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Abstract. A sensor network consists of sensing devices which may exchange data through
wireless communication. A particular feature of sensor networks is that they are highly
energy constrained due to their use of batteries. Data aggregation is a possible way to
save energy consumption: nodes may delay data in order to aggregate them into a single
packet before forwarding them towards some central node (sink). Since transmission is highly
energy consuming, aggregation can contribute to increasing network lifetime. However, many
applications impose constraints on the maximum delay of data; this translates into latency
constraints for data arriving at the sink. Data aggregation, latency constraints and energy
preservation give rise to a wide variety of combinatorial optimization problems.
In this paper we study the problem of data aggregation to minimize maximum energy
consumption under latency constraints on sensed data delivery. In the problem we study,
transmission energy and time depend only on the pair of nodes involved in the transmission
and we assume unique transmission paths that form a tree rooted at the sink. Most of our
results also hold when minimizing the total energy consumption of all nodes.
We prove that the off-line version of this problem is strongly NP-hard and we design a 2-
approximation algorithm. The latter uses a novel rounding technique which has potentially
wider applicability.
Almost all real life sensor networks are managed on-line by simple distributed algorithms
in the nodes. In this context we consider both the case in which sensor nodes are synchro-
nized or not. We consider distributed on-line algorithms and we use competitive analysis to
assess their performance. We also provide lower bounds for the models we consider, in some
cases showing the optimality of the algorithms we propose. To evaluate the strength of our
distributed algorithms we also present competitive results for the centralized model.

1 Introduction

Advancements in wireless and sensor technologies have paved the way for the development of tiny
and cheap devices equipped with sensors and wireless transceivers. Such devices, named sensor
nodes, are able to monitor events (e.g. seismic activity, animals moving in a forest, enemies or
intruders entering a monitored area), to process the sensed information and to communicate the
sensed data. A sensor network consists of sensor nodes and one or more central nodes or sinks.
Sinks are powerful base stations which gather data sensed in the network; sinks either process this
data or act as gateways to other networks. The sensed data are sent through a sequence of sensor
nodes to the sinks.

A particular feature of sensor nodes is that they are battery powered, making sensor networks
highly energy constrained. Replacing batteries on hundreds of nodes, often deployed in inaccessible
environments, is infeasible or too costly. Therefore, a key challenge in a sensor network is the
reduction of energy consumption and the most natural objective is to minimize the maximum
energy consumption over all nodes.

⋆ Supported by EU Integrated Project AEOLUS (FET-15964), EU project ADONET (MRTN-CT-2003-
504438), EU COST-action 293, MIUR-FIRB project VICOM, The MRT Network ADONET of the Euro-
pean Community (MRTN-CT-2003-504438), DFG Focus Program 1126, “Algorithmic Aspects of Large
and Complex Networks”, grant no. SK 58/5-3, and MIUR-FIRB Israel-Italy project RBIN047MH9.



Energy consumption can be divided into three domains: sensing, communication and data pro-
cessing [1]. Communication is most expensive because a sensor node spends most of its energy
in data transmission and reception [11]. This motivates the study of techniques to reduce overall
data communication, possibly exploiting processing capabilities available at each node. Data ag-
gregation is one such technique. It consists of aggregating redundant or correlated data in order to
reduce the overall size of sent data, thus decreasing the network traffic and energy consumption.

Most literature on sensor networks assumes total aggregation, i.e. data packets are assumed
to have the same size and aggregation of two or more incoming packets at a node results in a
single outgoing packet. Observe that even if this might be considered a simplistic assumption, it
allows us to provide an upper bound on the expected benefits of data aggregation in terms of
power consumption. We refer here to a selection of papers, focused on the algorithmic side of
the problem [2, 10, 13, 15, 14, 16]. However, these papers mainly focus on empirical and technical
aspects of the problem.

We concentrate on data aggregation in sensor networks under constraints on the latency of
sensed events; this means that data should be communicated to the sinks within a specified
time after being sensed. Preliminary results are given in [12, 19]. In [19] the authors provide
empirical rules to set the aggregation timers at each aggregation point, in order to meet the latency
constraints. The basic observation here is that packets should wait longer at nodes closer to the
sink to possibly receive information from a large number of nodes. In [12] the authors presented a
protocol to dynamically change the data aggregation period according to the aggregation quality.
In both cases formal proofs of the performance are not provided.

A sensor network is naturally represented by a graph whose nodes represent the sensors and the
arcs the wireless communication links. Data aggregation, latency constraints and energy preser-
vation, give rise to a large variety of graph optimization problems depending on the following
issues.
- Transmission energy and time can be seen as functions of the size of the packet and the trans-
mission arc. Typically, these are concave functions exhibiting economies of scale in the size of the
packets sent.
- The latency may depend on the (types of) sensor data or on the sensor nodes.
- Sensor networks can be modeled as synchronous or asynchronous systems.
- Data is delivered to one or more sinks.
- The overlay routing paths connecting nodes to the sinks can be fixed a priori, (e.g. a tree or a
chain) or may also be chosen as part of the optimization process.
- There might be several objective functions; the most natural ones are to minimize a function of
the energy consumption of the nodes or to maximize the amount of sensed data arriving at the
sinks with a given energy constraint.
- Sensor networks are usually managed in a distributed on-line way thus reflecting most sensor
networks in practice. Studying off-line and/or centralized versions may give valuable knowledge
about the structure of problems and their solutions.

By considering the above issues, we formulate the sensor problem in a combinatorial opti-
mization setting, which allows us to derive, what we believe to be, the first results on worst case
analysis for on-line algorithms on wireless sensor networks, as opposed to mainly empirical current
results. We foresee sensor networks becoming a new class of interesting combinatorial problems.

We concentrate here on a basic subclass of latency constrained data aggregation problems.
We assume that transit times and transit costs, in terms of energy consumption, are functions of
the arcs only, modeling the situation of total aggregation, while the objective is to minimize the
maximum transit cost per node over all nodes. There is only one sink and the transmission paths
from the nodes to the sink are unique, forming an intree with the sink as the root. The tree is a
typical routing topology in sensor networks; see [3, 10, 14, 17, 18].

The problems we considered are formalized and specified in Section 2. For a thorough under-
standing of the problem we have studied both the off-line and the on-line version of the problem,
although the latter version is the relevant one in practice.

We consider both centralized and distributed models. The centralized model assumes perfect
communication over the network or complete information by the base station about the presence
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(not the contents) of information at the nodes. We consider two distributed models based on their
use of time synchronization. Time synchronization, in the sense of the existence of a common clock
for the nodes, is a crucial component in wireless sensor networks. In typical applications a time
stamp forms a crucial part of the sensed data. Time synchronization in wireless sensor networks
has been studied in [5, 7, 9, 6]. Time synchronization introduces overhead and in some scenarios,
a synchronous model, in which all nodes share the same clock, may not be a requirement. We
consider both the synchronous model and the asynchronous model. We restrict ourselves to the
analysis of deterministic algorithms.

In Section 3 we show that the off-line problem is NP-hard and we give a 2-approximate
algorithm for its solution. We remark here that our approximate solution is based on a new
rounding technique of the LP-relaxation of an Integer Linear Programming formulation of the
problem, which might be useful for other applications. For the specific case where the graph is
a chain we give a dynamic programming formulation which solves the off-line problem in O(n3)
when minimizing the total energy. In this case the problem is equivalent to a batch processing
problem. For this problem Finke et al. [8] have developed independently of us exactly the same
dynamic programming formulation.

In Section 4 we describe the on-line problem. Our main results are the following:
(a) Centralized model. We give a lower bound of 2 on the competitive ratio of any determinis-
tic algorithm. If the routing network is a chain and message latencies are constant, we show a
2-competitive algorithm and a

√
2 lower bound on the competitive ratio.

(b) Distributed synchronous model. We present an Θ(log U)-competitive algorithm, where U is the
ratio between the maximum and the minimum time that a packet can wait in its route toward
the sink. We also show an Ω(log U) lower bound on the competitive ratio of any deterministic
distributed algorithm, whence the proposed algorithm is best possible up to a multiplicative con-
stant.
(c) Distributed asynchronous model. We give an O(δ log U)-competitive algorithm in the specific
case of unit transit times on the arcs. Here, δ is the depth of the tree. We also show that this
algorithm belongs to a broad class of algorithms for which we can prove a lower bound of Ω(δ1−ǫ)
on the competitive ratio, for any ǫ > 0.

Finally, in Section 5 we suggest possibilities for future research in this rich research area.
In spirit [3] comes closest to our paper. In [3] the authors consider optimization of TCP acknowl-

edgement (ACK) in a multicasting tree. The problem their work addresses is a data aggregation
problem. However, energy consumption is not an issue in this problem and latency is considered as
a cost instead of a constraint, resulting in an objective of minimizing the sum of the total number
of transmissions and the total latency of the messages.

In [4] the authors studied the optimal aggregation policy in a single-hop scenario (i.e. the
graph is a star). Namely an aggregator performs a request and starts waiting for answers from a
set of sources. The time for each source to return its data to the aggregator is independent and
identically distributed according to a known distribution F . At some point, the aggregator stops
waiting for data and returns an answer depending only on the data received so far and obtains a
reward which grows with the number of collected data and decreases with time. They prove that
for certain broad families of distributions and broad classes of reward functions, the optimal plan
for the aggregator has a simple form. The main differences with our paper are that they assume
that the distribution F is known, and they focus on a single-hop scenario.

2 The sensor problem formalized

We study sensor networks D = (V,A), which are intrees rooted at a sink node s ∈ V . Nodes
represent sensors and arcs represent the possibility of transmission between two sensors. Given an
arc a ∈ A we denote its head and tail nodes by head(a) and tail(a), respectively.

Over time, n messages, N := {1, . . . , n}, arrive at nodes and have to be sent to the sink.
Message j arrives at its release node vj at its release date rj and must arrive at the sink via the
unique vj − s-path at or before its due date dj . Thus, each message is completely defined by the
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triple (vj , rj , dj). Unless otherwise stated we assume that messages are indexed by increasing due
date, i.e., d1 ≤ d2 ≤ · · · ≤ dn. We refer to Lj := dj − rj as the latency of message j.

A packet is a set of messages which are sent simultaneously along an arc. More precisely, each
initial message is sent as one packet. Recursively, two packets j and ℓ can be aggregated at a node
v. The resulting packet has due date d = min{dj , dℓ}. This definition naturally extends to the case
of more packets aggregated together.

Transition of a message along an arc takes time and energy (cost). In this paper we assume
that the transit time τ : A → R>0 and transit cost c : A → R>0 are independent of packet size. We
often refer to the transit cost of a node as the transit cost of its unique outgoing arc. This models
the situation in which all messages have more or less the same size and where total aggregation is
possible, as discussed in the introduction. For v ∈ V , let τv and cv be, respectively, the total transit
time and total transit cost on the path from v to s. For message j and node u on the path from
vj to s, we define transit interval Ij(u) as the time interval during which message j can transit at
node u: Ij(u) := [rj + τvj

− τu, dj − τu]. In particular, Ij(s) = [r′j , dj ], where r′j := rj + τvj
is the

earliest possible arrival time of j at s. We abbreviate Ij for Ij(s) and call it the arrival interval of
message j. We also write |I| for the length of interval I; note that |Ij(u)| = |Ij | for all j and for
all u on the path from vj to u.

Finally, we define δ := maxv τv as the depth of the network in terms of the transit time.
The objective of the sensor problem is to send all messages to the sink in such a way as to

minimize the maximum transit cost per node (Min Max Energy) while satisfying the latency
restrictions. Given that transit costs are independent of the size of packets sent, but linear in the
number of packets sent, it is clearly advantageous to aggregate messages into packets at tail nodes
of arcs.

The objective to minimize the total transit cost over all nodes (Min Sum Energy) is closely
related to the Min Max Energy objective and we will show that most of our results also hold
for this objective function.

3 The off-line problem

The sensor problem is intrinsically on-line. However, the study of the off-line case is relevant for a
thorough understanding of the problem.

In this paragraph we give some positive and negative results on the off-line Min Max Energy

sensor problem. We prove that the problem is strongly NP-hard. We formulate the problem as an
ILP and we design a novel rounding technique for its LP-relaxation, yielding a 2-approximation.
The rounding technique might prove useful in other combinatorial optimization problems, as well.
We also prove that these results hold for Min Sum Energy; furthermore we prove for this objec-
tive that the problem is polynomially time solvable on a chain.

We start by proving some properties of optimal off-line solutions of both Min Max Energy and
Min Sum Energy.

Lemma 1. There exists a minimum cost solution such that:

(i) whenever two messages are present together at the same node, they stay together until they
reach the sink;

(ii) a message never waits at an intermediate node, i.e., a node different from its release node
and the sink;

(iii) the time when a packet of messages arrives at the sink is the earliest due date of any message
in that packet.

Proof. (i): Repeatedly apply the argument that whenever two messages are together at the same
node but split up afterwards, keeping the one arriving later at the sink with the other message
does not increase cost.
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(ii): Use (i) and repeatedly apply the following argument. Whenever a packet of messages
arrives at an intermediate node and waits there, changing the solution by shifting this waiting
time to the tail node of the incoming arc does not increase cost.

(iii): Follows similarly as (ii) by interpreting the time between the arrival of a packet at the
sink and earliest due date as waiting time. ⊓⊔

3.1 NP-hardness

Theorem 1. The off-line Min Max Energy sensor problem is strongly NP-hard.

Proof. We prove the theorem using a reduction from the Satisfiability Problem. Given an instance
of SAT with n boolean variables X1, . . . ,Xn and m clauses C1, . . . , Cm, we construct the intree
on n + 2 nodes depicted in Figure 1.

v

v1

v2

vn

s

Fig. 1.

The nodes v1, . . . , vn on the left correspond to variables X1, . . . ,Xn. There is one intermediate
node v and the sink s on the right. The transit costs of the arcs are determined later. The transit
times of all arcs are zero, whence the earliest arrival times of the messages coincide with their
release dates.

For clause Ci we define a time interval T (Ci) = [3i(n + 1), 3(i + 1)(n + 1) − 1] and a message
zi = (v, ri, di) := (v, (3i + 1)(n + 1), (3i + 2)(n + 1)), i = 1, . . . ,m. Notice that the arrival interval
Izi

= [ri, di] ⊂ T (Ci). We also define two dummy messages z0 := (v, 0, 0) and zm+1 := (v, 3(m +
1)(n+1), 3(m+1)(n+1)). Notice the crucial fact |Iz0

| = |Izm+1
| = 0, leaving no choice in sending

z0 and zm+1.
If variable Xj occurs unnegated in clause Ci, we create a message xj

i = (vj , r
j
i , d

j
i ) := (vj , (3i+

1)(n + 1) + j, (3i + 2)(n + 1) + j). If Xj occurs negated in clause Ci, we create message xj
i :=

(vj , 3i(n + 1) + j, (3i + 1)(n + 1) + j). If Xj does not occur in Ci no message xj
i is created. Notice

that in both cases the arrival time interval Ij
i ⊂ T (Ci). If Xj does not occur in Ci no message xj

i

is created. An illustration is given in Figure 2.
The rough idea behind the reduction is the following: in an optimal solution, message xj

i is
either sent at its release or at its due date (the reason for this will become clear later). Moreover,
sending xj

i at its release (due) date means setting Xj to true (false). Thus, message zi can join

message xj
i at node v if and only if the value of variable Xj makes clause Ci true.

We continue with the description of the instance. Let ij1 < · · · < ijkj
denote the indices of the

clauses in which variable Xj occurs. We create kj + 1 additional messages released at node vj .
The release and due dates of these messages are chosen such that the 2kj +1 arrival time intervals
formed by the release and due dates of all messages released at node vj form a partition of the
interval [0, 3(m + 1)(n + 1)]; see Figure 3.

We will demonstrate that for appropriately chosen cost functions any SAT problem reduces to
the Min Max Energy sensor problem. We define the cost function by c(vj , v) = (maxl kl + 1)/(kj+
1) for j = 1, . . . , n and let c(v, s) = (maxl kl + 1)/(

∑n
l=1 kl + 2).
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(3i + 2)(n + 1)

zi

xk
i

xj
i

(3i + 1)(n + 1) + j (3i + 2)(n + 1) + j
(3i + 1)(n + 1) + k3i(n + 1) + k

(3i + 1)(n + 1)3i(n + 1) 3(i + 1)(n + 1) − 1

Fig. 2. Arrival intervals corresponding to clause Ci. In the depicted example, the clause has the form
Ci = (Xj ∨ ¬Xk).

3(m + 1)(n + 1)

xj
i1

xj
i2

xj
i3

0 rj
i1

dj
i1

rj
i2

dj
i2

rj
i3

dj
i3

Fig. 3. Arrival intervals of messages with release node vj . In the depicted example, variable Xj occurs in
three clauses Ci1 , Ci2 , and Ci3 . Arrival intervals of the four auxiliary messages are represented by dashed
arrows.

Claim 1. Every Min Max Energy optimal solution to the subinstance obtained by ignoring
messages z1, . . . , zm has the following properties:

(a) The cost of each node is maxl kl + 1;
(b) A message with release node vj is either sent from vj at its release date or at its due date,

j = 1, . . . , n;
(c) For each fixed j = 1, . . . , n, either all messages xj

i (i = ij1, . . . , i
j
kj

) are sent at their release
dates or all of them are sent at their due dates.

Proof of Claim 1. Let us consider a solution which minimizes the cost of nodes vj . Since the 2kj +1
arrival time intervals of messages with release node vj form a partition of [0, 3(m + 1)(n + 1)], at

most one xj
i -message and one of the auxiliary messages can be aggregated into a packet, which then

has to be sent at the single intersection point of the two arrival time intervals. Thus the minimal
number of packets that have to be sent from node vj is kj + 1, i.e. kj pair-packets and one packet
containing a single message. Hence the minimal cost of node vj is c(vj , v)(kj + 1) = maxl kl + 1
for all nodes vj .

Each pair-packet is sent at the common release and due date of its two messages and by
construction of these dates no two pair-packets emanating from different nodes can be aggregated
into a single packet at node v. Thus, there are

∑n
l=1 kl pair-packets passing v. And we have the two

dummy messages z0 and zm+1, which are sent from node v at times 0 and 3(m + 1)(n + 1). Pair-
packets cannot be aggregated with these dummy messages but each single-message-packet can be
sent at time 0 or 3(m+1)(n+1) and hence it may join dummy message z0 or zm+1 at node v. This
gives a total of

∑n
l=1 kl + 2 packets passing v. Thus, the cost of node v is c(v, s)(

∑n
l=1 kl + 2) =

maxl kl + 1. Notice that a single-message-packet contains either the first or the last auxiliary
message released at node vj . If the single-message-packet is the first auxiliary message then all

pair-packets are sent on the due date of the xj
i -message in the packet. Otherwise, all pair-packets

are sent on the release date of the xj
i -message in the packet.

Thus, we have constructed a solution which satisfies properties (a),(b) and (c). As the cost of
node vj is at least maxl kl + 1 the solution is an optimal solution. From the construction of this
solution it can easily be verified that any solution which violates property (a),(b) or (c) has a node
with a cost which exceeds maxl kl + 1. ⊓⊔
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This claim suffices to prove the following claim which in its turn implies the proof of the theorem
directly.

Claim 2. The Min Max Energy sensor problem has a solution with maximum cost at most
maxl kl + 1 if and only if the underlying instance of SAT is satisfiable.

Proof of Claim 2. Given a satisfying assignment for the SAT instance, a feasible solution to the
sensor problem can be obtained as follows. Notice that in the construction of an optimal solution
in the proof of Claim 1, for each j, there is a choice for the set of messages corresponding to Xj ,
to send either dummy message z0 separately at time 0 or the dummy message zm+1 separately at
time 3(m+1)(n+1). In both cases the cost of sending all messages corresponding to the variables
and z0 and zm+1 is maxl kl + 1 for each node. We make the choice now by sending zm+1 separately
if Xj is true in the satisfying assignment and z0 separately if Xj is false.

We claim that message zi corresponding to clause Ci, i = 1, . . . ,m, can be aggregated at v
with one of the pair-packets corresponding to a variable in the clause. Suppose that clause Ci is
satisfied due to variable Xj . If Xj appears unnegated in Ci (thus Xj is true), then the pair-packet

containing message xj
i is sent at time rj

i := (3i + 1)(n + 1) + j ∈ [ri, di], and message zi can join

this packet at no additional cost. Similarly, if Xj appears negated at Ci (thus Xj is false) then xj
i

is sent at dj
i := (3i + 1)(n + 1) + j ∈ [ri, di]. This concludes the proof of the “if” part.

It follows from Claim 1 that any feasible solution with maximum cost maxl kl + 1 yields an
assignment of values to the boolean variables X1, . . . ,Xn: variable Xj is set to true (false), if all

messages xj
i , i = ij1, . . . , i

j
kj

, are sent at their release (due) dates. It also follows from Claim 1 that
in an optimal solution message zi, i = 1, . . . ,m should not cause additional cost, therefore it must
join one of the packets starting at a node vj . Due to the construction of the instance, this is only
possible if the value of variable Xj causes clause Ci to be satisfied. This concludes the proof of
the “only if” part for this objective function. ⊓⊔

NP-hardness of Min Sum Energy is proved in a similar way. We write out the proof for
completeness.

Theorem 2. The off-line Min Sum Energy sensor problem is strongly NP-hard.

Proof. We prove the theorem using the same reduction from the Satisfiability Problem as in
Theorem 1, but using a different cost function on the arcs. We define M := 2nm and K :=
2 + nM +

∑n
j=1 kj(M + 1). Let the cost function be defined by c(vj , v) = M for j = 1, . . . , n and

let c(v, s) = 1.

Claim 3. Every Min Sum Energy optimal solution to the subinstance obtained by ignoring
messages z1, . . . , zm has the following properties:

(a) The cost of the solution is K;
(b) A message with release node vj is either sent from vj at its release date or at its due date,

j = 1, . . . , n;
(c) For each fixed j = 1, . . . , n, either all messages xj

i (i = ij1, . . . , i
j
kj

) are sent at their release
dates or all of them are sent at their due dates.

Proof of Claim 3. Let us consider a solution which minimizes the total cost of all nodes. Since M
is sufficiently large, an optimal solution will send as few packets of messages as possible from each
node vj . Since the 2kj + 1 arrival time intervals of messages with release node vj form a partition

of [0, 3(m+1)(n+1)], at most one xj
i -message and one of the auxiliary messages can be aggregated

into a packet, which then has to be sent at the single intersection point of the two arrival time
intervals. Thus the minimal number of packets that have to be sent from node vj is kj + 1, i.e. kj

pair-packets and one packet containing a single message.
Each pair-packet is sent at the common release and due date of its two messages and by

construction of these dates no two pair-packets emanating from different nodes can be aggregated
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into a single packet at node v. Each pair-packet costs M + 1 and in total, the transit costs for
these pair-packets add up to

∑n
j=1 kj(M + 1).

And we have the two dummy messages z0 and zm+1, which are sent from node v at times 0
and 3(m + 1)(n + 1). Pair-packets cannot be aggregated with these dummy messages but each
single-message-packet can be sent at time 0 or 3(m + 1)(n + 1) and hence it may join dummy
message z0 or zm+1 at node v. Only if each single-message-packet is sent with a dummy node,
the total transit cost remains below K. Notice that there are n single-message-packets and each
single-message-packet contains either the first or the last auxiliary message released at node vj . If
the single-message-packet is the first auxiliary message then all pair-packets are sent on the due
date of the xj

i -message in the packet. Otherwise, all pair-packets are sent on the release date of

the xj
i -message in the packet. ⊓⊔

This claim suffices to prove the following claim which in its turn implies the proof of the theorem
directly.

Claim 4. The Min Sum Energy sensor problem has a solution of total cost at most K if and
only if the underlying instance of SAT is satisfiable.

Proof of Claim 4. Given a satisfying assignment for the SAT instance, a feasible solution to the
sensor problem can be obtained as follows. Notice that, in the construction of an optimal solution
in the proof of Claim 3, for each j, there is a choice for the set of messages corresponding to Xj ,
to send either dummy message z0 separately at time 0 or the dummy message zm+1 separately at
time 3(m + 1)(n + 1). In both cases the total cost for sending all of the messages corresponding
to the variables plus the two dummy messages z0 and zm+1 is K. We make the choice now by
sending zm+1 separately if Xj is true in the satisfying assignment and z0 separately if Xj is false.

We claim that message zi corresponding to clause Ci, i = 1, . . . ,m, can be aggregated at v
with one of the pair-packets corresponding to a variable in the clause. Suppose that clause Ci is
satisfied due to variable Xj . If Xj appears unnegated in Ci (thus Xj is true), then the pair-packet

containing message xj
i is sent at time rj

i := (3i + 1)(n + 1) + j ∈ [ri, di], and message zi can join

this packet at no additional cost. Similarly, if Xj appears negated at Ci (thus Xj is false) then xj
i

is sent at dj
i := (3i + 1)(n + 1) + j ∈ [ri, di]. This concludes the proof of the “if” part.

It follows from Claim 3 that any feasible solution of cost K yields an assignment of values to the
boolean variables X1, . . . ,Xn: variable Xj is set to true (false), if all messages xj

i , i = ij1, . . . , i
j
kj

,

are sent at their release (due) dates. It also follows from Claim 3 that in an optimal solution
message zi, i = 1, . . . ,m should not cause additional cost, therefore must join one of the packets
starting at a node vj . By construction of the instance, this is only possible if the value of variable
Xj causes clause Ci to be satisfied. This concludes the proof of the “only if” part for this objective
function. ⊓⊔

3.2 A 2-approximation

We give an ILP-formulation of the problem, based on Lemma 1, and show that rounding the
optimal solution of the LP-relaxation yields a 2-approximation algorithm. For every message-arc
pair {i, a}, we introduce a binary decision variable xia, which is set to 1 if and only if arc a is
used by some message j which arrives at s at time di. We use the notation jmin for the smallest
index i such that di ≥ r′j ; that is, jmin := min{i : di ≥ r′j}. We use aj to denote the first arc on
the (unique) vj − s- path. The LP relaxation of the Min Max Energy sensor problem is

min z
s.t. z ≥ c(a)

∑n
i=1 xia ∀a ∈ A,

∑j
i=jmin

xiaj
> 1 ∀ 1 ≤ j ≤ n,

xia > xia′ ∀ 1 ≤ i ≤ n ∀ a, a′ ∈ A with head(a′) = tail(a),
xia ∈ {0, 1} ∀ 1 ≤ i ≤ n ∀ a ∈ A.

(1)
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The set of constraints
∑j

i=jmin
xiaj

> 1 forces each message to leave its release node in time
to reach the sink before its due date. The set of constraints xia > xia′ force that a message does
not wait at intermediate nodes.

In the following lemma we develop a tool for rounding the corresponding LP-relaxations, which
are obtained by replacing the integrality constraints with non-negativity constraints xia > 0.

Lemma 2. Let α1, . . . , αn ∈ R>0 and β1, . . . , βn ∈ {0, 1} with

∑k
i=j αi > 1 =⇒ ∑k

i=j βi > 1 ∀1 ≤ k ≤ n ∀1 ≤ j ≤ k. (2)

By decreasing some of the βi’s from 1 to 0, one can enforce the inequality
∑n

i=1 βi 6 2
∑n

i=1 αi (3)

while maintaining property (2). Moreover, this can be done in linear time. ⊓⊔
Proof. Consider the βi’s in order of increasing index. If βi = 1, then round it down to 0, unless this
yields a violation of (2). It is not difficult to see that this greedy algorithm can be implemented
to run in linear time. It remains to be proven that inequality (3) holds for the resulting numbers
β1, . . . , βn.

For h ∈ {1, . . . , n}, let h̄ := min{i > h | βi = 1}; if βi = 0 for all i > h or h = n, then
h̄ := n + 1. Similarly, let h := max{i < h | βi = 1}; if βi = 0 for all i < h or h = 1, then h := 0.
We prove the following generalization of (3):

h
∑

i=1

βi 6 2

h̄−1
∑

i=1

αi ∀ 1 ≤ h ≤ n. (4)

By contradiction, consider the smallest index h violating (4). Since h is chosen minimally, it must
hold that βh = 1; rounding βh down to 0 would yield a violation of (2). In particular this would
yield

h̄−1
∑

i=h+1

αi > 1 (5)

while
∑h̄−1

i=h+1 βi = 0 . Notice that h > 1, since, by choice of h,

h
∑

i=1

βi > 2

h̄−1
∑

i=1

αi

(5)

> 2 .

Thus, βh = βh = 1. We get a contradiction to the choice of h:

h
∑

i=1

βi =

h−1
∑

i=1

βi + 2
(4)

6 2

h−1
∑

i=1

αi + 2
(5)

6 2

h−1
∑

i=1

αi + 2
h̄−1
∑

i=h+1

αi 6 2
h̄−1
∑

i=1

αi .

The first inequality follows from (4) since (h − 1) = h. This concludes the proof. ⊓⊔
Theorem 3. There is a polynomial time 2-approximation algorithm for the Min Max Energy

sensor problem on intree D = (V,A).

Proof. We round optimal (fractional) solution (x, z) of the LP relaxation of (1) to an integral
solution (x̄, z̄). Consider the arcs in order of non-decreasing distance from s. For arc a with
head(a) = s, set x̂ia = 1 ∀ i = 1, . . . , n. Modify these values to x̄1a, . . . , x̄na by applying Lemma
2 to x1a, . . . , xna and x̂1a, . . . , x̂na. For an arc a′ with larger distance to s, take the arc a with
head(a′) = tail(a) and set x̂ia′ := x̄ia ∀i = 1, . . . , n. We also modify these values into x̄1a′ , . . . , x̄na′

by applying Lemma 2 to the values x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ . Premise (2) of Lemma 2 is
satisfied for x1a′ , . . . , xna′ and x̂1a′ , . . . , x̂na′ since (2) holds for x1a, . . . , xna and x̄1a, . . . , x̄na and
since xia′ ≤ xia.

By construction, the final solution (x̄, z̄) is feasible if we choose z̄ = 2z. ⊓⊔
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For the Min Sum Energy sensor problem we may obtain a 2-approximation in a similar way.
The LP relaxation of the Min Sum Energy sensor problem is

min
∑

a∈A c(a)
∑n

i=1 xia

s.t.
∑j

i=jmin
xiaj

> 1 ∀ 1 ≤ j ≤ n,

xia > xia′ ∀ 1 ≤ i ≤ n ∀ a, a′ ∈ A with head(a′) = tail(a),
xia ∈ {0, 1} ∀ 1 ≤ i ≤ n ∀ a ∈ A.

(6)

Note that this LP-relaxation differs from the Min Max Energy LP-relaxation only in the
objective function and variable z. In particular, a feasible solution x to the Min Sum Energy

problem is a feasible solution to the Min Max Energy problem for appropriately chosen z.
Similarly a feasible solution (x, z) to the Min Max Energy problem yields a feasible solution x
to the Min Sum Energy problem.

The constraints on z ensure that z is at least the transit cost of any node. The 2-approximation
follows from the following Corollary, which is based on the proof of Theorem 3.

Corollary 1. There is a polynomial time 2-approximation algorithm for the Min Sum Energy

sensor problem on intree D = (V,A).

Proof. We round optimal (fractional) solution x of the LP relaxation of (6) to an integral solution
x̄. As the constraint sets of both Min Max Energy and Min Sum Energy are equal except
for constraints on z, we obtain an integral vector x̄ as described in Theorem 3. This proves the
corollary. ⊓⊔

3.3 A polynomial time algorithm for the chain

For the Min Sum Energy objective, the off-line sensor problem is polynomially solvable if graph
D is a chain. We give a dynamic programming formulation and analyze its running time.

For 0 6 i 6 k 6 n + 1, we denote by N(i, k) the set of messages in {i + 1, . . . , k − 1} whose
earliest arrival time is strictly later than i’s due date. More formally,

N(i, k) := {j ∈ N | i < jmin 6 j < k} .

OPT (i, k) denotes the cost of an optimal solution to the partial instance defined by the subset of
messages in N(i, k). The dynamic programming formulation is based on the following Lemma:

Lemma 3. Let ℓ be a message in N(i, k) whose release node vℓ has maximum total transit time
tvℓ

among all messages in N(i, k). Then,

OPT (i, k) = cvℓ
+ min

ℓmin≤j≤ℓ

(

OPT (i, j) + OPT (j, k)
)

. (7)

Proof. In an optimal solution for N(i, k), message ℓ arrives at the sink at time dj , for some
j ∈ {ℓmin, . . . , ℓ}. Moreover, there exists an optimal solution for N(i, k) in which all messages in
Ni,k(j) := {h ∈ N(i, k) | hmin 6 j 6 h} arrive at the sink together with message ℓ at time dj

(because they can join ℓ on its way to the sink at no additional cost). Notice that N(i, k) is the
union of the disjoint sets N(i, j), Ni,k(j), and N(j, k). Moreover, since no two messages in N(i, j)
and N(j, k) can ever reach the sink together in a feasible solution, the remaining problem can
be decomposed into two subproblems for messages in N(i, j) and N(j, k). This yields the desired
result. ⊓⊔
Theorem 4. The off-line Min Sum Energy sensor problem on a chain can be solved in O(n3)
time.

Proof. Consider a dynamic program which computes values OPT (i, k), 0 ≤ i ≤ k ≤ n+1, in order
of non-decreasing k − i. It follows from Lemma 3, that the algorithm can compute these O(n2)
values and since it takes O(n) time to evaluate (7) the algorithm needs a total time of O(n3). The
value of an optimal solution can be derived from OPT (0, n + 1). Moreover, keeping track of the
messages j that minimize the right hand sides of (7), we may derive for each message in N the
time at which it is sent to s. This concludes the proof. ⊓⊔
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4 The on-line problem

In real-world sensor networks, it is typically hard to predict whether and when new messages will
be released. This is captured by the on-line model where messages are released over time and an
algorithm has no information on messages before they are released.

We distinguish three different on-line models:

– the centralized model;
– the synchronous distributed model;
– the asynchronous distributed model.

In the centralized on-line model there is complete information on the presence of messages at
nodes at a certain time instant. A centralized algorithm may use this information and determines
at what times each node sends a packet of messages towards the sink.

In the distributed on-line models nodes communicate independently of each other. Each node is
equipped with an algorithm, which determines at what times the node sends a packet of messages
to the next node on the path to the sink. The input of each node’s algorithm at any time t is
restricted to the packets that have been released at or forwarded from that node in the period
[0, t].

We assume that all nodes are equipped with a clock to measure the latency of messages. We
distinguish two distributed on-line models: in the synchronous model all nodes are equipped with
a common clock, i.e. the times indicated at all clocks are identical. A common clock may facilitate
synchronization of actions in various nodes. In the asynchronous model there is no such common
clock; still, the duration of the time unit is assumed to be the same for all nodes.

We also assume in both models that each node v knows its total transit time τv to the sink.
Moreover, for the asynchronous model we assume that all transit times τ(a) are equal, and without
loss of generality we set τ(a) = 1 ∀a ∈ A.

4.1 The centralized model

For the on-line centralized model we prove that no on-line algorithm can be better than 2-
competitive. We also present an algorithm which is intuitively appealing and we prove that this
algorithm is 2-competitive on a chain if latencies of all messages are equal. We also show that in
case of a chain and equal latencies no algorithm can be better than

√
2-competitive. These results

hold for both objectives. It is an open problem if there exists a constant competitive algorithm
for the on-line centralized problem on a tree, for either objective.

Theorem 5. No algorithm for the on-line centralized problem on a chain can have a competitive
ratio less than 2 − 1

m
for Min Max Energy and Min Sum Energy.

Proof. For the Min Max Energy objective consider a chain consisting of nodes u2, u1, s with
unit cost. At some time t an adversary releases a message at u2. If an algorithm sends the message
at time t then at t+1 another message is released at u2. This gives the algorithm a maximum cost
per node of at least 2 against optimal maximum cost per node of 1. Else, if an algorithm delays
the message then the adversary releases a message at u1 with due date t+2, which gives the same
cost structure as above.

For the Min Sum Energy objective consider a chain with m + 1 nodes, consisting of nodes
um, . . . , u1, s. with unit cost. Assume Lj := L ≥ 2m for all messages j released at um. Think of
an adversary who releases messages at each time unit in the node um at distance m from s, until
the algorithm decides to delay this message. Suppose the algorithm decides to hold up the i-th
message.

If i ≤ L−m the adversary also releases a message at um−1 with latency m−1 at time instance
i. The algorithm has sent i−1 messages from um to um−1 at a cost of i−1 and has to send at least
one packet from um−1 and the packet at um separately to s. Total costs are at least 2m−1+(i−1)
which is minimal if i = 1. The optimal costs are m.
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If i > L − m then the adversary stops releasing messages after the L − m-th one, keeping
optimal costs m against total cost (L − m − 1) + m for the algorithm, which proves the theorem
since L ≥ 2m. ⊓⊔

Algorithm: Earliest Due Date First(EDD) At each time t do the following:
- select any message with earliest due date, tdd, from the set of messages that have not
arrived at the sink, as the responsible message;
- each sensor v which contains messages sends a packet containing all messages present at
this node if t + τv = tdd.

Although time is continuous the algorithm only has to make decisions, i.e. select the responsible
message and assign sending times to nodes, if a new message is released. Note, that in case of
constant latencies once a message is chosen as responsible message we may assume without loss
of generality that it remains the responsible message in the network until it reaches the sink. In
case of arbitrary latencies, a newly released message may become the responsible message if its
due date precedes the due date of the previous responsible message. It can easily be observed that
any EDD-solution satisfies properties (i-iii) the optimal solution is proved to have in Lemma 1.

To analyze the competitive ratio of EDD we construct a graph by identifying its vertices with
messages and its edges with pairs of messages that can be combined in a packet, i.e. whose arrival
time intervals intersect. The resulting graph is an interval graph. A solution P consists of a set of
packets. If packet P ∈ P arrives at the sink at time t, it contains only messages which have time
t in their arrival time interval, i.e. P ⊆ {j|t ∈ Ij}. Each packet P corresponds to a clique C in
the interval graph. We denote as Ct a clique whose messages arrive at time t at the sink, and we
denote the corresponding solution set (of cliques) as C.

Thus the sensor problem can be viewed as a clique partitioning problem on an interval graph.
Clearly an optimal solution will consist of a collection of maximal cliques, but on-line solutions may
not achieve this. The messages in a clique arrive at the sink in a single packet. It is the structure
of the objective function that creates the algorithmic challenges. Indeed, the clique partitioning
problem related to the sensor problem on an intree is NP-hard, as discussed in Section 3.

Theorem 6. EDD is 2-competitive for the centralized sensor problem on a chain with constant
latencies for both Min Sum Energy and Min Max Energy.

Proof. We prove that the number of packets sent from a node v in the EDD-solution is at most
2 times the number of packets sent from a node v in the optimal solution with respect to either
objective.

Let C∗ be an optimal solution of the off-line problem which satisfies property (i) in Lemma 1.
We claim that any clique of optimal off-line solution C∗ is intersected by at most two EDD-cliques.
Suppose not, then C∗ must contain a clique C∗

t which is intersected by at least 3 EDD-cliques.
Consider any 3 such EDD-cliques, Ct1 , Ct2 , Ct3 ordered by increasing arrival times at the sink.
Let, for i := 1, . . . , 3, ji ∈ C∗

t ∩ Cti
be a message with earliest due date amongst all messages in

C∗
t ∩ Cti

and let Iji
be the corresponding arrival time interval. As j1, j2, j3 ∈ C∗

t we must have
I1 ∩ I2 ∩ I3 6= ∅. Also, as j3 /∈ Ct2 , t2 has to be smaller than the earliest possible arrival time of
message j3 as otherwise EDD would have added j3 to clique Ct2 ; hence t2 < t. As EDD sends each
packet of messages such that it arrives at the due date of some message in the packet, Ct2 must
contain a message j /∈ C∗

t with due date t2 by definition of j2. Let I be the arrival time interval of
this message. We must have t2 ∈ I and t1 /∈ I as otherwise message j would be contained in Ct1 .
This is only possible if the length of I is strictly less than the length of I1. As we assume constant
latency, this is only possible when message j is released at some node further away from the sink
than message j1.

Now, consider the optimal solution. As message j has due date t2 < t it must arrive at the
sink before message j1; but as message j would pass message j1 it follows from property (i) in
Lemma 1 that message j1 is aggregated with j. As message j3 cannot be aggregated with these
messages this contradicts the assumption that j1 and j3 are aggregated into a single clique C∗

t in
the optimal solution. This proves the claim.
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By construction of the EDD-solution, all messages in an EDD-clique that have to be sent from
a node v, are sent from this node simultaneously. Let C∗

t be an optimal off-line clique and let Ct1

and Ct2 be the two EDD-cliques intersecting C∗
t . If messages in C∗

t have to be sent from a node
v, then in the EDD-solution node v has to send at most twice to send all messages in Ct1 and
Ct2 . This proves the theorem. ⊓⊔

The competitive ratio of EDD can be arbitrarily close to 2 for both objectives. even with
constant latencies. Consider the chain u2, u1, s with τa = 1 and costs c(u2, u1) = l, c(u1, s) = 1,
for some l, l ≥ 1. Assume a latency of L ≥ 4 for each message. Message 1 is released at node u1

at time r1 = 0. Message 2 is released at node u2 at time r2 = L − 2. Message 3 is released at
node u2 at time r2 = L − 1. EDD aggregates messages 1 and 2 in a packet and sends message 3
separately, yielding a total cost of 2(l + 1) and a maximum cost of 2l. The optimal solution (for
both objectives) aggregates messages 2 and 3 and has a total cost of l + 2 and a maximum cost of
l. Hence, EDD is at best 2-competitive for Min Max Energy and it is 2 − 2

l+2 -competitive for
Min Sum Energy.

As this example shows, EDD cannot be better than 2-competitive because it aggregates all
messages that can be aggregated with the responsible message in one packet. It does not consider
the extra cost of aggregating these messages with the responsible message. Also, note that EDD

assigns messages to a clique irrevocably. Maybe these two insights help to construct an on-line
algorithm with better competitive ratio, both on a chain and a tree. In the following theorem
we generalize the above counter example to give a lower bound on the competitive ratio of any
on-line algorithm. The theorem leaves open the possible existence of an on-line algorithm with
better competitive ratio than EDD.

Theorem 7. No algorithm can be better than
√

2-competitive for the on-line sensor problem on a
chain with constant latencies, for Min Max Energy and Min Sum Energy.

Proof. Consider the chain u2, u1, s with τa = 1 and costs c(u2, u1) = l, c(u1, s) = 1, for some
l,1 ≤ l ≤ 2. Assume a latency of L ≥ 2m for each message. Message 1 is released at node u1

at time r1 = 0. Message 2 is released at node u2 at time r2 = L − 2. If node u2 does not send
message 2 immediately to be aggregated with message 1, then the algorithm incurs a total cost
of l + 2 whereas the optimal total cost is l + 1. Also, the maximum cost of a node in this case is
max{2, l} = 2 whereas the maximum cost of a node in the optimal solution is max{1, l} = l. If
messages 1 and 2 are aggregated, then message 3 is released at node u2 at time L. Hence, a total
cost of 2(l + 1) is incurred, whereas the optimal total cost is l + 2. Also, the maximum cost of a
node in this case is 2max{l, 1} = 2l whereas the maximum cost of a node in the optimal solution
is max{2, l} = 2. The theorem follows if we let l :=

√
2. ⊓⊔

In case the graph is a tree, EDD may perform even worse. We give an example which demon-
strates that EDD is at least Ω(n)-competitive in this case. Consider the tree of Figure 1. Let
τ(v, s) = 0, τ(vi, v) = L, i = 1, . . . , n − 1, τ(vn, v) = 1. The adversary releases 2(n − 1) messages
with some constant latency L ≥ 2n. He releases message ji at node vn at time ri = L + i for
i = 1, . . . , n− 1. Further, he releases messages j′i at node vi at time ri = i + 1 for i = 1, . . . , n− 1.
Thus Iji

= [L+ i+1, 2L+ i] and Ij′

i
= [L+ i+1, L+ i+1]. EDD aggregates each message ji with

message j′i into a single packet, regardless of the arc costs. As a result, no two packets can be ag-
gregated at v. This gives a cost of nc(vn, v) for leaf vn, a cost of c(vi, v) for leaf vi, i = 1, . . . , n−1,
and a cost of nc(v, s) for node v. If we choose as cost function c(vn, v) = C ≥ (n+1) and c(a) = 1
for all a ∈ A\(vn, v), then the optimal solution, for both objectives, aggregates all messages at vn

into a single packet, thus (vn, v) has to be traversed only once. This gives a cost of c(vn, v) for
leaf vn, a cost of c(vi, v) for leaf vi, i = 1, . . . , n − 1, and a cost of (n + 1)c(v, s) for node v. This
proves that EDD is Ω(n)-competitive for both objectives.

4.2 The synchronous model

For the synchronous distributed model we derive upper bound on the competitive ratio of an
algorithm for both the Min Max Energy and the Min Sum Energy objective. We prove that
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this algorithm is best possible (up to a multiplicative constant) among all deterministic algorithms
for the Min Max Energy problem.

The algorithm is based on the following simple lemma.

Lemma 4. Given any interval [a, b], a, b ∈ N. Let i∗ = max{i ∈ N | ∃k ∈ N : k2i ∈ [a, b]},
then k∗ for which k∗2i∗ ∈ [a, b] is odd and unique. Also, i∗ ≥ ⌊log2(b − a)⌋. We use notation
t(a, b) = k∗2i∗ . ⊓⊔
Proof. Assume that k12

i∗ ∈ [a, b] and k22
i∗ ∈ [a, b], with k1 < k2. We may assume that k2 = k1+1,

for if k2 > k1 + 1, then obviously also (k1 + 1)2i∗ ∈ [a, b]. This means that either k1 or k2

is even. Suppose this is k1 (if k2 is even the arguments are analogous). Then, k1/2 ∈ N and
(k1/2)2i∗+1 ∈ [a, b], contradicting the definition of i∗. Observe that i∗ ