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Abstract

This paper investigates the late-time behaviour of certain cosmological models

where oscillations play an essential role. Rigorous results are proved on the

asymptotics of homogeneous and isotropic spacetimes with a linear massive

scalar field as source. Various generalizations are obtained for nonlinear

massive scalar fields, k-essence models and f (R) gravity. The effect of adding

ordinary matter is discussed as is the case of nonlinear scalar fields whose

potential has a degenerate zero.

PACS numbers: 98.80.−k, 04.20.−q

1. Introduction

Scalar fields are important in cosmology as a mechanism for producing models with accelerated

expansion, both in the very early universe (inflation) and in more recent epochs. The

mathematical properties of spatially homogeneous solutions of the Einstein equations coupled

with different types of scalar field and ordinary matter have been studied in a number of papers

[3–5, 9–11] in the case that there is accelerated expansion in the whole future of some late time.

A corresponding analysis of situations where the accelerated expansion is only temporary,

being succeeded by decelerated expansion, has not yet been carried out. One reason for this

is that, in contrast to what is found for models with continuing accelerated expansion, the

behaviour of the simplest models, which are homogeneous, isotropic and spatially flat, does

not carry over to more general homogeneous models. In this paper the very simplest case of

this type, the massive linear scalar field, is analysed. Then a number of other cases showing

similar late-time behaviour are discussed.

Consider solutions of the Einstein equations coupled to a massive scalar field which are

homogeneous, isotropic and spatially flat. The standard picture of the dynamics of these

solutions is as follows [1]. (See also the earlier papers [14, 15].) The solutions exhibit

accelerated expansion at intermediate times and eventually enter a phase where they are on

average decelerated and resemble dust solutions. The main aim of this paper is to prove
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rigorous results about the late-time behaviour. Formulae for this can be found in the literature

(see for instance [6]). Here a proof will be presented that these formulae do provide asymptotic

expansions for all solutions in a precise sense. A curious fact, which does not seem to be

mentioned in the literature, is that it is a consequence of the asymptotic expressions that each

solution has infinitely many phases of accelerated expansion. The early and intermediate time

behaviour will not be discussed further here but note that some rigorous results on this were

obtained in [8].

A key reason why the massive scalar field is more difficult to handle than the types of

the scalar field which have previously been treated mathematically is the following. When

deriving asymptotic expansions in this case it is repeatedly necessary to estimate integrals with

upper limit infinity which are convergent but not absolutely convergent. The convergence of

the integral, which is required for the proof, results from the cancellation of positive and

negative contributions. In other words, there are oscillations in the solution which continue to

have a significant effect for all times.

The paper is organized as follows. In section 2 asymptotic expansions are proved for

the basic example, the massive scalar field. This is generalized to a large class of nonlinear

massive scalar fields in section 3. It is shown that a number of features of the asymptotics are

unchanged and the expansion is derived up to the point where the first modification occurs. It

is discussed briefly how these results can be applied to f (R) theories of gravity. Analogous

results for certain k-essence models are also derived. In all of this the only matter present is

the scalar field. The question of the incorporation of ordinary matter such as a perfect fluid

is discussed in section 4. In section 5 it is investigated what happens for a scalar field whose

potential has a degenerate minimum where it vanishes. Conclusions and possible extensions

of the results obtained are the subject of the last section.

2. The massive scalar field

This section is concerned with a massive linear scalar field φ minimally coupled to the Einstein

equations under the assumptions of a spatially flat Friedmann model and the absence of any

other matter fields. To simplify the computations it is assumed that the scalar field has unit

mass. The scale factor is denoted by a and the Hubble parameter is given by H = ȧ/a. The

equation of motion of the scalar field is φ̈ + 3Hφ̇ + φ = 0 and the Hamiltonian constraint is

H 2 = 4π
3

(φ̇2 + φ2). The evolution equation for H is Ḣ = −4πφ̇2. If H is zero at any time t1
then the initial data for the scalar field at time t1 vanish. Thus, the scalar field vanishes at all

times as does H. This is just a flat space and so from now on it will be assumed that H never

vanishes. It must have a constant sign, and this sign is chosen to be positive corresponding to

an expanding model. The equation of motion of φ can be rewritten as

φ̈ +
√

12π(φ̇2 + φ2)1/2φ̇ + φ = 0. (1)

The function H cannot increase and so it must tend to a limit H0 as t → ∞. It will now

be shown that H0 vanishes. Assume that H0 > 0 with the aim of deriving a contradiction.

