USA*105, 449-453 (2008).
- 270 21 Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric
 271 carbon dioxide. *Paleoceanography* 14, 273-292 (1999).
- 272 22 Pagani, M. *et al.* The role of carbon dioxide during the onset of Antarctic
 273 glaciation. *Science* 334, 1261-1264 (2011).
- 274 23 Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through
 275 the Eocene-Oligocene climate transition. *Nature* 461 (2009).
- 276 24 Preiss-Daimler, I., Baumann, K.-H. & Heinrich, R. Carbonate budget mass
- estimates for Neogene discoasters from the Equatorial Atlantic (Ceara Rise:

278 ODP Site 927). *Journal of Micropaleontology* **31**, 169-178 (2012).

- 279 25 Stoll, H. M. *et al.* Insights on coccolith chemistry from a new ion probe method
 280 for analysis of individually picked coccoliths. *Geochemistry Geophysics*
- 281 *Geosystems* **8**, doi:doi:10.1029/2006GC001546 (2007).
- 282 26 Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate
- 283 sensitivity determined from Pliocene carbon dioxide concentrations. *Nature*284 *Geoscience* 3, 27 30 (2009).
- 285 27 Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. A 40 million286 year history of atmospheric CO₂. *Philisophical Transactions of the Royal*287 *Society A* (In press).
- 288 28 LaRiviere, J. P. *et al.* Late Miocene decoupling of oceanic warmth and
 289 atmospheric carbon dioxide forcing. *Nature* 486, 97-100 (2012).

290	29	Huang, Y., Clemens, S. C., Liu, W., Wang, Y. & Prell, W. L. Large-scale
291		hydrological change drove the late Miocene C ₄ plant expansion in the
292		Himalayan foreland and Arabian Peninsula. Geology 35, 531-534, doi:
293		10.1130/G23666A (2007).
294	30	Laws, E. A., Popp, B. N., Cassar, N. & Tanimoto, J. 13C discrimination patterns
295		in oceanic phytoplankton: likely influence of CO ₂ concentrating mechanisms,
296		and implications for palaeoreconstructions. Functional Plant Biology 29, 323-
297		333 (2002).
298	31	Hopkinson, B. M., Dupont, C. L., Allen, A. E. & Morel, F. M. M. Efficiency of
299		the CO ₂ -concentrating mechanism of diatoms. Proceedings of the National
300		Academy of Sciences USA 108, 3830-3837 (2011).
301		
302	Supple	ementary Information is linked to the online version of the paper at
303	<u>www.r</u>	nature.com/nature.
304		

305 Acknowledgements We thank L. Abrevaya and A. Mendez for laboratory assistance

306 and K. Lawrence for access to unpublished data. This work used samples provided by

307 the (Integrated) Ocean Drilling Program (IODP). The IODP is sponsored by the U.S.

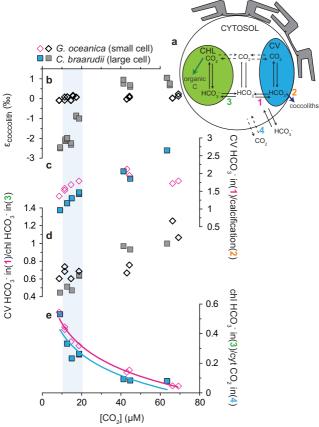
308 National Science Foundation and participating countries under management of the

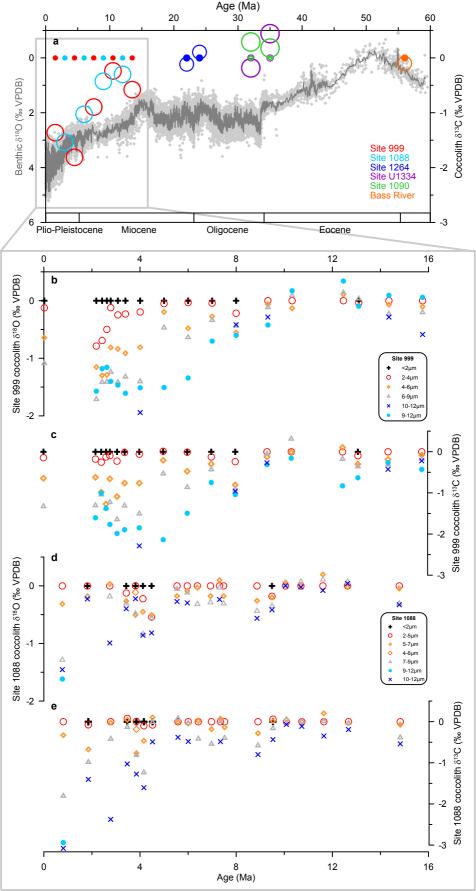
309 IODP Management International, Inc (IODP-MI). Funding for this research was

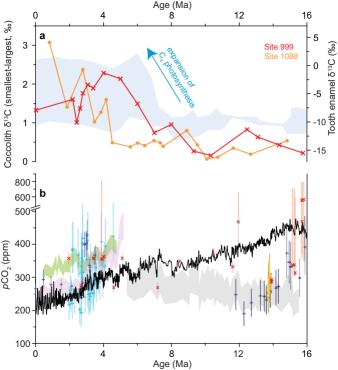
310 provided by European Research Council grant UE-09-ERC-2009-STG-240222-PACE

311 (H.M.S.) and a DuPont Young Professor Award to H.M.S.

312


313	Author Contributions C.T.B. and H.M.S. designed the study and wrote the paper.
314	C.T.B. separated coccoliths and performed stable isotope, light microscope and
315	scanning electron microscope analyses. H.M.S. designed and ran the model.
316	
317	Author Information Reprints and permissions information is available at
318	www.nature.com/reprints. The authors declare no competing financial interests. Readers
319	are welcome to comment on the online version of this article at www.nature.com/nature.
320	Correspondence and requests for materials should be addressed to C.T.B.
321	(cbolton@geol.uniovi.es).
322	
323	Figure captions
324	Figure 1: HCO ₃ ⁻ allocation to the chloroplast and coccolith vesicle inferred from
325	$\varepsilon_{coccolith}$ measured in culture. a, simplified modelled coccolithophore carbon fluxes
326	(details in Supplementary Fig. 1). CV, coccolith vesicle, CHL, chloroplast. Dashed
327	black arrows represent passive fluxes, and solid black arrows represent active fluxes. b ,
328	$\epsilon_{coccolith}$ as a function of [CO ₂] (data from ref. 12; propagated analytical uncertainly
329	0.1‰). c , Coccolith vesicle HCO_3^- influx relative to calcification, d , Coccolith vesicle
330	HCO_3^- influx relative to chloroplast HCO_3^- influx, e , Chloroplast HCO_3^- influx relative
331	to diffusive CO_2 uptake by cell. Data in c - e are inferred from inverse model
332	(Supplementary Information) using default parameters (Supplementary Table 1).
333	Symbols in b-e: diamonds, Gephyrocapsa oceanica; squares, Coccolithus pelagicus
334	subsp. braarudii. Blue shading indicates the range of steepest dependence of $\epsilon_{coccolith}$ on
335	[CO ₂].
336	


Figure 2: Divergence of vital effects in coccoliths. a, Benthic foraminiferal δ^{18} O (ref. 337 9) (data points in light grey, smoothed with seven-point running mean) and δ^{13} C of 338 smallest and largest coccoliths (coloured circles). All δ^{18} O and δ^{13} C values are 339 340 measured against Vienna Pee Dee Belemnite (VPDB). See Supplementary Fig. 10 for 341 complete size fraction data. Bubble size scales with approximate coccolith size. For the 342 Neogene, mean values for 3-Myr time windows are shown from Sites 999 and 1088. The grey box denotes the time interval in **b-e** (16-0 Myr ago). **b**, **c**, δ^{18} O (**b**) and δ^{13} C (**c**) 343 of different-sized coccoliths from Site 999. **d**, **e**, δ^{18} O (**d**) and δ^{13} C (**e**) of different-sized 344 345 coccoliths from Site 1088. To remove secular trends and highlight differences between 346 size fractions, all coccolith isotopes are normalized to the smallest coccolith size fraction in each sample. Note the different scales of δ^{18} O and δ^{13} C axes. 347


348

349 Figure 3: Evolution of vital effects in coccoliths, C_4 photosynthesis, and pCO_2 since **16 Myr ago. a**, δ^{13} C difference between smallest and largest coccolith size fractions at 350 351 Sites 999 (red) and 1088 (orange) and the range of tooth enamel δ^{13} C values (blue 352 shading; data from ref. 4; only North American data <37° plotted; however other regions show a similar pattern). The propagated analytical uncertainty on coccolith $\delta^{13}C$ 353 354 differences is 0.07‰. **b**, Estimates of pCO_2 from various proxies: for a minifer boron 355 isotopes (blue and yellow horizontal crosses), stomata (red diagonal crosses), alkenone δ^{13} C maximum and minimum estimates (pink, green, grey and orange shading), and 356 inverse modelling of deep-sea δ^{18} O (black line). Note the change in scale at 500 357 358 p.p.m.v. Vertical error bars represent the uncertainty reported in published pCO_2 359 estimates. See Supplementary Information for pCO_2 data references and details of 360 uncertainty derivation for each reference.

361

