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ABSTRACT In 5G slice networks, the multi-tenant, multi-tier heterogeneous network will be critical in
meeting the quality of service (QoS) requirement of the different slice use cases and in reduction of the
capital expenditure (CAPEX) and operational expenditure (OPEX) of mobile network operators. Hence,
5G slice networks should be as flexible as possible to accommodate different network dynamics such as
user location and distribution, different slice use case QoS requirements, cell load, intra-cluster interference,
delay bound, packet loss probability, and service level agreement (SLA) of mobile virtual network operators
(MVNO). Motivated by this condition, this paper addresses a latency-aware dynamic resource allocation
problem for 5G slice networks in a multi-tenant, multi-tier heterogeneous environment, for efficient radio
resource management. The latency-aware dynamic resource allocation problem is formulated as a maximum
utility optimisation problem. The optimisation problem is transformed and the hierarchical decomposition
technique is adopted to reduce the complexities in solving the optimisation problem. Furthermore, we pro-
pose a genetic algorithm (GA) intelligent latency-aware resource allocation scheme (GI-LARE).We compare
GI-LARE with the static slicing (SS) resource allocation; the spatial branch and bound-based scheme;
and, an optimal resource allocation algorithm (ORA) via Monte Carlo simulation. Our findings reveal that
GI-LARE outperformed these other schemes.

INDEX TERMS Network slicing, multi-tier, multi-tenancy, resource allocation.

I. INTRODUCTION

A. BACKGROUND

Network slicing (NS) refers to the abstraction of the phys-
ical infrastructure and resources of a mobile network into
logical networks, which operate as autonomous entities or
networks. NS is envisioned to play a critical role in the full
implementation of IMT-2020 networks widely regarded as
the fifth generation (5G) mobile networks. 5G networks will
be pivotal in the Industry 4.0 revolution; hence, 5G networks
will support diverse verticals and services to reshape the way
we live, transact businesses, and conduct human-machine
relationship [1].
Despite the positive economic impact of 5G NS, real-

ising effective NS schemes requires financial commitment
[2], [3] by key industry players such as the infrastructure
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providers (InPs), mobile virtual network operators (MVNOs),
backhaul operators (BO), service providers (SP), and over-
the-top players (OTP). To make 5G networks profitable (i.e.
by the reduction of the capital expenditure (CAPEX) and
operating expenditure (OPEX)many business models [4], [5]
have been proposed, which revolve around multi-tenancy.
In this work, we adapt the models in [4], [5] to address
multi-tenancy in 5G NS as depicted in Fig. 1. Here, Fig. 1
depicts a two-stage hierarchical business model for NS in
a multi-tenancy scenario where the InP leases out virtual
network resources to different MVNOs.

In this paper, we address the diverse service requirement
via threemain slice use cases [6], [7]: (1) the enhancedmobile
broadband (eMBB); (2) the massive machine-type communi-
cations (mMTC); and, (3) the ultra-reliable low-latency com-
munications (URLLC) slice use cases. The eMBB use case is
bandwidth-crunching and supports applications such as high
definition (HD) video streaming and virtual reality (VR).
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FIGURE 1. InP-MVNO model.

The mMTC use case is latency-dependent with intermittent
small-size data payloads. It supports applications such as
e-health and internet of things (IoT) devices. The URLLC
use case supports applications and services that require very
low-latency small-size payload transmissions with extremely
high reliability such as autonomous driving and vehicle-to-
everything (V2X).
In a multi-tenant multi-tier heterogeneous 5G slice net-

work, addressing the different quality of service (QoS)
requirements of different verticals and several services could
be an uphill task. Moreover, owing to the stochastic charac-
teristics of the mobile network environment and the dynamic
allocation of network resources (such as bandwidth and
power) between the InP and the MVNOs; the respec-
tive MVNOs and the numerous slice users could be very
challenging. Besides, unlike the widely investigated 2-tier
heterogeneous network environment in the study of 5G NS,
we examine the concept of NS deployed or implemented in a
hierarchical multi-tier clustered heterogeneous multi-tenant
network. Furthermore, unlike most works in the literature,
we focus on both the latency and received data rate QoS
requirement of three slice use cases.

B. RELATED WORK

There are a number of architectures and solutions that have
been proposed for NS. The authors in [8], [9] and [10] pre-
sented maximum capacity, profit-aware, and energy-efficient
resource allocation schemes for NS in a multi-tenancy sce-
nario. Slice priorities and bandwidth-power cost were con-
sidered; however, a static resource scheme between the InP
and MVNOs was adapted. Besides, the latency constraints
requirement of the respective slices was not considered. Also,
a single-tier homogeneous network was considered, which
does not entirely depict a 5G network and its complexi-
ties. The authors in [11] proposed an incentive scheme for
slice cooperation based on the D2D communication in a
multi-tenant 5G network for achievingmaximum system util-
ity. The authors did not address the multi-tier and multi-slice
peculiarities of 5G networks. Moreover, the latency-aware
requirements of the slice use case, such as the URLLC, were
not considered.

To meet the latency requirements of the cloud radio access
network (C-RAN), the authors in [12] proposed a queuing
delay model for front haul network dimensioning in 5G
networks. Kingman’s exponential law of congestion was
adopted by the authors to estimate the delay on the front-haul.

In [13], a maximum-revenue resource allocation optimisa-
tion problem was formulated for a virtual network in a 2-tier
heterogeneous network. In solving this problem, the authors
pre-allocated radio resources to the respective base stations
or access point. In [14], a dynamic resource sharing scheme
for a single-tier homogeneous C-RANs multi-tenancy was
proposed. A network utility maximisation problem was for-
mulated while considering the tenants’ priorities. Although
the proposed two-step sub-optimal approach improved the
network utility, users were not categorised based on their
slice requirements. The authors in [15] presented a dynamic
radio resource slicing scheme for a 2-tier heterogeneous
wireless network. An alternating concave search algorithm
was designed to solve the maximum network utility opti-
misation problem. The 2-tier heterogeneous network, due to
its simplistic model, may not fully represent a 5G network
environment with its many tiers of access networks in order
to meet the ever-rising user demands. Besides, the authors
did not address the concept of multi-tenancy, which is a
critical requirement for CAPEX and OPEX reduction in 5G
networks.

In [16], [17], [18], and [19], the authors considered a
dynamic allocation of radio resources in a network slic-
ing scenario. An auction game-based algorithm was pro-
posed for efficient resource allocation between the InP and
MVNOs. Additionally, the authors did not consider the chal-
lenge of latency constraints in the resource allocation scheme.
Although the authors considered multi-tenancy, the multi-tier
andmulti-slice features of the 5G network were not taken into
consideration in their studies.

In [20], an efficient RAN slicing strategy for a
heterogeneous network with eMBB and V2X services was
investigated. The authors proposed an off-line reinforcement
learning schemewhich allocates radio resources to the eMBB
and V2X slice user case with the sole aim of maximising net-
work resource utilisation. However, the latency requirements
of the V2X use case were not considered. Besides, the small
scale fading factors that significantly affect fast-moving
devices and vehicles were not included in their model.
In addition, a single-tier network was considered, which does
not entirely depict a 5G network which is envisioned in [21]
to be a multi-tenant multi-tier network.

In [22], the authors discussed the different approaches
to realise URLLC use cases for V2X communications.
The authors adopted the large deviation theoretical (effec-
tive bandwidth or capacity) framework of the MAC layer
approach.

