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This paper is devoted to investigate the anisotropic locally rotationally symmetric (LRS) Bianchi
type-I space-time in the context of the recently proposed f (Q) gravity in which Q is the non-
metricity scalar. For this purpose, we consider a linear form of f (Q) gravity model, specifically,
f (Q) = αQ + β, where α and β are free parameters and we analyzed the exact solutions of LRS
Bianchi type-I space-time. The modified Friedmann equations are solved by presuming an expansion
scalar θ (t) is proportional to the shear scalar σ (t) which leads to the relation between the metric po-
tentials as A = Bn where n is an arbitrary constant. Then we constrain our model parameters with
the observational Hubble datasets of 57 data points. Moreover, we discuss the physical behavior of
cosmological parameters such as energy density, pressure, EoS parameter, and deceleration parame-
ter. The behavior of the deceleration parameter predicts a transition from deceleration to accelerated
phases in an expanding Universe. Finally, the EoS parameter indicates that the anisotropic fluid be-
haves like the standard ΛCDM model.

I. INTRODUCTION

Observations of high redshift supernovae and cosmic
microwave background fluctuations (CMBR) [1–4] indi-
cated that the present acceleration epoch of the Universe
is accelerated. This late-time acceleration is due to an
unidentified fluid called dark energy (DE). Many sug-
gestions have been considered as a candidate to explain
the true nature of DE. The first is the cosmological con-
stant that encounters problems such as the incredibly
small value required by general relativity (GR) theory.
On other hand, the cosmological constant provided by
particle physics predictions is generally more than 50 or-
ders of magnitude than the actual value assumed by GR
[5]. This mysterious DE that is responsible for the cos-
mological acceleration and is estimated as 68% of the
total energy density of the Universe may require us to
reconsider the theory of gravity on cosmological scales.
The DE can be tested using an effective tool namely the
equation of state (EoS) parameter of the form ω = p

ρ ,
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which is the ratio of the cosmic pressure p to the cosmic
energy density ρ. Each DE model has a different EoS
parameter value, for example, in the case of the cosmo-
logical constant mentioned above ω = −1, also for the
quintessence model ω is bounded as −1 < ω < −0.33,
and finally ω < −1 for the phantom DE model.

Modified gravity theories (MGT) provide intriguing
theoretical concepts for addressing the cosmological
constant problem and explaining the late-time accelera-
tion of the Universe. Several DE models started from the
simplest modified gravity 1/R theory [6, 7]. In general,
MGT appears to be quite appealing since it provides
subjective solutions to a number of key problems con-
cerning DE. An alternative theory to GR is teleparallel
gravity by which gravitational interaction is described
by the torsion scalar T [8–10] in a space-time with zero
curvature. This theory is named teleparallel equivalent
to general relativity (TEGR) and formulated by tetrad
fields on the tangent space in the Weitzenbock connec-
tion which is different from the Levi–Civita connection
in GR. The advantage of working with f (T) models is
the order of the field equations, this allows simplifying
the dynamics and finding easily exact solutions. Sym-
metric teleparallel f (Q) gravity is also an alternative
theory in which the covariant derivative of the metric
tensor does not vanish, i.e. Qγµν = ∇γgµν. This the-
ory is called symmetric teleparallel equivalent to general rel-
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ativity (STEGR) [11, 12]. This new modified f (Q) grav-
ity where Q is the non-metricity scalar attracted inter-
est of many researchers [13–18]. Moreover, this theory
is based on the generalization of Riemannian geometry
described by Weyl geometry [19]. Generally, the gravita-
tional interaction is classified through three types of ge-
ometries: the curvature of space-time, torsion, and non-
metricity. For this reason, in recent decades researchers
have been attracted to MGT because they reflect the cur-
rent phenomena of the Universe. Therefore, gravita-
tional interactions have been calculated using several
forms of geometrics [20–22].

It has been stated by observations that the Universe is
homogeneous and isotropic when the inflationary phase
was successfully produced [23]. However, anomalies in
the CMBR lead to conclude that an anisotropic phase in
the early Universe which make it not exactly uniform
[24]. Thus, constructing cosmological models that de-
scribe the anisotropic and inhomogeneous properties of
the Universe must be taken into consideration. Toward
this goal, Bianchi-type models provide a good descrip-
tion of the anisotropic background and investigate the
cosmic evolution in the early Universe. In fact, there ex-
ist nine types of Bianchi models in the literature. Here,
we consider the anisotropic locally rotationally symmet-
ric (LRS) Bianchi type-I model which is assumed to be
a more general cosmological metric than Friedmann-
Lemaitre-Robertson-Walker (FLRW) metrics [25]. The
Bianchi type-I model is used to test the possible effects of
anisotropy in the early Universe [26]. Recently, cosmo-
logical models have been constructed using anisotropic
fluid in Bianchi type-I space-time. Moreover, some ex-
act Bianchi type-I solutions have also been investigated
in f (Q) modified gravity [27, 28]. The Bianchi type I
model usually presents good consistency with the most
simple mathematical form, considering the nature of
this model. Bianchi type I theory was studied in the con-
text of a viscous fluid to discuss the behavior of the early
Universe near the singularity [29].

The current article is organized as follows: In Sec.
II we discuss the theoretical basis for f (Q) gravity. In
Sec. III, we derive the field equations in the LRS Bianchi
type-I model. In Sec. IV, the cosmological solutions of
the field equations are calculated with anisotropic rela-
tion. In Sec. V we analyze the physical and geometri-
cal parameters of the cosmological model. Further, we
constrain our model parameters with the observational
Hubble datasets of 57 data points. Finally, the conclu-
sion of the results is given in Sec VI.

II. f (Q) GRAVITY FORMALISM

In differential geometry, the symmetric metric tensor
gµν is used based on the definition of the length of a vec-
tor, and an asymmetric connection Σγ

µν is used to define
the covariant derivatives and parallel transport. Hence,
the general affine connection can be decayed into three
components: the Christoffel symbol Γγ

µν, the contortion
tensor Cγ

µν, and the disformation tensor Lγ
µν, respec-

tively, which is given by [19]

Σγ
µν = Γγ

µν + Cγ
µν + Lγ

µν, (1)

where the Levi-Civita connection Γγ
µν of the metric gµν

has the form

Γγ
µν ≡

1
2

gγσ

(
∂gσν

∂xµ +
∂gσµ

∂xν
−

∂gµν

∂xσ

)
, (2)

the contorsion tensor Cγ
µν can be written as

Cγ
µν ≡

1
2

Tγ
µν + T(µ

γ
ν), (3)

where Tγ
µν ≡ 2Σγ

[µν] in Eq. (3) is the torsion tensor.
Finally, the disformation tensor Lγ

µν is derived from the
non-metricity tensor Qγµν as

Lγ
µν ≡

1
2

gγσ
(

Qνµσ + Qµνσ −Qγµν

)
. (4)

In the above equation, the non-metricity tensor Qγµν

is specific as the (minus) covariant derivative of the met-
ric tensor with regard to the Weyl-Cartan connection
Σγ

µν, i.e. Qγµν = ∇γgµν, and it can be obtained

Qγµν = −∂γgµν + gνσΣσ
µγ + gσµΣσ

νγ. (5)

The connection is presumed to be torsionless and
curvatureless within the current background. It corre-
sponds to the pure coordinate transformation from the
trivial connection mentioned in [11]. Thus, for a flat
and torsion-free connection, the connection (1) can be
parameterized as

Σγ
µβ =

∂xγ

∂ξρ ∂µ∂βξρ. (6)

Now, ξγ = ξγ (xµ) is an invertible relation. It is al-
ways possible to get a coordinate system so that the con-
nection Σγ

µν vanish. This condition is called coincident
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gauge and has been used in many studies of STEGR
[19] and in this condition the covariant derivative ∇γ

reduces to the partial derivative ∂γ. Thus, in the coinci-
dent gauge coordinate, we get

Qγµν = −∂γgµν. (7)

The symmetric teleparallel gravity is a geometric de-
scription of gravity equivalent to GR (STEGR) within
coincident gauge coordinates in which Σγ

µν = 0 and
Cγ

µν = 0, and consequently from Eq. (1) we can con-
clude that

Γγ
µν = −Lγ

µν. (8)

The modified Einstein-Hilbert action in symmetric
teleparallel gravity can be considered as

S =
∫ [ 1

2κ
f (Q) + Lm

]
d4x
√
−g, (9)

where κ = 8πG = 1, f (Q) can be expressed as the ar-
bitrary function of non-metricity scalar Q, g is the de-
terminant of the metric tensor gµν, and Lm is the matter