The functions φ and φ̇ are both bounded as is H. From the equation of motion it follows that

the same is true for φ̈. Differentiating the equation repeatedly with respect to time shows that

higher derivatives of φ are also bounded. Let {tn} be a sequence tending to infinity and let

φn(t) = φ(t + tn) and Hn(t) = H(t + tn). Using the bounds already listed, the Arzela–Ascoli

theorem [13] can be applied. This implies that, after passing to a subsequence, φn(t) converges

uniformly on compact sets to a limit φ∞(t). Moreover, the first and second derivatives of φn

converge to the corresponding derivatives of φ∞. The sequence Hn converges uniformly to
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the constant value H0. With this information it is possible to pass to the limit in equation (1)

to obtain

φ̈∞ + 3H0φ̇∞ + φ∞ = 0. (2)

From the Hamiltonian constraint it follows that H 2
0 = 4π

3

(

φ̇2
∞ + φ2

∞
)

. Differentiating this

relation with respect to t and substituting (2) into the result shows that φ̇∞ = 0. It follows

that φ̈∞ = 0. Then using (2) again shows that φ∞ = 0 and this leads to a contradiction to the

assumption that H0 �= 0. Thus, in fact H(t) → 0 as t → ∞.

Next more detailed asymptotics will be obtained. The pair

(φ/(φ̇2 + φ2)1/2, φ̇/(φ̇2 + φ2)1/2)

defines a function of t with values in the unit circle. Thus, it is possible to define a real-

valued function θ(t) whose projection to the circle under identification modulo 2π is the given

function with values in the circle. The function θ is unique up to shifts of its argument by

integer multiples of 2π . Let r = (φ̇2 + φ2)1/2. Then the following equations can be derived:

ṙ = −
√

12πr2 sin2 θ (3)

θ̇ = −1 −
√

12πr sin θ cos θ. (4)

Given ǫ > 0 there exists a time t1 such that
√

12πr � ǫ for t � t1. It follows that on that

interval |θ̇ + 1| � ǫ. This means that

θ1 − (1 + ǫ)(t − t1) � θ(t) � θ1 − (1 − ǫ)(t − t1), (5)

where θ1 = θ(t1). The evolution equation for r can be rewritten in the form

r−1(t) = r−1(t1) +
√

3π

[

(t − t1) +

∫ θ1

θ(t)

cos 2θ ′θ̇−1(θ ′) dθ ′
]

. (6)

Suppose that ǫ < 1. Let k be the largest integer such that θ1 − kπ � θ(t). Then
∣

∣

∣

∣

∫ θ1−kπ

θ(t)

cos 2θ ′θ̇−1(θ ′) dθ ′
∣

∣

∣

∣

� π(1 − ǫ)−1. (7)

On the other hand,
∣

∣

∣

∣

∫ θ1

θ1−kπ

cos 2θ ′θ̇−1(θ ′) dθ ′
∣

∣

∣

∣

=
∣

∣

∣

∣

∫ θ1

θ1−kπ

cos 2θ ′[θ̇−1(θ ′) + 1] dθ ′
∣

∣

∣

∣

� kπǫ(1 − ǫ)−1

� ǫ(1 + ǫ)(1 − ǫ)−1(t − t1). (8)

Thus, the integral on the right-hand side of (6) is bounded in modulus by (1 − ǫ)−1(π +

ǫ(1 + ǫ)(t − t1)). Putting this information into (6) shows that

r−1(t) � r−1(t1) +
√

3π{−(1 − ǫ)−1π + [1 − ǫ(1 + ǫ)(1 − ǫ)−1](t − t1)}. (9)