In [23], the authors proposed a cooperative communi-
cations scheme based on the average bit error probability
(ABEP) to enhance the performance of IoT communica-
tion systems. The scheme relies on the capabilities of the
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back-propagation neural network to predict the ABEP
performance of the investigated system.
In [24], the authors investigated a slice-aware admis-

sion scheme for multi-tenant radio access networks, which
supports guaranteed eMBB and mission-critical services.
A Markovian model was proposed to characterise resource
sharing in a multi-tenant network slicing environment. How-
ever, in addition to considering only the single-cell sce-
nario, authors did not address the latency requirement of the
mission-critical use case.
Furthermore, in [25], the authors examined dynamic

resource allocation in a virtualised network slicing envi-
ronment. A dynamic resource allocation scheme based
on deep reinforcement learning was proposed to address
the challenge, as mentioned earlier. Nevertheless, they
did not address the multi-tenancy scenario and its chal-
lenges. Moreover, it was not shown how the average delay
utility of the delay constrained slice was guaranteed or
ensured.
In [26], the authors proposed a dynamic network slicing

and resource allocation scheme for video streaming and IoT
applications, which is based on the Lyapunov Optimisation in
a single cell scenario. However, the URLLC use case, which
is highly latency-dependent and requires extreme-reliability,
was not considered. In addition, multi-tenancy, which is a
critical feature in NS, was not considered.
The authors in [27] showed that low error rates and low

latencies are attainable and practicable over an air interface.
Moreover, the authors emphasised the importance of channel
error rates and short transmission intervals in achieving low
latency.
The authors in [28] considered the challenge of latency

in the allocation of resources to users in a multi-access
edge computing network. A virtual network function place-
ment assignment algorithm based on the polynomial-time
combinatorial algorithm was proposed to guarantee user
satisfaction. However, a multi-slice multi-tier 5G network,
in which slice users require different latency thresholds, was
not considered. Besides this point, the authors also did not
consider the peculiarities of multi-tenancy in their problem
formulation.
In [29], the authors studied network slicing resource allo-

cation challenges in vehicular networks. The eMBB and
URLLC slice-use cases were considered in the proposed
scheme, which is based on the effective capacity theory.
However, the vehicular networkwas not studied in the context
of a multi-tier multi-tenant network. The vehicular network
cannot exist in isolation [30], [31] because of its interaction
with other slice users in other tiers such as macro, pico and
femto tiers. In addition, dynamic resource allocation was not
considered.
In [32], the authors proposed a dynamic resource allo-

cation scheme for eMBB and URLLC slice-use cases. The
proposed scheme is based on optimal power control for
latency-aware resource allocation. The dynamic allocation of
the bandwidth, which is a scare resource, was not addressed.

The authors did not consider the peculiarities of multi-tenant
multi-tier in their problem formulation.

In [33], the authors addressed the challenge of slice users’
quality of experience and resource allocation in a vehicu-
lar network. The authors partitioned vehicles into multiple
logical networks based on a network slicing clustering algo-
rithm. A multi-tier network which reflects one of the 5G
features was not considered. Moreover, static partitioning of
radio resources was adopted rather than dynamic resource
allocation of resources which can easily adapt to traffic
variation.

In satisfying the diverse demand requirements of the
respective slice use cases, the authors in [34] proposed an
on-demand cooperation scheme amongmulti-tenants in a net-
work slicing scenario. The proposed framework was centred
on complex network theory to obtain the topology related
information of networks for efficient resource management.
However, the latency requirement of the slice use cases was
not addressed.

Different from the above-mentioned works, in the present
paper we investigate the latency-aware dynamic resource
allocation problem in a multi-tier clustered heterogeneous
network for multi-tenancy network slicing.

C. CONTRIBUTIONS

The main contributions of the present paper are summarised
as follows:

1) We consider radio resource allocation concerning the
three broad slice use cases, namely the eMBB, mMTC,
and URLLC respectively, in a multi-tier multi-tenant
5G slice network. A latency-aware dynamic resource
allocation scheme is developed as an optimisation
framework to maximise the total utility of the network.
This framework efficiently allocates radio resources to
the different slice use cases by considering the data
rate and latency requirements of the respective slice
use cases. In meeting the slice user QoS requirements,
the network bandwidth is sliced by taking into consid-
eration the users’ location and distribution, slice use
case QoS requirements, cell load, tier load, intra-cluster
interference, delay bound, packet loss probability, and
the service level agreement of the respective MVNOs
(i.e. tenants).

2) As stated, the latency-aware dynamic resource allo-
cation problem is formulated as a maximum utility
optimisation problem. In solving the maximum utility
optimisation problem, we transform and decompose
the main problem via hierarchical decomposition [35]
to reduce the complexity of the main problem. Con-
sequently, we optimally associate slice users with the
different tiers in the clustered multi-tier multi-tenant
network. We exploit the matching game theory to opti-
mally associate slice users to the respective access
points. The selection, crossover, mutation and elitism
processes of the Genetic Algorithm are adapted to solve
the transformed maximum utility problem.
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FIGURE 2. System model.

3) Through extensive Monte-Carlo simulations, we
demonstrate the performance of the proposed latency-
aware dynamic resource allocation framework in a
clusteredmulti-tiermulti-tenant network.We also com-
pare the proposed GI-LARE with three other schemes,
namely: a static slicing scheme (SS) [36], a spatial
branch and branch scheme (sBB) [37], and an optimal
resource allocation algorithm (ORA) [38].

D. ORGANISATION

We organised the remainder of this paper as follows.
In Section II, we give a detailed explanation of the sys-
tem model. In Section III, the latency-aware and dynamic
resource model is discussed. The latency-aware dynamic
radio resource allocation problem is formulated in Section IV.
In Section V, the proposed solutions are discussed in detail.
To this end, we discussed the computational complexities of
the proposed algorithms in Section VI. Simulation results are
shown and discussed in Section VII. Finally, we draw the
conclusion of this paper in Section VIII. For convenience,
the notations used in this paper are summarised in Table 1.

II. SYSTEM MODEL

In this section, a multi-tier multi-tenant heterogeneous net-
work system model is presented. Table 1 shows the main
notations to be used in the following sections.

A. GENERAL MODEL

We describe the system model considered in this paper,
as depicted in Fig. 2. The considered scenario assumes a

clustered multi-tier heterogeneous network whose physical
resources are owned by an InP. The InP provides services
to a set of MVNOs H = {h|h ∈ N , 1 ≤ h ≤ |H|}. Each
MVNO, h ∈ H is uniquely independent of each other; that
is, h 6= h′, and h has its own set of network slice use cases,
Sh, it offers to its slice users. However, Sh = {E ∪M ∪R},
in which E denotes the eMBB slice user case, M indicates
the mMTC slice use case andR stands for the URLLC. Sub-
section II-B gives a detailed explanation of the slice use case
specifications. The multi-tier network comprises femtocells,
picocells, clustered femtocells, a macrocell and a device-to-
device (D2D) based V2X communication layers. The set of
unclustered femtocells located in the coverage of the macro-
cell only is numbered as F = {f |f ∈ N , 1 ≤ f ≤ |F |},
while the set of picocells is denoted as P = {p|p ∈ N , 1 ≤
p ≤ |P|}. Owing to the relatively large radius of p compared
to f , we consider that there are femtocells in the coverage
of a p. These femtocells we call clustered femtocells, such
that a set of clustered femtocell in the coverage of picocell
is numbered as PF = {pf |pf ∈ N , 1 ≤ pf ≤ |PF |}. The
coverage area of a p helps to create a cluster area for a set of
clustered femtocells, pf . It is essential to state that the users
of an MVNO, h, are categorised according to their requested
slice use case {E ∪M ∪R} and geographical position in the
multi-tier network.

B. SLICE USER CATEGORISATION

Considering the slice use-case requested byQoS requirement
and its geographical location of the users, we categorise users
into four:
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TABLE 1. List of noations.

1) Cat. I: Eh,m is the set of eMBB users belonging to
MVNO h, attached to themacro-tier. In addition, the set
of users requesting mMTC slice belonging to MVNO
h and attached to the macro base station, m, in the
macro-tier, is denoted by Mh,m. Furthermore, the set
of vehicles pre-installed with Subscriber Identity Mod-
ule (SIM) of MVNO h requesting URLLC services is
denoted byRm,h.

2) Cat. II: The set of MVNO h eMBB users in the cov-
erage of a femtocell, f ∈ F , is denoted as Eh,f and
similarly, Mh,f for the set of mMTC slice users in the
coverage of a femtocell f ∈ F .

3) Cat. III: For the set of slice users belonging to MVNO
h, in the coverage area of a picocell p ∈ P , however
which do not fall under the coverage of a clustered fem-
tocell, pf , is denoted as Eh,p. Likewise, Mh,p denotes
the set of mMTC slice users which are under the cov-
erage area of p ∈ P and not under the coverage area of
a clustered femto cell pf .

4) Cat. IV: Similar to the other categories, Eh,pf denotes
the set of MVNO h users requesting eMBB slice in
the coverage of a clustered femtocell pf ∈ PF . For
MVNO h, users requesting mMTC slice in a clustered
femtocell pf , its set is denoted by Mh,pf . The total
number of cluster c ∈ C is the same as |P|.

C. V2X COMMUNICATION MODEL

The set of URLLC users and devices,Rm,h, is modelled using
theD2D-basedV2X communication. In this work, we assume
that V2X communication is based on the Cellular-V2X
(C-V2X) rather than the Dedicated Short Range Commu-
nications (DSRC). Our assumption is due to the growing
popularity of C-V2X in the vehicle-communications and
manufacturing industry and other reasons in [22], [39],
and [40].
We assume the V2X communication-enabled cars are

under the coverage of the macro base station alone to min-
imise the handover signalling. The V2X layer comprises a
set of vehicles (i.e. URLLC slice users engaged in Vehicle-
to-Network (V2N)) R = {r |r ∈ N , 1 ≤ r ≤ |R|} connected
to the macro base station requesting for the URLLC slice.
In addition to the V2X layer, the set of paired vehicles that
engage in Vehicle-to-Vehicle (V2V) communications using
the PC5 sidelink is numbered as W = {w|w ∈ N , 1 ≤ w ≤

|W|}.

D. CHANNEL MODEL

Specifically, our paper draws on the downlink of multi-tier
heterogeneous networks based on the link layer model given
in [41], [42] and mobility characteristic of slice users in
modelling the channel. We categorise the channel modelling
into two; (i) Static and moderately mobile Slice users and
(ii) highly mobile slice users. Without loss of generality,
we assume mMTC and eMBB slice users are in the first
category and the URLLC users in the latter.

1) STATIC SLICE USERS

We consider a slice user ih with a path loss given as [43]:

ρi,j,h =













30+ 35 log(di,j,h), ∀ ih ∈ {Em,h,Mm,h}, j = m

35+ 35 log(di,j,h), ∀ ih ∈ {Ep,h,Mp,h}, j = p

40+ 35 log(di,j,h),

∀ ih ∈ {Ef ,h, Epf ,h,Mf ,h,Mpf ,h}

(1)
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where di,j,h denotes the distance of the slice user, ih, belong-
ing to MVNO, h from an access point, j ∈ {m, f , p, pf }. The
spectrum efficiency of a user ih ∈ {Em,h,Mm,h} is expressed
as:

γi,j,h = log2
(

1+
ψj,hŴi,j,h

σ 2

)

, ∀j = m (2)

whereψj,h is the transmit power andŴi,j,h denotes the channel
gain associated with a user ih which belongs to MVNO h and
an access point in tier j ∈ {m, f , p, pf }. Similarly, for a user
ih ∈ {Ef ,h,Mf ,h}, its spectrum efficiency is given as:

γi,j,h = log2
(

1+
ψj,hŴi,j,h

σ 2 +
∑

k∈{F}
j 6=k

ψk,hŴi,k,h

)

(3)

Likewise, for a user ih ∈ {Ep,h,Mp,h}, its spectral efficiency
is given as:

γi,j,h = log2
(

1+
ψj,hŴi,j,h

σ 2 +
∑

k∈{P}
j 6=k

ψk,hŴi,k,h

)

(4)

where the terms
∑

k∈{F}
j 6=k

ψk,hŴi,k,h and
∑

k∈{P}
j 6=k

ψk,hŴi,k,h in (3)

and (4) denote the co-tier interference associated with the
femto and pico tiers.
For a user ih ∈ {Epf ,h,Mpf ,h} who subscribes to the

services of MVNO, h, its spectrum efficiency is given as:

γi,j,h = log2
(

1+
ψj∈c,h Ŵi,j∈c,h

σ 2 +
∑

p′∈ c′

c 6=c′

∑

k∈{PF ′}
j 6=k

PF 6=PF ′

ψk,hŴi,k,h

)

(5)

where ψj,h is the transmit power of the access point in tier
j ∈ {m, f , p, pf }. Ŵi,j,h denotes the channel gain associated
with a user ih which belongs to MVNO h and an access point
in tier j ∈ {m, f , p, pf }. The double-summation term in (5)
is the inter-cluster interference with respect to the clustered
femtocells in the coverage of the picocells.

2) HIGHLY MOBILE SLICE USERS

Without loss of generality, we assume that the URLLC users
are based on V2X communication [22]. V2X communication
is characterised by highly mobile users or vehicles in this
case. Unlike the static or moderately mobile slice users,
we include the small-scale fast fading component in the
channel model in addition to the large scale factors. For a
URLLC slice user, r ∈ R, (engaged in V2N communications
otherwise known as V2I as shown in Fig. 2) the path loss (i.e.
the large scale fading) is expressed as [44]:

ρr,m,h = 128.1+ 37.6 log(dr,m,h) (6)

where dr,m,h is the distance between the URLLC slice user r
and the macrocellm. However, for a vehicle in transmit mode

in the V2V set, W , its path loss model is dependent on its
respective distance from the URLLC slice user-vehicle and it
is given [45] as:

ρw,m,h =













40+ 22.7 log(dr,w,h)

+ 20 log
(

Xc
)

, dr,w,h ≤ dthres

9.45+ 40 log(dr,w,h)− 17.3 log(Tw)

− 17.3 log(Tr )+2.7 log(Xc), dthres≤dr,w,h

(7)

where dr,w,h is the distance between the URLLC slice user r
engaged in V2N and a car in transmit mode in the V2V
set. Xc, Tw and Tr denote the carrier frequency in GHz,
effective antenna height of the transmit vehicle, w, in V2V
communication and effective antenna height of the receive
vehicle, r , requesting for URLLC slice engaged in V2N. The
threshold distance, dthres, is given as [45]:

dthres =
4(Tw)(Tr )Xc
speed of light

(8)

Hence, for URLLC slice users, that is for vehicles engaged in
V2N communication, the spectrum efficiency is given as:

γr,m,h = log2
(

1+
ψm,hŴr,m,h|αr,m|

2

σ 2 +
∑

w∈{W}
w6=r

ψwŴw,r,h|αw,r |
2

)

(9)

where ψm,h and ψw denote the transmit powers of the macro
base station in the macro-tier and the transmitting vehicle w
in the V2V set,W . Here, αr,m and αw,r denote the small-scale
fading component. We assume that the small-scale fast fading
component is independent and identically distributed (i.i.d)
as CN (0, 1).

III. LATENCY-AWARE AND DYNAMIC RESOURCE MODEL

In this section, we explain the latency and dynamic resource
allocation model. First, we discuss the Latency and Delay
Model and later the dynamic resource model.

A. LATENCY AND DELAY MODEL

In order to guarantee the service rate of the mMTC and
URLLC slice users within a latency threshold and a trans-
mission delay bound, we consider the link-layer model and
apply the effective capacity theory in [41], [42] which is based
on the theory of large deviations. We employ the link-layer
model owing to its ease of translating QoS metrics such as
delay bounds and packet loss probability into guarantees;
simple implementation process and high accuracy. The effec-
tive capacity of a slice use case is the maximum arrival rate it
can accommodate to guarantee a QoS requirement which is
specified by a QoS exponent. The effective capacity, being a
robust statistical approach for QoS analysis, employs the QoS
triplets of packets arrival rate λi,h, a maximum delay bound
Dmax and, a delay-bound violation probability threshold µ.
The stochastic behaviour of the mMTC and URLLC slice
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user can be modelled by their effective capacity, which is
expressed as [41]:

φ(θi,h) = lim
t→∞

1

t

1

θi,h
logE

[

e
θi,hQ

t
i,h

]

(10)

where θi,h is the QoS exponent, and Qti,h is the source data
(i.e. packet arrivals) over a time interval of [0, t). In this work,
we assume a Poisson traffic process with an arrival rate of
λi,h packets/s. In computing large deviations, we apply the
Moment Generating Function of a Poisson process Qti,h with
an arrival rate of λi,h, which is given as [46]:

MQi,h (θi,h) = eλi,h(e
θi,h−1) (11)

Substituting (11) into (10), therefore, (10) can be rewritten as:

φ(θi,h) =
1

t

1

θi,h
log eλi,ht(e

θi,h−1) (12)

We simplify (12) and can be expressed as:

φ(θi,h) =
λi,h

θi,h

(

eθi,h − 1
)

(13)

To ensure that the delay QoS requirement is met, the delay
violation probability should always be less than a given
threshold of µ such that:

Pr{D(∞) ≥ Dmax} ≤ µ (14)

Dmax and D(∞) are the maximum delay-bound of a slice a
use case (mMTC and URLLC) and the steady-state delay of
a slice use case. Expression (14) is approximately equal to:

Pr{D(∞) ≥ Dmax} ≈ e−θi,hλi,hDmax (15)

However, we denote the packet size Li,h and hence the mini-
mum achievable rate for a bounded delay violation probabil-
ity of slice user (i.e. ih ∈Mm,h,Mp,h,Mf ,h,Mpf ,h,Rm,h)
is given as:

ϑ thresh = −
Li,h log(µ)

Dmax loge(1−
log(µ)
Dmaxλi,h

)
(16)

The proof of ϑ thresh is provided in Appendix A.

B. DYNAMIC RESOURCE ALLOCATION MODEL

In this work, the network resources of the clustered multi-tier
multi-tenant heterogeneous network are pooled and virtu-
alised to a cloud server by the InP and then allocated to the
respective MVNOs contracted to it. The bandwidth allocated
to each MVNO h in each tier t is given as:

∑

t ∈{m,F ,P,PF}

βt,hB (17)

where B is the total bandwidth of the network and βt,h is the
network slice ratio of the MVNO h, in tier t . For the entire
network, the sum network slice ratio is given as:

∑

h∈H

∑

t ∈{m,F ,P,PF}

βt,h = 1 (18)

The slice network ratio being dynamic is a function of
slice user distribution and location, cell load characteristics,
user slice use case QoS requirement; BS-User association,
Interference and slice user mobility characteristics. For a
user with a user-slice ratio, ϕi,j,m, which is dependent on
the above mentioned factors, its logarithmic utility is given
as:

log
(

ϑi,j,h
)

= log
(

B βt,h ϕi,j,h γi,j,h
)

(19)

Then, the question arises, how can network resources be
dynamically allocated to MVNO and slice users while guar-
anteeing the slice use case QoS requirement?

IV. PROBLEM FORMULATION

In this section, the problem of latency-aware requirement
and dynamic allocation of radio resources in a multi-tier
multi-tenant heterogeneous 5G Network in a network slic-
ing scenario is examined. In order to fully maximise the
capacity of the network, we formulate a joint user-association
InP-MVNO resource allocation problem in (20), as shown at
the bottom of the next page.
The utility of each MVNO is the summation of the utility

(or rate) of the four categories of slice users explained in
Section II (B) and therefore, the network’s sum utility is the
maximisation of the several MVNOs utility which is given
in (19). As shown in (20), the constraints C1, C5, C7 and
C9 ensure that the minimum achievable data rate for eMBB
slice users is guaranteed in all tiers. In addition, constraints
C2, C4, C6, and C8 ensure that the minimum achievable
rate of the latency-aware mMTC slice users is guaranteed in
all tiers. For the URLLC users, constraint C3 ensures that
the latency-aware received data rate is above the minimum
threshold. Constraints C10, C11 and C12 impose the slice
user-access point association constraints; a slice user can
only be associated with one access point at a point in time.
Constraint C10 ensures that a category II slice user is either
associated with a femtocell f , or the macrocell m. Besides,
C11 imposes the constraint that a category III slice user
is either associated with a picocell p, or the macrocell m;
while constraint C12 is to ensure that a category IV slice
user is associated with a clustered femtocell pf , or its closest
picocell p, or the macrocell m. Constraints C13-C15 are
the relaxation of constraints C10-C12. From the foregoing,
constraints C16-C19 in general highlight the bandwidth allo-
cation requirement of the individual slice users in each of
the tiers. The constraints for the bandwidth user-slice ratio
for each user in the different tiers are given in C20-C23. The
user-slice ratio is a fractional allocation indicator which must
be between 0 and 1 i.e. a positive fractional value.

V. PROPOSED SOLUTION

In this section, we present the detailed description of the
proposed solution to the latency-aware dynamic resource
allocation problem in a multi-tier multi-tenant heterogeneous
network stated in (20). First, we simplify (20) by transforming

74840 VOLUME 8, 2020



S. O. Oladejo, O. E. Falowo: Latency-Aware Dynamic Resource Allocation Scheme for Multi-Tier 5G Network

the objective function into a tractable expression. The trans-
formed expression is a summation of the utilities of the
MVNOs in the 5G multi-tier network.This is done by con-
sidering each term of the objective function in (20) and
transforming as follows in (21), as shown at the bottom of

the next page. In order to solve (21), each term is expressed
to fully capture its essence.

Herein,
∑

h∈H ϑmϕi,m,h denotes the aggregate utility
of slice users associated to the macrocell and is given
in (22), as shown at the bottom of the next page.

max
∑

h∈H

[
∑

i∈(Em,h∪Mm,h∪Rm,h)

log
(

ϑi,m,h
)

+
∑

f ∈F

∑

i∈(Ef ,h∪Mf ,h)

∑

j∈{m,f }

δi,j,h log(ϑi,j,h)

+
∑

p∈P

∑

i∈(Ep,h∪Mp,h)

∑

j∈{m, p}

δ′i,j,h log
(

ϑi,m,h
)

+
∑

p∈P

∑

pf ∈PF

∑

i∈(Epf ,h∪Mpf ,h)

∑

j∈{m, p, pf }

δ′′i,j,h log
(

ϑi,m,h
)
]

s.t. C1 : ϑi,m,h ≥ λh,EmLh,Em ∀ i ∈ Em,h, ∀ h ∈ H

C2 : ϑi,m,h ≥ ϑ
thres
h ∀ i ∈Mm,h, ∀ h ∈ H

C3 : ϑi,m,h ≥ ϑ
th
h ∀ i ∈ Rm,h, ∀ h ∈ H

C4 : δi,j,h
[

ϑi,m,h − ϑ
thres
h

]

≥ 0 ∀ i ∈Mf ,h, j ∈ {m, f }, ∀ h ∈ H

C5 : δi,j,h
[

ϑi,m,h − λh,EmLh,Em
]

≥ 0 ∀ i ∈ Ef ,h, j ∈ {m, f }, ∀ h ∈ H

C6 : δ′i,j,h
[

ϑi,m,h − ϑ
thres
h

]

≥ 0 ∀ i ∈Mp,h, j ∈ {m, p}, ∀ h ∈ H

C7 : δ′i,j,h
[

ϑi,m,h − λh,EpLh,Ep
]

≥ ∀ i ∈ Ep,h, j ∈ {m, p}, ∀ h ∈ H

C8 : δ′′i,j,h
[

ϑi,m,h − ϑ
thres
h

]

≥ 0 ∀ i ∈Mpf ,h, j ∈ {m, p, pf }, ∀ h ∈ H

C9 : δ′′i,j,h
[

ϑi,m,h − λh,Epf Lh,Epf

]

≥ 0 ∀ i ∈ Epf ,h, j ∈ {m, p, pf }, ∀ h ∈ H

C10 :
∑

j∈{m,f }

δi,j,h = 1 ∀ i ∈ (Ef ,h ∪Mf ,h)

C11 :
∑

j∈{m, p}

δ′i,j,h = 1 ∀ i ∈ (Ep,h ∪Mp,h)

C12 :
∑

j∈{m, p, pf }

δ′′i,j,h = 1 ∀ i ∈ (Epf ,h ∪Mpf ,h)

C13 : δi,j,h ∈ {0, 1} ∀ i ∈ (Ef ,h ∪Mf ,h), j ∈ {m, f }, ∀ h ∈ H

C14 : δ′i,j,h ∈ {0, 1} ∀ i ∈ (Ep,h ∪Mp,h), j ∈ {m, p}, ∀ h ∈ H

C15 : δ′′i,j,h ∈ {0, 1} ∀ i ∈ (Epf ,h ∪Mpf ,h), j ∈ {m, p, pf }, ∀ h ∈ H

C16 :
∑

i∈(Em,h∪Mm,h∪Rm,h)

ϕi,m,h +
∑

f ∈F

∑

i∈(Ef ,h∪Mf ,h)

δi,j,hϕi,m,h +
∑

p∈P

∑

i∈(Ep,h∪Mp,h)

δ′i,j,hϕi,m,h

+
∑

p∈P

∑

pf ∈PF

∑

i∈(Epf ,h∪Mpf ,h)

δ′′i,j,hϕi,m,h = 1

C17 :
∑

f ∈F

∑

i∈(Ef ∪Mf )

δi,f ,h ϕi,f ,h = 1 ∀ h ∈ H

C18 :
∑

p∈P

∑

i∈(Ep,h∪Mp,h)

δ′i,p,h ϕi,p,h +
∑

p∈P

∑

pf ∈PF

∑

i∈(Epf ,h∪Mpf ,h)

δ′′i,p,hϕi,p,h = 1 ∀ h ∈ H

C19 :
∑

p∈P

∑

pf ∈PF

∑

i∈(Epf ,h∪Mpf ,h)

δ′′i,pf ,hϕi,pf ,h = 1 ∀ h ∈ H

C20 : ϕi,m,h ∈ (0, 1) i ∈ (Em,h ∪Mm,h ∪ Ef ,h ∪Mf ,h ∪ Ep,h ∪Mp,h ∪ Epf ,h ∪Mpf ,h)

C21 : ϕi,f ,h ∈ (0, 1) i ∈ (Ef ,h ∪Mf ,h)

C22 : ϕi,p,h ∈ (0, 1) i ∈ (Ep,h ∪Mp,h ∪ Epf ,h ∪Mpf ,h)

C23 : ϕi,pf ,h ∈ (0, 1) i ∈ (Epf ,h ∪Mpf ,h) (20)
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The aggregate utility of slice users associated with the fem-
tocell is given by:

∑

h∈H

∑

f ∈F

ϑf ϕi,f ,h

=

net utility from users associated with f but only located within f
︷ ︸︸ ︷
∑

h∈H

∑

f ∈F

∑

i∈E ′f

E ′f={l∈Ef ∪Mf |δl,f ,h=1}

log
(

B βf ,h ϕi,f ,h γi,f ,h
)

(23)

Likewise from (21),
∑

h∈H

∑

p∈F

ϑpϕi,p,h which denotes the

aggregate utility of slice users associated to the picocell is
given as:

∑

h∈H

∑

p∈F

ϑpϕi,p,h

=

net utility from users associated with p but only located within p
︷ ︸︸ ︷
∑

h∈H

∑

p∈P

∑

i∈E ′p

E ′p={q∈Ep∪Mp|δ
′
q,p,h=1}

log
(

B βp,h ϕi,p,h γi,p,h
)

+

net utility from users associated with p but within pf
︷ ︸︸ ︷
∑

h∈H

∑

p∈P

∑

pf ∈PF

∑

i∈E ′′p

E ′′p={r∈Epf ∪Mpf |δ
′′
r,p,h=1}

[

log
(

B βp,h ϕi,p,h γi,p,h
)]

(24)

The net utility from all slice users associated with the clus-
tered femtocells is denoted by

∑

h∈H

∑

p∈P

∑

pf ∈PF

ϑpf ϕi,pf ,h and

given as:
∑

h∈H

∑

p∈P

∑

pf ∈PF

ϑpf ϕi,pf ,h

=

net utility from users associated with pf and only within pf
︷ ︸︸ ︷
∑

h∈H

∑

p∈P

∑

pf ∈PF

∑

i∈E ′′p

E ′′p={r∈Epf ∪Mpf |δ
′′
r,pf ,h=1}

[

log
(

B βp,h ϕr,pf ,h γr,pf ,h
)]

(25)

To further transform (22) - (25), the following Lemma is quite
important.
Lemma 1: Given that f = a × b. Hence logz(f ) = logz

(a× b). Therefore,

logz(a× b) = logz(a)+ logz(b) (26)
By Lemma 1, the logarithmic expression in (22) can be
expressed as:

log
(

B βm,h ϕi,m,h γi,m,h
)

= log
(

B βm,h γi,m,h
)

+ log
(

ϕi,m,h
)

(27)

Similarly by Lemma 1, for (23);

log
(

B βf ,h ϕi,f ,h γi,f ,h
)

= log
(

B βf ,h γi,f ,h
)

+ log
(

ϕi,f ,h
)

(28)

Likewise for (24),

log
(

B βp,h ϕi,p,h γi,p,h
)

= log
(

B βp,h γi,p,h
)

+ log
(

ϕi,p,h
)

(29)

By Lemma 1, the logarithmic term in (25) can be simplified
as:

log
(

B βpf ,h ϕi,pf ,h γi,pf ,h
)

= log
(

B βpf ,h γi,pf ,h
)

+ log
(

ϕi,pf ,h
)

(30)

∑

h∈H

ϑmϕi,m,h +
∑

h∈H

∑

f ∈F

ϑf ϕi,f ,h +
∑

h∈H

∑

p∈P

ϑpϕi,p,h +
∑

h∈H

∑

p∈P

∑

pf ∈PF

ϑpf ϕi,pf ,h (21)

∑

h∈H

ϑmϕi,m,h =

net utility from users within m only
︷ ︸︸ ︷
∑

h∈H

∑

i∈Em,h∪Mm,h∪Rm,h

log
(

Bβm,h ϕi,m,h γi,m,h
)

+

net utility from users associated with m but located within f
︷ ︸︸ ︷
∑

h∈H

∑

f ∈F

∑

i∈E ′f
E ′f={l∈Ef ,h∪Mf ,h|δl,m,h=1}

log
(

B βm,h ϕi,m,h γi,m,h
)

+

utility from users associated with m but within p
︷ ︸︸ ︷
∑

h∈H

∑

p∈P

∑

i∈E ′p
E ′p={q∈Ep,h∪Mp,h|δ

′
q,m,h=1}

log
(

B βm,h ϕi,m,h γi,m,h
)

+

net utility from users associated with m but within pf
︷ ︸︸ ︷
∑

h∈H

∑

p∈P

∑

pf ∈PF

∑

i∈E ′pf
E ′pf={r∈Epf ,h∪Mpf ,h|δ

′′
r,m,h=1}

[

log
(

B βm,h ϕi,m,h γi,m,h
)]

(22)
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The expression for ϕi,j,h is presented in Appendix B. With
(27) - (30), the optimisation problem in (20) is solved with
βt,h being the decision variable. The hierarchical decompo-
sition method [35] is adapted in solving (20) and the base
station-slice user association is solved first in order to reduce
the complexity of solving (20).

A. THE BASE STATION-SLICE USER ASSOCIATION

In themulti-tier heterogeneous network, the base station-slice
user association is formulated as an integer programming
problem [47], [48]. It is given as:

max
δ

∑

h∈H

∑

j∈J

∑

i∈I

δi,j,h

subject to C24 :
∑

j

δi,j,h ≤ 1; ∀h, ∀i, j ∈ {f , p, pf }

C25 : δi,j,h ∈ {0, 1}; ∀h, ∀i, j∈{f , p, pf } (31)

The base station-slice user association optimisation problem
in (31) is adapted to the respective tiers taking into consid-
eration the index of the association indicator for each tier.
Constraint C24 is to ensure that the slice user can only be
associated with one base station or access point. Constraint
C25 is to ensure that the base station-slice user association
indicator is Boolean. In this work, a maximum SINR match-
ing algorithm is developed to solve the sub-problem in (31).
The many-to-one matching [49] concept is adapted owing to
its practical applications to heterogeneous wireless networks.
Fig. 3 depicts the base station-slice user matching game for
the multi-tier heterogeneous network and the different cate-
gories of the slice users.

FIGURE 3. Base station-slice user matching game.

Consequently, we develop Algorithm 2 to solve (31)
following the matching concept in Fig. 3

B. CONTINUOUS GENETIC ALGORITHM

We solve the transformed dynamic resource allocation prob-
lem in a multi-tenant multi-tier network in network slice

1Uh,s = (Eh,m∪Eh,f ∪Eh,p∪Eh,pf ∪Mh,m∪Mh,f ∪Mh,p∪Mh,pf ∪
Rh,m)

Algorithm 1 Latency-Aware Dynamic Resource Allocation
1: for h← 1 to |H| do
2: for Sh← to {E ∪M ∪R} do
3: for i ∈ Uh,s

1 do

4: optimally associate to an access point (Alg. 2)
and (31)

5: determine user cat. using Subsection II-B
6: end for

7: end for

8: for t ← {m, F, P, PF} do

9: for k ← {m, p, pf , f } do

10: for i ∈ Uh,s do

11: determine γi,k,h (2)-(5), (9)
12: determine ϑ thresh (10) - (16)
13: end for

14: determine the cell load characteristics (22)-(25)
15: end for

16: optimally determine βt,h (17)-(19)
17: end for

18: for Sh← to {E ∪M ∪R} do
19: for i ∈ Uh,s do

20: dynamically allocate radio resources (20), (Alg.
3)

21: end for

22: end for

23: end for

scenario via the Continuous Genetic Algorithm (CGA).
We adapt the Genetic Algorithm (GA) in solving the max-
imisation problem (20) owing to its robustness and effec-
tiveness in finding the global optimal solutions compared to
most heuristic algorithms [50]. Consequently, the GA can
handle all kinds of optimisation problems and any constraints,
such as linear and non-linear. In particular, the CGA, widely
acknowledged for its high precision in representing solutions
without extra-long strings of the chromosomes, hence its
low computational complexity, less storage requirement and
faster speeds [51], [52].

It is a stochastic search algorithm which is based on the
principle of natural selection, biological reproduction and
genetics [53], [54]. It starts with an initial randomly gen-
erated set of solutions otherwise called the population. The
population satisfies the boundary conditions of the optimi-
sation at hand. Each individual in the population is called a
chromosome. A chromosome is a standard representation of
solutions, otherwise called genes [55].

The GA determines the fitness of each chromosome in the
population via the objective function in (20). In this work,
the chromosomes with the best fitness values are selected
via the roulette wheel technique, thus creating the different
set of pairs referred to as parents for a crossover which is
significantly governed by the probability of crossoverPc. The
crossover process results in new chromosomes, otherwise
called children. In order to mimic the process of natural
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FIGURE 4. The GA process.

Algorithm 2 Base Station-Slice User Association
Input: ψj,h, di,j,h
1: if i is under the coverage of a femtocell then
2: if femtocell is clustered then
3: Calculate: γi,m,h, γi,p,h, γi,pf ,h (2), (4), (5)
4: if γi,pf ,h ≥ (γi,m,h & γi,p,h) then

δ′′i,pf ,h = 1
5: else

6: if γi,p,h ≥ (γi,m,h & γi,pf ,h) then
δ′′i,p,h = 1

7: else

8: δ′′i,m,h = 1
9: end if

10: end if

11: break;
12: else

13: Calculate γi,m,h, γi,f ,h (2), (3)
14: if γi,f ,h ≥ γi,m,h then

15: δi,f ,h = 1
16: else

17: δi,m,h = 1
18: end if

19: break;
20: end if

21: else

22: Calculate γi,p,h, γi,m,h (4), (5)
23: if γi,p,h ≥ γi,m,h then

24: δ′i,p,h = 1
25: else

26: δ′i,m,h = 1
27: end if

28: end if

reproduction, the genes of the children are mutated at birth,
giving rise to a new population. The fitness of the new popu-
lation is evaluated, and by means of elitism a small fraction of
the best individuals from the old population are retained in the
new population, and the others are discarded. This process is
illustrated in Fig. 4 and corresponding parameter values given
in Table 2.

Algorithm 3 CGA-Based Radio Resource Allocation
Input: Pm, Pc, Pe, g, y, t , H
1: number of genes, n = |t| · |H |
2: Initialise the random population A = y× n

A =








β11 β12 · · · β1n
β21 β22 · · · β2n
...

...
. . .

...

βy1 βy2 · · · βyn








3: while iteration ≤ g do

4: iteration = iteration + 1;
5: Evaluate the fitness Uy of each chromosome in A

U =
[

U1 U2 · · · Uy
]

6: Normalise the fitness vector U
Û = U

‖U‖
7: Sort Û in descending order

[∼, index] = Sort (Û , ‘descend’)
8: Sort the population A according to index

A = A(index:)
9: Select the Chromosome in A wrt. the sorted fitness Û

using the roulette wheel section.
The probability of a chromosome k being selected Pk
is given as

Pk =
Û
y

∑

z=1

Ûz

10: Carry out crossover using the Pc
11: Mutate the genes of chromosomes with Pm
12: Perform elitism on the initial population wrt. Pe
13: Select population
14: end while

The pseudocode of the CGA-based radio resource allo-
cation algorithm is shown in Algorithm 3. The algorithm
follows the procedure of the GA model in Fig. 4.
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TABLE 2. GA parameters and values.

Algorithm 4 Spatial BnB-Based Radio Resource Allocation

1: Initialise the upper bound, ωub, of (20)
Set the list of region G to a single domain

2: Use the least lower bound rule to choose a subregionA ∈
G

3: while G 6= ∅ do

4: if ωA,lb ≥ ωub − π then

5: Delete A from G

6: else

7: if ωA,ub > ωub then

8: Partition A into subregions Aleft and Aright

9: else

10: ωub = ωA,ub

11: Delete all subregions in G
12: if ωA,ub − ωA,lb ≤ π then

13: Delete A from G

14: end if

15: end if

16: end if

17: end while

18: if ωub = ∞ then

19: problem is infeasible
20: else

21: ωub is the global optimal of the solution
22: end if

C. SPATIAL BRANCH AND BOUND ALGORITHM

A spatial branch and bound (sBB) method [37] is adapted
to solve the maximisation problem in (20) in order to verify
the optimality of the CGA-based results. The sBB algo-
rithm gives a globally optimal solution, and it is shown in
Algorithm 4. The sBB is a widely used deterministic search
algorithm to solve the optimisation problem owing to its exact
solutions [56]. The sBB iteratively searches the solution space
of the defined problem. The wide range of solutions in the
search space forms a hierarchical tree taking into consider-
ation the upper and lower bounds of the solutions. These
sets of feasible solutions are evaluated with respect to the
objective function. If the evaluated solution does not result
in a better solution than the current best solution, then it is
discarded; however, if it is a better solution, the current best
solution is discarded while the evaluated solution becomes
the current best solution. This procedure is repeated until an
optimal solution is discovered [57], [58]. The pseudo code of
the sBB algorithm is illustrated in Algorithm 4.

VI. COMPLEXITY ANALYSIS

We examine the algorithms discussed in Section V. Herein,
we focus on the time complexity of the algorithms. The time
complexity is employed to determine the worst-case running
time of an algorithm. Furthermore, we employ the big Omi-
cron (big-O) in our characterisation of the algorithms. The
big-O notation gives a theoretical measure of the upper bound
or worst-case scenario of the growth rate concerning the
execution time (or memory) of an algorithm or a function.
A detailed explanation of the big-O is given in [59], [60].
First, we examine the time complexity of the CGA and
we further our analysis of the sBB algorithm. Additionally,
we discuss the Latency-aware dynamic resource algorithm
and, finally, the ORA resource allocation algorithm.

A. COMPUTATIONAL COMPLEXITY OF THE CGA

The computational complexity of the GA and other evolu-
tionary meta-heuristics are quite difficult to determine owing
to their stochastic behaviour. However, the big-O notation of
the CGA adopted in this paper is given byO(g(y · n(t, |H|))),
where g denotes the number of generation, y represents the
number of chromosomes, and n denotes the size of the genes
in a chromosome, which in this paper is a function of both
the number of the tiers t in the network and the number of
MVNOs |H|.

B. COMPUTATIONAL COMPLEXITY OF THE sBB

The time complexity of the sBB method depends on the
size of the search tree. However, it is pertinent to note that
the time complexity does not include the time for executing
the branching rule or inserting nodes in the queue. sBB
decomposes non-linear or non-convex objective functions
symbolically and recursively into simple operations by
applying simple operations [61] such as linear over- and
underestimators given in [62]. Furthermore, an integer lin-
ear programming is NP-hard, hence optimal solutions would
mostly require exponential upper bound (i.e. worst case) run
time in tandem with input size [63], [64]. Therefore, the time
complexity of the sBB is given by O(2t·|H|).

C. COMPUTATIONAL COMPLEXITY OF THE

LATENCY-AWARE DYNAMIC RESOURCE ALLOCATION

Furthermore, we examine the time complexity of the
latency-aware dynamic resource allocation in a multi-tier
multi-tenant network. It is given by O(|H| · t · |Sh|).
The time complexity of the ORA is given in [38] as
O(KM log( 1

ǫ
) + M3), where M is the number of slice users

and we have adapted K to be 1 to fit into the multi-tier
multi-tenant slice network.

VII. NUMERICAL RESULTS

In this section, the performance of the proposed genetic
algorithm (GA) intelligent latency-aware resource allocation
scheme (GI-LARE) is evaluated via Monte Carlo based com-
puter simulations in a Matlab environment. We considered
a multi-tier multi-tenant network of MVNOs operating in
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FIGURE 5. Impact of the slice user density on the Network Slicing ratio βt,h.

an area of interest of 950m radius. The macro station was
placed at the centre and surrounded with femtocells and
picocells, which had a coverage radius of 50m and 250m,
respectively. The multi-tier network consisted of 7 femto-
cells, 4 picocells and 5 clustered femtocells per picocells.
Furthermore, the transmit powers budget of 15dBm, 30dBm,
36.9dBm, and 40dBm for V2V transmit mode, femtocells,
picocells and the macrocell was considered. The different
categories of slice users were randomly distributed across

the different access points in all the tiers with a data packet
arrival rate of 5 packet/s, 20 packet/s, and 20 packet/s for
mMTC, eMBB and URLLC slice use cases with packet size
of 1000bits, 9000bits, and 500bits, respectively. In addition,
for URLLC slice users, we assumed the vehicles were mov-
ing at a velocity of 60Km/hr on a 4-lane highway with
a lane width of 4m. For each simulation, 10000 iterations
were generated and then averaged to obtain a numerical
result.
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A. IMPACT OF THE SLICE USER DENSITY

First, we evaluate the performance of the proposed algorithm
with different network parameters. With an assumed maxi-
mum delay bound of 100ms and a maximum delay bound
violation of 0.001, we investigate the impact of varying the
slice user density on the network slice ratio per tier for each
MVNO respectively and also its impact on the total network
utility. In Fig. (5), the impact of the slice user density on the
network slice ratio, βh,t is studied. We consider the different
densities of slice users in the range of 4 to 7 for the respec-
tive slice categories in the different tiers for the 3 MVNOs.
The proposed GI-LARE is compared with a Static resource
scheme and also an exact solution from the sBB scheme.
In Fig. 5(a), Fig. 5(b) and Fig. 5(c), we investigate the per-
formance of the algorithms with a slice user density of 4.
Fig. 5(d) to Fig. 5(f) show the results of the GI-LARE,
sBB-based and SS Schemes for a user density of 5. Simi-
larly, Fig. 5(g) to Fig. 5(i) show the results of the respective
schemes when the user density is set to 6. Finally, Fig. 5(j)
to Fig. 5(l) show the results of the GI-LARE, sBB-based and
SS schemes with user density of 7. We observe that unlike
the SS scheme, the GI-LARE and the sBB-based schemes
dynamically respond to the variation of the user density in the
respective tiers and MVNOs. The dynamic scheme ensures
fairness in the different tiers while at the same time maximis-
ing the network utility.

From the foregoing, we investigate the impact of the user
density on the network utility. Fig. 6 shows the impact of the
user density on the total network utility. Similar to Fig. 5,
the user density is set between 3 and 10 slice users. It is
observed that as the user density increases, the total network
utility increases owing to the increase in the utilisation of
network resources. The GI-LARE scheme outperforms the
SS (Static scheme) by an average of 25%, however its perfor-
mance is almost the same as sBB-based schemewhich gives a
global optimum. Besides, the GI-LARE scheme outperforms
the ORA when adopted to the multi-tier multi-tenant slice
network.

B. IMPACT OF THE NETWORK BANDWIDTH

Fig. 7 and Fig. 8 present the effect of the total bandwidth of
the network on network utility. In Fig. 7, we vary the total
network bandwidth from 200MHz to 700MHz and set the
user density at 5 users and the delay bound at 1ms. From
Fig. 7, we can observe that the network utility increases as the
total bandwidth of the network increases. This is owing to the
fact that the utility increases as more resources are available
to the network slice users. Similarly, in Fig. 8, the delay
bound is set at 10ms and a user density of 5 users. Similar
to Fig. 7, we observe that the network utility increases as the
total bandwidth of the network increases. However, with a
relax delay bound constraint of 10ms, the network utility is
quite higher than that of the 1ms but with a compromise on
the QoE. In both Fig. 7 and Fig. 8, the GI-LARE outperforms
the SS and ORA schemes.

FIGURE 6. Effect of the slice user density on the total utility of the
network.

FIGURE 7. Impact of the total bandwidth on the total utility of the
network at 1ms delay bound.

FIGURE 8. Impact of the total bandwidth on the total utility of the
network at 10ms delay bound.

C. IMPACT OF THE DELAY BOUND

In Fig. 9 and Fig. 10, we show the impact of the delay bound
on the network utility and effective bandwidth. With a user
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FIGURE 9. Effect of the delay bound on the total utility of the network.

FIGURE 10. Effect of the maximum delay bound on the effective
bandwidth threshold.

density of 2 users and a network bandwidth of 100MHz,
in Fig. 9, we present the impact of the delay bound on the
network utility. Similar to Fig. 7 and Fig. 8, there is a rapid
increase in network utility for a delay bound relaxation from
1ms to 10ms; however, with a limited network resource,
the utility remains constant despite the increase in the delay
bound. Fig. 10 shows the effect of the delay bound on the
effective bandwidth. As seen in constraints C2, C3, C5 and
C6, the effective bandwidth greatly affects the received rate
of the mMTC and URLLC slice users. We observe that as
the maximum delay bound increases, the threshold decreases
which is in tandem with (16).

D. IMPACT OF THE PACKET SIZE

Fig. 11 and Fig. 12 present the impact of the eMBB data
packet size on the network utility. In Fig. 11, with a delay
bound of 1ms, a user density of 5 users and a total network
bandwidth of 200MHz, it can be observed that as the packet
size increases, the net utility increases to about 2000 bits and
then a dip occurs in the net utility. This can be ascribed to

FIGURE 11. Impact of the eMBB data packet size on the total network
utility at 1ms delay bound.

FIGURE 12. Impact of the eMBB data packet size on the total network
utility at 100ms delay bound.

the bandwidth and power limitation of the network. However,
the GI-LARE scheme outperforms the SS and ORA resource
allocation schemes. Similar to Fig. 11, in Fig. 12, we further
study the impact of the packet size on the network utility with
delay bound and user density parameters set at 100ms and
5 users and follows the same trend with Fig. 11. However,
the network utility fared better at a delay bound of 100ms
than at a delay bound of 10ms.

E. IMPACT OF THE PACKET LOSS PROBABILITY

Fig. 13 shows the impact of the packet loss probability on the
network utility. Typically, the packet loss includes loss due
to errors in the network, buffer overflows and late arrivals
of packets. We vary the packet loss probability range from
10−5 to 10−1, with a user density of 5 users; a delay bound
of 10ms; and a bandwidth of 200MHz. Although the net-
work utility increases with lower packet loss probability, the
GI-LARE outperforms the SS and ORA resource allocation
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FIGURE 13. Impact of the Packet loss probability on the total network
utility.

FIGURE 14. Effect of the Coverage radius of the femtocells on the
network utility.

schemes. The lower the packet loss probability, the higher
the probability that the packets are received. Consequently,
we observe from Fig. 13 that the performance of the net-
work can be improved by ensuring the packet loss proba-
bility value is low. Moreover, we observe that at a packet
loss probability value of greater than 1, the network revenue
and ultimately the performance of the network significantly
degrades.

F. IMPACT OF THE COVERAGE RADIUS

Fig. 14 and Fig. 15 present the impact of the coverage radius
of the femtocells and picocells on the network utility.We vary
the coverage radius range from 10m to 100m and set the
delay bound at 10ms, with a network bandwidth of 100MHz.
We observe that the network utility increases when the cover-
age radius reduces. This is owing to better channel conditions
of the respective slice users. Similar to Fig. 14, in Fig. 15,
we examine the impact of the coverage radius of the 4 pico-
cells on the network utility.We vary the coverage radius range

FIGURE 15. Effect of the Coverage radius of the picocells on the network
utility.

from 200m to 300m and set the delay bound of 10ms. In the
same trend with the femtocells, we observe that the network
utility increases when the coverage radius reduces. However,
it is not as significant that of the femtocells, as a result of the
closeness of the femtocells to the slice users.

VIII. CONCLUSION

In this paper, we have proposed a genetic algorithm (GA)
intelligent latency-aware resource allocation scheme
(GI-LARE) that explicitly considered the latency and data
rate constraints slices in a multi-tenant, multi-tier heteroge-
neous network. The optimisation problem was transformed
and solved via the hierarchical decomposition method.
Slice users were associated with base stations in differ-
ent tiers by the concept of matching game theory, and
the latency-aware dynamic resource allocation problem is
solved using GI-LARE. Using the Monte Carlo simulation,
GI-LARE was compared with the sBB-based, static slicing
resource allocation (SS) and optimal resource allocation
(ORA) schemes under different scenarios. Our dynamic
GI-LARE scheme is shown to have outperformed the SS
approach.

With the successes in the field of machine learning (ML)
and, by extension, deep learning (DL) and generative adver-
sarial network (GAN), together with the increasing influence
of big data inmobile networks, the challenge of latency-aware
dynamic resource allocation in a multi-tenant multi-tier net-
work could be approached from the ML perspective. Our
future work would address the dynamic resource alloca-
tion problem in a multi-tier, multi-tenant network slicing by
adopting the concept of GAN.

APPENDIXES

APPENDIX A

Combining (14) and (15), we have:

e−θi,hλi,hDmax ≤ µ (32)
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Taking the logarithms of both sides of (32), this yields:

−θi,hλi,hDmax = loge µ (33)

where λi,h can also be said to be the minimum achievable rate
in packet/s of slice i (i.e.Mm,h,Mp,h,Mf ,h,Mpf ,h,Rm,h).
From (33), we express λi,h as:

λi,h =
− loge µ

θi,hDmax
(34)

Based on the effective bandwidth theory, the delay-bound
violation probability threshold can be guaranteed if and only
if the effective bandwidth is equal to the minimum achievable
rate. Therefore, from (13) and (34), we have:

− loge µ

θi,hDmax
=
λi,h

θi,h

(

eθi,h − 1
)

(35)

Therefore, eθi,h can be expressed as:

eθi,h = 1−
loge µ

λi,hDmax
(36)

Consequently from (36), θi,h is given as:

θi,h = loge

(

1−
loge µ

λi,hDmax

)

(37)

Note the unit of λi,h in (34) is packet/s and it can be trans-
formed to bit/s by multiplying (34) by the packet size Li,h.
From the foregoing, by substituting (37) into (34), we now
have the minimum achievable rate bounded by the delay
violation probability, ϑ thresh , for a user which is given as:

ϑ thresh = −
Li,h log(µ)

Dmax loge(1−
log(µ)
Dmaxλi,h

)
(38)

APPENDIX B

The slice user ratio is a function of the aggregate number of
slice users associated to an access point in a tier. Taking a
holistic look at (22), constraints C16, and C20, ϕi,m,h is given
as:

ϕi,m,h

=
1










|Em,h| + |Mm,h| + |Rm,h| +
∑

f ∈F

∑

l∈Ef ,h∪Mf ,h

δl,m,h

+
∑

p∈P

∑

q∈Ep,h∪Mp,h

δ′q,m,h

+
∑

p∈P

∑

pf ∈PF

∑

r∈Epf ,h∪Mpf ,h

δ′′r,m,h










(39)

For ϕi,f ,h, taking into consideration (23), C17 and C21, it can
be expressed as:

ϕi,f ,h =
1

[
∑

f ∈F

∑

l∈Ef ,h∪Mf ,h

δl,f ,h

] (40)

Similarly, for ϕi,p,h, taking into consideration (24), C18 and
C22, it can be expressed as:

ϕi,p,h

=
1

[
∑

p∈P

∑

q∈Ep,h∪Mp,h

δ′q,p,h+
∑

p∈P

∑

pf ∈PF

∑

r∈Epf ,h∪Mpf ,h

δ′′r,p,h

]

(41)

The user slice ratio in the clustered femtocells, ϕi,pf ,h looking
at (25), C19 and C23, is expressed as:

ϕi,pf ,h =
1

[
∑

p∈P

∑

pf ∈PF

∑

r∈Epf ,h∪Mpf ,h

δ′′r,f ,h

] (42)
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