Lagrangian density. Now, the non-metricity tensor Qγµν

and its traces can be written as

Qγµν = ∇γgµν , (10)

Qγ = Qγ
µ

µ , Q̃γ = Qµ
γµ . (11)

In addition, the superpotential tensor (non-metricity
conjugate) can be expressed as

4Pγ
µν = −Qγ

µν + 2Q(µ
γ

ν) −Qγgµν − Q̃γgµν − δ
γ

(γ
Q

ν)
,

(12)
where the trace of the non-metricity tensor can be ob-
tained as

Q = −QγµνPγµν . (13)

Now, the matter energy-momentum tensor is defined
as

Tµν = − 2√−g
δ(
√−gLm)

δgµν . (14)

By varying the modified Einstein-Hilbert action (9)
with respect to the metric tensor gµν, the gravitational
field equations obtained as

2√−g
∇γ(

√
−g fQPγ

µν)−
1
2

f gµν + fQ(PνρσQµ
ρσ − 2PρσµQρσ

ν) = κTµν. (15)

where fQ = d f
dQ .

III. BIANCHI TYPE-I SPACE-TIME WITH FIELD
EQUATIONS

As mentioned in the Introduction, the standard FLRW
space-time is isotropic and homogeneous. Hence, to ad-
dress the anisotropic nature of the Universe in f (Q)
gravity, which manifests as anomalies found in the
CMB, the LRS Bianchi type-I space-time is indeed im-
portant because it represents a spatially homogeneous,
but not isotropic. Thus, we consider a Bianchi-type I
space-time in the form

ds2 = −dt2 + A2(t)dx2 + B2(t)(dy2 + dz2), (16)

where metric potentials A (t) and B (t) depend only
on cosmic time t. Here, to complete the choice of

the anisotropic type space-time, the equation of state
(EoS) parameter of the gravitational fluid must also be
generalized, and from another point of view, to give a
more reasonable model, an anisotropic nature must be
presented as described in [30].

Thus, the energy-momentum tensor for the
anisotropic fluid can be expressed as

Tµ
ν = diag(−ρ, px, py, pz) , (17)

= diag(−1, ωx, ωy, ωz)ρ,

= diag(−1, ω, (ω + δ), (ω + δ))ρ,

where ρ is the energy density of the anisotropic fluid,
px, py, pz are the pressures and ωx, ωy, ωz are the direc-
tional EoS parameters along x, y and z coordinates re-
spectively. The deviation from isotropy is parametrized
by setting ωx = ω and then introducing the deviations
along y and z axes by the skewness parameter δ, where
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ω and δ are functions of cosmic time t [27].
The non-metricity scalar of the anisotropic fluid leads to

Q = −2

(
Ḃ
B

)2

− 4
Ȧ
A

Ḃ
B

. (18)

From the gravitational field equations (15), the corre-
sponding modified Friedmann equations of LRS Bianchi
type-I space-time (16) for the anisotropic fluid of energy-
momentum tensor (17) can be written as [27]

f
2
+ fQ

4
Ȧ
A

Ḃ
B
+ 2

(
Ḃ
B

)2
 = ρ, (19)

f
2
− fQ

−2
Ȧ
A

Ḃ
B
− 2

B̈
B
− 2

(
Ḃ
B

)2
+ 2

Ḃ
B

Q̇ fQQ = −ωρ, (20)

f
2
− fQ

−3
Ȧ
A

Ḃ
B
− Ä

A
− B̈

B
−
(

Ḃ
B

)2
+

(
Ȧ
A

+
Ḃ
B

)
Q̇ fQQ = −(ω + δ)ρ. (21)

where the dot (.) denote derivative with respect to cos-
mic time t.

The directional Hubble parameters in the direction of
the x, y, and z-axis, respectively are given by

Hx =
Ȧ
A

, Hy = Hz =
Ḃ
B

. (22)

The average Hubble parameter, which expresses the
volumetric expansion rate of the Universe is given by

H =
1
3

V̇
V

=
1
3

[
Ȧ
A

+ 2
Ḃ
B

]
, (23)

where the average scale factor and spatial volume as

V = a3 = AB2. (24)

The mean anisotropy parameter is given by

∆ =
1
3

3

∑
i=1

(
Hi − H

H

)2
=

2
9H2

(
Hx − Hy

)2
. (25)

The expansion scalar θ(t) and the shear scalar σ(t) of
the fluid are defined as follows

θ(t) =
Ȧ
A

+ 2
Ḃ
B

, σ(t) =
1√
3

(
Ȧ
A
− Ḃ

B

)
. (26)

In order to simplify the form of the field equations
(19)-(21) and write them in terms of the non-metricity
scalar Q, the directional Hubble parameters Hx, Hy and
average Hubble parameter H, we use the following re-

lations: ∂
∂t

(
Ȧ
A

)
= Ä

A −
(

Ȧ
A

)2
and Q = −2H2

y − 4Hx Hy.
The field equations (19)-(21) becomes

f
2
−Q fQ = ρ, (27)

f
2
+ 2

∂

∂t

[
Hy fQ

]
+ 6H fQ Hy = −ωρ, (28)

f
2
+

∂

∂t

[
fQ(Hx + Hy)

]
+ 3H fQ

(
Hx + Hy

)
= −(ω+ δ)ρ.

(29)
Lastly, here we have three differential equations with

six unknowns namely, f , Hx, Hy, ρ, ω, and δ. The ex-
act solutions of these equations are examined in the next
section.

IV. COSMOLOGICAL SOLUTIONS OF FIELD
EQUATIONS

In order to completely solve the field equations, some
other constraints must be added. Although the prob-
lems discussed in the introduction above, the cosmolog-
ical constant Λ in GR is by far the most successful model
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among all the proposed alternatives, and thus this moti-
vates us to examine following linear form of f (Q) grav-
ity model [31],

f (Q) = αQ + β, (30)

where α and β are free model parameters.
Now, using (30) and subtracting (28) from (29), we get

d
dt

(
Hx − Hy

)
+
(

Hx − Hy

) .
V
V

= − δρ

α
. (31)

This on integrating gives

(
Hx − Hy

)
=

c
αV

e

∫ δρ

α(Hy−Hx)
dt

, (32)

where c is constant of integration.
In order to find the exact solutions to the above equa-

tion, we will follow the work of Adhav [32] and Sahni
[33], and uses the condition that

δ =
α

ρ

(
Hy − Hx

)
. (33)

Using Eq. (33) in Eq. (32), we obtain this expression

(
Hx − Hy

)
=

c
αV

et. (34)

The above equation can be written in terms of the

metric potentials A (t) and B (t) as
( .

A
A −

.
B
B

)
= c

αAB2 et.

By looking at this last equation, we are left with one
differential equation and two unknowns, namely A (t)
and B (t). Hence, we need a supplementary constraint
to finally solve Eq. (34). In this work, we use the
anisotropic relation i.e. the physical condition that the
expansion scalar θ (t) is proportional to the shear scalar
σ (t) (θ2 ∝ σ2), which leads to the relation between the
metric potentials as

A = Bn, (35)

where n is an arbitrary real number and we think n 6= 0,
and 1 for non-trivial solutions. According to Thorne [34]
this physical law is justified on the basis of the obser-
vations of the velocity redshift relation for extragalac-
tic sources which suggest that the Hubble expansion of
the Universe is isotropic at present time within 30% [35].
More exactly, the redshift studies place the limit σ

θ ≤ 0.3,
the ratio of the shear to the expansion scalar in the vicin-
ity of our galaxy at present time. Collins et al. [36]
pointed out that the normal congruence to the homoge-
neous expansion for spatially homogeneous metric sat-
isfies the condition σ

θ =constant. Bunn et al. [37] con-
ducted statistical analysis on 4-yr data from CMB and
set a limit for primordial anisotropy to be less than 10−3

in Planck epoch. Many researchers have used this con-
dition to find exact solutions of field equations in many
backgrounds [38, 39].

Hence, using the above considerations and condition
(35), Eq. (34) takes the form

.
B
B
− c

α (n− 1) Bn+2 et = 0, (36)

which yields a solution

A (t) = cn
1

[
(n + 2) et

α (n− 1)
+ c2

] n
n+2

, (37)

B (t) = c1

[
(n + 2) et

α (n− 1)
+ c2

] 1
n+2

, (38)

where c1 = c
1

n+2 and c2 both are the constants of inte-
gration. Thus, using Eqs. (37) and (38), the metric in Eq.
(16) takes the form

ds2 = −dt2 + c2n
1

[
(n + 2) et

α (n− 1)
+ c2

] 2n
n+2

dx2 + c2
1

[
(n + 2) et

α (n− 1)
+ c2

] 2
n+2

(dy2 + dz2). (39)

V. EVOLUTION OF COSMOLOGICAL PARAMETERS

In this section, we will discuss some basic physical
and geometrical parameters to validate the cosmologi-

cal model, such as the spatial volume, expansion scalar,
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shear scalar, average Hubble parameter, anisotropic pa-
rameter, energy density, pressure, EoS parameter, skew-
ness parameter, and deceleration parameter.

Firstly, from Eq. (18), the non-metricity scalar be-
comes

Q = − 2(2n + 1)e2t[
c2(n− 1)α + (n + 2)et

]2 (40)

The spatial volume of the Universe becomes

V = Bn+2 = cn+2
1

[
(n + 2) et

α (n− 1)
+ c2

]
. (41)

The expansion scalar and the shear scalar becomes

θ(t) =
(n + 2)et

c2(n− 1)α + (n + 2)et , σ(t) =
(n− 1)et

√
3
[
c2(n− 1)α + (n + 2)et

] . (42)

The average Hubble parameter is obtained as

H =
(n + 2)et

3
[
c2(n− 1)α + (n + 2)et

] (43)

Using Eqs. (37), (38), and (43) in (25), we obtain the
anisotropy parameter as follows

∆ =
2(n− 1)2

(n + 2)2 . (44)

From Eqs. (40) and (41), we observed that the non-
metricity scalar is time-dependent, and the spatial vol-

ume of the Universe is zero in the initial time t = 0 and
increasing function of cosmic time. Thus, it can be said
that in our model the evolution of the Universe begins
with the Big Bang scenario. Also, from Eqs. (42)-(43) we
can see that the expansion scalar, shear scalar and aver-
age Hubble parameter diverge at t = 0 and have a finite
value at t→ ∞. It is also possible to look at the isotropic
condition σ2

θ2 , as it takes a constant value from the early
time to the late time. Therefore, our model appears that,
it does not come close to the isotropy throughout the
evolution of the Universe, and this is confirmed by Eq.
(44) where we see that the anisotropic parameter is con-
stant for our model.

Using Eqs. (30) and (40) in Eq. (27), we obtain the
energy density of the Universe as

ρ =
α2βc2

2(n− 1)2 + 2αβc2

(
n2 + n− 2

)
et + e2t

[
α(4n + 2) + β(n + 2)2

]
2
[
αc2(n− 1) + (n + 2)et

]2 (45)

Similarly, using Eqs. (30), (37), (38), (40), and (43) in Eq. (28), we obtain the pressure of the Universe as

p = −
α2βc2

2(n− 1)2 + 2αc2(n− 1)et [2α + β(n + 2)
]
+ e2t

[
6α + β(n + 2)2

]
2
[
αc2(n− 1) + (n + 2)et

]2 (46)

Thus, the EoS parameter of the Universe is obtained as

ω = −
α2βc2

2(n− 1)2 + 2αc2(n− 1)et [2α + β(n + 2)
]
+ e2t

[
6α + β(n + 2)2

]
α2βc2

2(n− 1)2 + 2αβc2
(
n2 + n− 2

)
et + e2t

[
α(4n + 2) + β(n + 2)2

] (47)

From Eqs. (33), (37), and (38), the skewness parameter is obtained as

δ = −
2α(n− 1)et

[
αc2(n− 1) + (n + 2)et

]
α2βc2

2(n− 1)2 + 2αβc2
(
n2 + n− 2

)
et + e2t

[
α(4n + 2) + β(n + 2)2

] (48)

A. Observational constraints

In the above discussions, we have described the f (Q)
gravity and solved the field equation. The expressions

of the Hubble parameter H(t) in (43) can be expressed
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in terms of redshift z as,

77 78 79 80
H0

1.5

1.0

0.5

0.0

c 2

0.0

0.5

1.0

c 1

0

2

4

n

H0 = 78.7+1.0
1.1

0 2 4
n

n = 1.1+1.9
1.8

0.2 0.6 1.0
c1

c1 = 0.47+0.34
0.34

1.5 1.0 0.5 0.0
c2

c2 = 0.72+0.65
0.70

FIG. 1. The 1− σ and 2− σ likelihood contours for the model parameters using Hubble datasets.

H(z) = H0
−1 + cn+2

1 c2 (1 + z)3

−1 + cn+2
1 c2

, (49)

where a (t) = (1 + z)−1 with a(t0) = a0 = 1, suffix 0
representing the value of parameter at t = t0 and t0
is the present time. The functional form of H(z) con-
tains three model parameters c1, c2 and n together with
H0. In order to describe the evolotion of some cos-
mological parameters in our obtained model, we need
to choose some appropriate values of these model pa-
rameters. So, we consider here the Observational Hub-
ble Datasets (OHD) to get some best fit values of these
model parameters. We have used recently compiled 57

data points from OHD as in the reference [40], which
is used in several papers. Scipy optimization technique
from Python library is used here together with the con-
sideration of a Gaussian prior with a fixed σ = 1.0 as
the dispersion using Python’s emcee package. The re-
sults are shown in the contour plots (two-dimensional)
with 1− σ and 2− σ errors. The Chi-square function for
our analysis is given by,

χ2
H(c1, c2, n) =

57

∑
i=1

[Hth(zi, c1, c2, n)− Hobs(zi)]
2

σ2
H(zi)

, (50)

where Hobs is the observed value of the Hubble param-
eter and Hth is its theorised value and the symbol σH(zi)
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z)
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FIG. 2. The figure shows the error bar plot of the considered 57 points of Hubble datasets together with the fitting of Hubble
function H(z) vs. redshift z for our obtained model (red line) compared with that of standard ΛCDM model (black dashed line).

is the standard error in the observed value of the H(z).
With the above set up, we have found the best fit values
of the model parameters for the observational Hubble
dataets as c1 = 0.191+0.093

−0.093, c2 = 1.21+0.13
−0.13, n = 1.21+0.13

−0.13.
The result is shown in Fig. (1) as a two dimensional con-
tour plots with 1− σ and 2− σ errors.

Additionally, we observed our derived model has
nice fit to the aforementioned Hubble datasets. The
error bars for the considered datasets and the ΛCDM
model (with ΩΛ0 = 0.7 and Ωm0 = 0.3) are also plotted
along with our model for comparision. This is displayed
in Fig. (2),

B. Physical interpretation of some cosmological
parameters of the model

In cosmology, the deceleration parameter q is a mea-
sure of the variation in the expansion of the Universe, if
q < 0 the Universe is in a phase of accelerated expansion
and if q > 0 the Universe is in a phase of decelerated ex-
pansion and is defined as q = −1 + d

dt

(
1
H

)
. For the

model under discussion, the deceleration parameter is
obtained as,

q =

e−t
[
(n + 2)

(
−et
)
− 3c2(n− 1)α

]
n + 2

, (51)

which can be written in terms of redshift z as,

q(z) = −1 +
3cn+2

1 c2 (1 + z)3

−1 + cn+2
1 c2 (1 + z)3 . (52)

The plot for the deceleration parameter in Fig. (3) ex-
hibits a phase transition from early deceleration to the
current acceleration of the Universe with current value
corresponding to the observational Hubble datasets
q0 ∼ −0.7804.

-1 0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

1.5

z

q

FIG. 3. q versus redshift zcorresponding to the values of the
parameters constrained by the Hubble datasets.

From Fig. (4), it is clear that the energy density of the
Universe is an increasing function of cosmic redshift z
and also it remains positive for all redshift values. It
starts with large positive values and approaches zero in
the future i.e. z → −1. Fig. (5) indicates that the pres-
sure of the Universe is also an increasing function of cos-
mic redshift z, which starts with large positive values
and then becomes negative in the present period (z = 0)
and in the future, the negative pressure pushes the Uni-
verse to the phase of acceleration, as indicated by astro-
nomical observations. The EoS parameter is a relation-
ship between energy density and pressure, and helps us
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determine the phases the Universe has gone through.
The matter phase at ω = 0. Next, ω = 1

3 exhibit the
radiation-dominated phase, while ω = −1 corresponds
to the ΛCDM model. In addition, the acceleration phase
of the Universe is described at ω < − 1

3 which includes
the quintessence (−1 < ω ≤ − 1

3 ) and phantom model
(ω < −1). Moreover, the EoS parameter presented in
Fig. (6) indicates that the anisotropic fluid behaves like
the ΛCDM model [41]. The current value of EoS param-
eter corresponding to the observational Hubble datasets
is ω0 ∼ −1. In Fig. (7) we see that the skewness param-
eter evolves in the range of negative values and tends
towards values close to zero in the future, which con-
firms the previous discussion that our model remains
under anisotropic behavior throughout the expansion of
the Universe. Thus, this anisotropic cosmological f (Q)
model simulates the standard ΛCDM model.
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4

5

6

7

z

r

FIG. 4. ρ versus redshift z corresponding to the values of the
parameters constrained by the Hubble datasets.
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FIG. 5. p versus redshift z corresponding to the values of the
parameters constrained by the Hubble datasets.
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FIG. 6. ω versus redshift z corresponding to the values of the
parameters constrained by the Hubble datasets.
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FIG. 7. δ versus redshift z corresponding to the values of the
parameters constrained by the Hubble datasets.

VI. CONCLUDING REMARKS

In this paper, we investigated the homogeneous and
anisotropic LRS Bianchi-I space-time in the framework
of f (Q) modified gravity, where the non-metricity Q is
the basis of gravitational interactions with zero curva-
ture and torsion. The physical motivation for explor-
ing the anisotropic Universe is the small deviations from
the isotropy observed by the nine-year Wilkinson Mi-
crowave Anisotropy probe (WMAP) [42], which could
yield more realistic results, especially with the f (Q)
modified theory of gravity. First, we briefly presented
the mathematical formalism of the theory, then we de-
rived the field equations for the LRS Bianchi-I space-
time for the content of the Universe in the form of a
perfect anisotropic fluid as in references [27, 28]. To get
the exact solutions and study dark energy in f (Q) grav-
ity, motivated by the cosmological constant (Λ), we have
considered the following linear model f (Q) = αQ + β,
where α and β are free model parameters. Further, to
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complete the solutions we used the assumption that the
scalar expansion θ (t) is proportional to the shear scalar
σ (t), which leads to the relation between the metric
potentials in the form A = Bn, where n is an arbi-
trary constant. We obtained the best fit values of the
model parameters by using the observational Hubble
datasets of 57 data points. The obtained best fit values
are c1 = 0.191+0.093

−0.093, c2 = 1.21+0.13
−0.13, n = 1.21+0.13

−0.13.

Under these considerations, we found the complete
solutions to the field equations and we have investi-
gated the behavior of some cosmological parameters
such as: The spatial volume of the Universe is zero in
the initial time t = 0, which suggests that the evolution
of the Universe begins with the Big Bang scenario and
thus the model has a point type singularity [43]. The
expansion scalar, shear scalar, and average Hubble pa-
rameter diverges at t = 0 and become a finite value at
t → ∞. To test the anisotropy of the model, we have
studied the behavior of the anisotropic parameter and
found that it takes a constant value throughout the ex-
pansion of the Universe. Further, for physical proper-
ties, we have discussed the behavior of energy density
ρ, pressure p, equation of state (EoS) parameter ω, and
skewness parameter δ with the help of Figs. (4)-(7). We
have found the positive energy density and negative
pressure, which results in the EoS parameter behaving
like the standard ΛCDM model and its current value
corresponding to the observational Hubble datasets is
ω0 ∼ −1. Thus, this value is consistent with the obser-
vational constraints on the dark energy EoS ω such as

ω0 = −1.03± 0.03 [24], which suggests its value should
be highly close to -1. In our model, we have discussed
the behavior of skewness parameter which is an effec-
tive tool for checking whether the model is anisotropic
or not, because in the case of an isotropic Universe,
δ = 0, and we have found that it changes in the range of
negative values and tends towards values close to zero
in the future, which confirms that our model remains
under anisotropic behavior throughout the expansion
of the Universe. In addition, we observed that for all
values of n the deceleration parameter exhibits a phase
transition from early deceleration to the current acceler-
ation of the Universe with current value corresponding
to the observational Hubble datasets q0 ∼ −0.7804. Fi-
nally, it can be said that this type of result agrees well
with the accelerating scenario of the Universe.
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