As a consequence, r−1 grows linearly with t and r(t) = O(t−1). The evolution equation for

θ then implies that θ̇ + 1 = O(t−1) and that

θ(t) = −t + O(log t). (10)

Putting the improved estimate for θ̇ back into (6) shows that

r(t) =
1

√
3πt

+ O(t−2 log t). (11)
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Translating this to the original variables it can be seen that the leading-order contribution to H

is 2/3t and that the scale factor behaves asymptotically like t2/3. Thus, the late-time dynamics

is similar to that of a model with dust. To go further it is necessary to obtain an improved

estimate for θ . Note that

d

dt
(r cos 2θ) = ṙ cos 2θ − 2r sin 2θ θ̇ = 2r sin 2θ + O(t−2). (12)

Integrating the equation for θ̇ and using the above relation gives

θ = −t + C + O(t−1) (13)

for a constant C. This constant can be eliminated by choosing an appropriate origin for t. Then

θ = −t + O(t−1).

Consider now the asymptotic behaviour of the scalar field:

cos(θ(t)) = cos t cos(θ(t) + t) + sin t sin(θ(t) + t)

= cos t + O(t−1). (14)

Hence

φ(t) =
cos t
√

3πt
+ O(t−2 log t). (15)

Similarly

φ̇(t) =
sin t

√
3πt

+ O(t−2 log t). (16)

Putting the expressions for sin θ and cos θ into the equation for θ̇ gives

θ̇ = −1 − t−1 sin 2t + O(t−2 log t). (17)

This can now be substituted into (12) to get

d

dt
(r cos 2θ) = 2r sin 2θ −

2
√

3π
t−2 sin2 t cos 2t +

2
√

3π
t−2 sin2 2t + O(t−3 log t). (18)

The following lemma is useful for estimating the integral of oscillatory quantities. It is proved

by integrating by parts twice.

Lemma 1. Let F be a smooth periodic function with mean zero, f = F ′ and k a positive real

number. Then
∫ T

1

f (t)t−k dt = F(T )T −k + C + O(T −k−1) (19)

for a constant C.

Integrating (18), applying lemma 1 and noting that due to the information already obtained

the integration constant must vanish, it follows that

θ(t) = −t −
3 + 2 cos 2t

4t
+ O(t−2 log t). (20)

Putting the information now available into the equation for the time derivative of r−1 gives

d

dt
(r−1) =

√
3π

(

1 − cos 2t + sin 2t

(

3 + 2 cos 2t

2t

)

+ O(t−2 log t)

)

(21)

and after integration

r−1 =
√

3π

[

(t − t1) −
sin 2t

2

]

+ O(t−1 log t) (22)
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for a constant t1. It follows that

H =
2

3(t − t1)

[

1 +
sin 2t

2t
+ O(t−2 log t)

]

. (23)

Note that the constant t1 in the leading term in the expression for H could be got rid of by a

translation in t at the expense of introducing a similar constant elsewhere. The expressions for

the scalar field can now be improved to give

φ(t) =
1

√
3π(t − t1)

[

cos t − sin t

(

3 + 2 cos 2t

4t

)] [

1 +
sin 2t

2t

]

+ O(t−3 log t) (24)

and

φ̇(t) =
1

√
3π(t − t1)

[

−sin t − cos t

(

3 + 2 cos 2t

4t

)] [

1 +
sin 2t

2t

]

+ O(t−3 log t). (25)

The first of these may be compared with equation (5.45) on p 240 of [6].

Since the scale factor grows slower than linearly the expansion is on average decelerated.

On the other hand, ä = 4π
3

(φ2 − 2φ̇2) and so there are infinitely many intervals on which

ä > 0.

3. Nonlinear scalar fields

The aim of this section is to investigate to what extent the results for the massive linear scalar

field can be extended to the case of a potential of the form V (φ) = φ2/2 + W(φ), where W is

smooth and W(φ) = O(φ3). The equation of motion for the scalar field is

φ̈ +
√

12π(φ̇2 + φ2 + 2W(φ))1/2φ̇ + φ + W ′(φ) = 0. (26)

The evolution equation for H is unchanged. It can be concluded that H tends to a limit H0 as

t → ∞. To constrain the value of H0 a compactness argument can be used as before, leading

to the limiting equation

φ̈∞ + 3H0φ̇∞ + φ∞ + W ′(φ∞) = 0 (27)

with H 2
0 = 4π

3

(

φ̇2
∞ + φ2

∞ + 2W(φ∞)
)

. It follows that φ̇∞ = 0. Assume now that V has no

critical points other than the origin in an interval [−φ1, φ1] and that the initial value of H is

smaller than
√

4π
3

φ1 so that φ remains in that interval. Then it follows that φ∞ = 0 and this

gives a contradiction. Thus, in fact H0 = 0. As in the linear case polar coordinates (r, θ) can

be introduced in the (φ, φ̇) plane. In these variables the equations read

ṙ = −
√

12πr2 sin2 θ(1 + 2r−2W(r cos θ))1/2 − sin θW ′(r cos θ) (28)

θ̇ = −1 −
√

12πr sin θ cos θ(1 + 2r−2W(r cos θ))1/2 − r−1W ′(r cos θ) cos θ. (29)

Note that θ̇ + 1 = O(r) so that it can be concluded as in the case W = 0 that θ grows linearly

with t. The equation for ṙ can be rearranged to give

d

dt
(r−1) =

√
12π sin2 θ(1 + 2r−2W(r cos θ))1/2 + sin θr−2W ′(r cos θ). (30)

The last term in this equation looks worrying but note that up to a remainder of order r it is

equal to 1
2
W ′′′(0) cos2 θ sin θ . The last expression has mean zero and so its integral up to time

t is a bounded function of t, as can be seen by changing the variable of integration from t to θ .

It can be concluded as in the linear case that r−1 grows linearly with t and that r(t) = O(t−1).



672 A D Rendall

Furthermore, θ̇ + 1 = O(t−1) and (10) and (11) hold. Thus, H(t) has the same leading-order

behaviour as for dust in this case too.

Next further information on the asymptotics of θ will be obtained, reaching the point where

the first correction coming from W occurs. Note first that (1 + 2r−2W(r cos θ))1/2 = 1 + O(r)

so that the correction coming from W in the second term on the right-hand side of the equation

for θ̇ is O(t−2). The last expression in (12) can be used to replace d/dt (r cos 2θ) as in the

case W = 0, and this allows the integral of r sin 2θ to be treated. To handle the last term in

the equation for θ̇ note that

r−1W ′(r cos θ) cos θ =
1

6
√

3
t−1W ′′′(0)

d

dθ
(3 cos θ − sin3 θ) + O(t−2 log t). (31)

Furthermore

d

dθ
(3 cos θ − sin3 θ) =

d

dt
(3 cos θ − sin3 θ) + O(t−1). (32)

Using lemma 1 this implies that θ = −t + O(t−1 log t). Relations (15) and (16) follow. The

first place where W makes a difference in the asymptotic expansions is in the analogue of (17).

It is given by

θ̇ = −1 − t−1 sin 2t −
1

2
√

3
t−1W ′′′(0) cos3 t + O(t−2 log t). (33)

The results obtained above in the case of unit mass m = 1 can be generalized to any

positive m. To get the asymptotic formulae in the general case it suffices to replace t by

mt everywhere. Theorems are obtained for the potentials 1
2
m2φ2 + λφ4 and 1

4
λ
(

φ2 − φ2
0

)2

considered in [1]. In the first case the late-time asymptotics are proved for all solutions, while

in the second they are proved for all solutions starting sufficiently close to one of the two local

minima of the potential.

These results can also be applied to obtain information about the f (R) theories of gravity

which are equivalent to the Einstein equations coupled to a nonlinear scalar field via a conformal

transformation. For a discussion of this, see section 5.6 of [6]. For example, consider the

theory where the Einstein–Hilbert Lagrangian is replaced by R + αR2 for a negative constant

α. The potential of the corresponding scalar field is non-negative and has a unique minimum

at zero. Its second derivative at that point is −8π/3α. Hence the theory just developed can be

applied to this case. The interval [−φ1, φ1] and a bound for the value of H at the initial time

must be chosen appropriately. Similar arguments work for more general choices of f (R).

Assume that f (0) = 0,
df

dR
(0) = 1 and d2f

dR2 (0) < 0. Then the corresponding scalar field has

the properties which allow the results of this section to be applied to it. Since φ → 0 as

t → ∞ the conformal factor tends to one as t → ∞ and the physical metric has the same

leading-order asymptotics as the conformally rescaled one.

It may be remarked in passing that the results of [9] also have applications to determining

the late-time behaviour of f (R) models with continuing acceleration. If there is a positive

constant V0 such that f (−2V0) = −V0 and f ′(−2V0) = 1 then the corresponding potential

has a minimum at zero where it takes the value V0. Provided f ′′(−2V0) lies in the interval
(

− 1
2V0

, 0
)

then the second derivative of the potential at zero is positive and the results of [9] can

be applied. Note that the case f (R) = −R2 discussed in [16] (without symmetry assumptions

on the solutions) is a borderline one since f ′′(−2V0) = − 1
2V0

. In that case the potential is

constant.

Another type of generalization is to k essence where the Lagrangian X−V of an ordinary

nonlinear scalar field, with X = − 1
2
∇αφ∇αφ, is replaced by a more general function L(φ,X).

The evolution equation for H with H 2 = 8π
3

(2X∂L/∂X − L) becomes Ḣ = −8πX∂L/∂X.
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Note that in a spatially homogeneous solution X is non-negative. This Lagrangian will now

be specialized to the case L(φ,X) = X − 1
2
φ2 − W(φ,X), where W vanishes at the origin

up to a remainder of third order. Now

2X∂L/∂X − L = X + 1
2
φ2 − 2X∂W/∂X + W. (34)

It follows that there is a constant C > 0 such that

C−1(φ2 + X) � 2X∂L/∂X − L � C(φ2 + X) (35)

for φ and X being small. This means in particular that when φ and X are small H can only be

zero when both φ and X are zero. As a consequence, the initial data for φ vanish so that φ

vanishes everywhere. This case will be excluded from consideration and so it can be assumed

as in the cases studied previously that H > 0. Under the given assumptions on W it follows

that H is non-increasing. Thus, if it starts small it remains small and tends to a limit H0 as

t → ∞. The equation of motion of φ is
(

∂L

∂X
+ 2X

∂2L

∂X2

)

φ̈ +
∂L

∂X
(3Hφ̇) +

∂2L

∂φ∂X
φ̇2 −

∂L

∂φ
= 0. (36)

In order to repeat the compactness argument which has been used in other cases all that

needs to be ensured is that the coefficient of φ̈ in this equation remains bounded away from

zero. If the initial value of H is small enough this is the case. Passing to the limit in the

evolution equation for H it follows that φ̇∞ = 0. The equation of motion for φ∞ implies that
∂L
∂φ

(φ∞, 0) = 0. For φ∞ being sufficiently small this means that φ∞ = 0. Hence H0 = 0.

Passing to polar coordinates in the (φ, φ̇) plane the equation of motion becomes

ṙ = sin θ

[

1 −
∂W

∂X
− 2X

∂2W

∂X2

]−1 [

−
(

1 −
∂W

∂X

)

(3Hφ̇) +
∂2W

∂φ∂X
φ̇2 −

∂W

∂φ

]

− r cos θ sin θ

[

∂W/∂X + 2X∂2W/∂X2

1 − ∂W/∂X − 2X∂2W/∂X2

]

(37)

θ̇ = −1 − cos2 θ

[

∂W/∂X + 2X∂2W/∂X2

1 − ∂W/∂X − 2X∂2W/∂X2

]

+ cos θ

[

1 −
∂W

∂X
− 2X

∂2W

∂X2

]−1

×
[

−
(

1 −
∂W

∂X

)

(3H sin θ) +
∂2W

∂φ∂X
r sin2 θ − r−1 ∂W

∂φ

]

. (38)

The expression ∂W/∂X + 2X∂2W/∂X2, when evaluated at (r cos θ, r2 sin2 θ/2), is O(r2).

From this it easily follows that θ̇ + 1 is O(r) and so θ grows linearly with t. The last term in

the equation for ṙ is O(r3), as is the expression φ̇2∂2W/∂φ∂X. Thus,

d

dt
(r−1) =

√
12π sin2 θ + sin θr−2 ∂W

∂φ
+ O(r). (39)

The second term on the right-hand side of this equation can be written in the form
1
2

∂3W
∂φ3 (0, 0) cos2 θ sin θ + O(r−1). It can be concluded as in the case of the ordinary nonlinear

scalar field that r = O(t−1) and that H has the same leading-order behaviour as in the case of

dust.

4. Inclusion of matter

The previous sections were concerned with the Einstein equations coupled to a scalar field

(possibly nonlinear) without including other fields describing ordinary matter. In this section
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matter satisfying the dominant and strong energy conditions will be added. The energy–

momentum tensor is the sum of that of a scalar field and that of the other matter. There is no

direct coupling between the scalar field and the ordinary matter—they interact only indirectly

via their coupling to the gravitational field. The assumption of a spatially flat Friedmann

model is maintained. The equation of motion of the scalar field, before substituting for H

using the Hamiltonian constraint, remains unchanged. The Hamiltonian constraint reads

H 2 =
4π

3
(φ̇2 + φ2 + 2V + 2ρM), (40)

where ρM is the energy density of the ordinary matter. If H is zero at any time t1 the initial

data for the scalar field vanish as a consequence of the weak energy condition. Then the scalar

field vanishes at all times. Since the subject of interest here is the effect of a scalar field that

case will be excluded. It is assumed from now on that H is positive. The evolution equation

for H is

Ḣ = −4π
[

φ̇2 + ρM + 1
3

tr SM

]

, (41)

where tr SM is the trace of the spatial projection of the energy–momentum tensor of the

ordinary matter. The dominant energy condition implies that the right-hand side of (41) is

non-positive so that H(t) is non-increasing.

Assuming that the solution of the coupled Einstein-scalar-matter equations exists globally

in the future it can be concluded that H(t) tends to a limit H0 as t → ∞. The quantities φ, φ̇

and H are all bounded. Hence φ̈ is bounded. The energy–momentum tensor of the ordinary

matter is divergence-free and it follows that

dρM/dt + 3H
(

ρM + 1
3

tr SM

)

= 0. (42)

Thus, by the dominant energy condition, ρM is non-increasing and converges to some limit

ρ∞ � 0. Also tr SM � 3ρM and it follows that Ḣ is bounded. Differentiating the equation of

motion for the scalar field shows that the third time derivative of φ is bounded. Using these

facts a compactness argument can be carried out as in the case without ordinary matter. Under

the same conditions it can be concluded that φ and φ̇ tend to zero as t → ∞. Moreover,

it follows from (41) that ρM + 1
3

tr SM → 0. Hence tr SM → −3ρ∞ as t → ∞. But then

ρM + tr SM → −2ρ∞. If ρ∞ were non-zero then this would contradict the strong energy

condition. Hence in fact ρ∞ = 0,H0 = 0 and ρM(t) → 0 as t → ∞.

Consider for simplicity the linear case W = 0. When the equation of motion for φ is

written in polar coordinates the resulting equations are

ṙ = −
√

12π(r2 + 2ρM)1/2r sin2 θ (43)

θ̇ = −1 −
√

12π(r2 + 2ρM)1/2 sin θ cos θ. (44)

Since H tends to zero as t → ∞ the argument that θ grows linearly with t also works in

the presence of ordinary matter. It is also true that θ̇ + 1 remains bounded away from zero.

Analysis of the evolution equation for r−1 shows that r−1 must grow at least linearly and that

r = O(t−1). Due to its sign the contribution of the energy density of ordinary matter can

only increase this rate of decay. Unfortunately, this does not immediately give a decay rate

for H. It would seem that to go further it would be necessary to know which of the terms

r2 or ρM dominates at late times. In the case of a perfect fluid with linear equation of state

pM = (γ − 1)ρM , heuristic considerations indicate that if γ > 1 it is self-consistent to require

that the fluid has a negligible effect at late times while for 2/3 < γ < 1 (a model which

satisfies the strong and dominant energy conditions) this is not consistent. Rigorous results on

the asymptotics in these cases are not available.
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5. Degenerate minima

Suppose now that the linear scalar field is replaced by a nonlinear one with V (φ) = φ2n/2n

and no additional matter is included. Then the equation for Ḣ is unchanged and the equation

of motion is

φ̈ +
√

12π(φ̇2 + φ2n/n)1/2φ̇ + φ2n−1 = 0. (45)

As in the case n = 1 the function H is non-increasing and tends to a limit H0. The argument

that H0 = 0 goes through without significant change so that φ and φ̇ tend to zero as t → ∞.

For simplicity only the special case n = 2 will be considered in the rest of this paragraph.

Passing to polar coordinates leads to the system

ṙ = r sin θ cos θ(1 − r2 cos2 θ) − 3Hr sin2 θ (46)

θ̇ = −sin2 θ − r2 cos4 θ − 3H sin θ cos θ, (47)

where

H =
√

4π

3
r

(

sin2 θ +
1

2
r2 cos4 θ

)1/2

. (48)

For the solutions being considered here r never vanishes at any time. It follows that whenever

θ = kπ or (k + 1/2)π for k an integer θ̇ < 0. Hence there are two mutually exclusive

possibilities. Either θ(t) → −∞ as t → ∞ or θ(t) is eventually trapped between θ1 and

θ1 + π/2, where 2θ1/π is an integer. It will now be shown that the second of these cannot

occur. To do this it is helpful to distinguish between the case where θ1/π is an integer and

that where θ1/π + 1/2 is an integer. In the first case θ is monotone decreasing at late times

and θ → θ1 as t → ∞. For r being small enough

ṙ � r sin θ
(

1
2

cos θ − 3H sin θ
)

. (49)

This implies that ṙ is eventually positive, contradicting the fact that H → 0 as t → ∞. Thus,

this case is ruled out and it can be assumed that θ1/π + 1/2 is an integer. In that case r is

eventually monotone decreasing and it can be concluded that r = o(1). For any interval of the

form [θ1, θ2] with θ2 < θ1 + π/2, it is true that at sufficiently late times any solution for which

θ lies in this interval satisfies a uniform negative upper bound on θ̇ . Thus, θ → θ1 + π/2 as

t → ∞ and H = o(r). Thus, for any ǫ > 0 there is a time t1 such that for t > t1,

−sin2 θ − r2 cos4 θ − 3H sin θ cos θ � −sin2 θ − r2 cos4 θ + ǫr| sin θ‖ cos θ |

� −sin2 θ
(

1 −
ǫ

2

)

− r2 cos2 θ
(

cos2 θ −
ǫ

2

)

< 0. (50)

Using the evolution equation for θ this gives a contradiction. Thus, it can be concluded that in

fact θ(t) → −∞ as t → ∞. It follows that there are infinitely many oscillations of the scalar

field in this case too.

There is a remark on p 242 of [6] that in the case of a nonlinear scalar field with potential

V (φ) = φ2n/2n the solution should be approximated in some averaged sense by a perfect

fluid with a linear equation of the state. A statement will now be proved which is a concrete

realization of this idea. Multiplying the equation of motion for a nonlinear scalar field by φ

and rearranging gives the identity

φV ′(φ) = φ̇2 − 6πφ2φ̇2 −
d

dt

(

φφ̇ +
3

2
Hφ2

)

. (51)
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In deriving this the equation for Ḣ has been used. The information already available concerning

the solution justifies integrating this relation from some time t to infinity to get
∫ ∞

t

φV ′(φ) ds =
∫ ∞

t

φ̇2 − 6πφ̇2φ2 ds − φ(t)φ̇(t). (52)

In the special case of the power-law potential φV ′(φ) = 2nV (φ). Integrating the evolution

equation for H and using the fact that H(t) tends to zero as t → ∞ shows that
∫ ∞

t

φ̇2 ds =
1

4π
H(t). (53)

Using this in (52) shows that
∫ ∞

t

φV ′(φ) ds =
(∫ ∞

t

φ̇2 ds

)

(1 + o(1)), t → ∞. (54)

It follows that
∫ ∞
t

p(s) ds
∫ ∞
t

ρ(s) ds
=

(

n − 1

n + 1

)

(1 + o(1)). (55)

This corresponds to dust in the case n = 1 and to radiation in the case n = 2.

6. Conclusions

In this paper rigorous asymptotic expansions for the late-time asymptotics of spatially flat

homogeneous and isotropic solutions of the Einstein equations coupled to a linear massive

scalar field are proved. It is shown what similarities and differences there are when the quadratic

potential of this model is modified by higher order corrections. The latter results apply directly

to give information about the dynamics in certain f (R) theories. Basic asymptotics are also

obtained for k-essence models where the leading-order terms in the Lagrangian near the origin

agree with those of a linear massive scalar field.

When ordinary matter such as a perfect fluid is added to the model some statements about

the asymptotic behaviour are proved, but at a certain stage in the expansion a competition

arises between the scalar field and the other matter, and the outcome of this is not settled

rigorously here. In the case of a potential such as V (φ) = φ4/4 with a degenerate minimum,

it is shown that the scalar field is oscillatory in the sense that it has infinitely many zeroes. A

relation to the radiation fluid is derived.

As has already been indicated, the asymptotics derived in section 2 can be destroyed by

the introduction of spatial curvature. When homogeneous solutions with non-vanishing spatial

curvature are considered the equation of motion for φ remains the same, but the expression

for H given by the Hamiltonian constraint and the evolution equation for H pick up extra

contributions involving shear and spatial curvature. For Bianchi types I-VIII, where R � 0,

the extra contributions to H and Ḣ are positive and negative, respectively. As in the isotropic

and spatially flat case it can be assumed without loss of generality that H > 0, while H is

non-increasing and tends to a limit H0 � 0. A compactness argument as in previous sections

shows that φ, φ̇, R and the square of the shear σabσ
ab tend to zero as t → ∞. Beyond

this point it must be expected that the asymptotics of solutions of different symmetry classes

diverge, as they do in the case without a scalar field.

To the author’s knowledge the only classes of homogeneous solutions of the Einstein

equations coupled to a massive scalar field whose late-time asymptotics have been analysed

further than in this paper are the Bianchi type I solutions and the isotropic solutions with non-

vanishing spatial curvature. There is a heuristic discussion of the dynamics in these cases in
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[1, 2]. One intuitive consideration for spacetimes containing only a massive scalar field similar

to that concerning fluids at the end of section 4 follows from the equation dR/dt = −2HR

which holds in a homogeneous, and isotropic model with non-zero curvature and the equation

d/dt (σabσ
ab) = −6H(σabσ

ab) which holds in a Bianchi I spacetime. It suggests that in the

latter case the influence of the shear at late times should be negligible, while in the former

case the curvature should dominate. Indeed the claim in [1, 2] is that the late-time behaviour

for negative curvature resembles that of the Milne model. Of course, in the case of positive

curvature the solution might recollapse.

In general, it appears that it remains to obtain rigorous results for even some of the

simplest models related to the massive scalar field. It would be interesting to see how the

oscillations of the scalar field interact with those due to the gravitational field which arise in

more complicated Bianchi types. For these Bianchi types averaging techniques are necessary

to analyse the case without scalar field. Cf [7, 12, 17]. Ideally a unified approach to all these

problems should be developed.
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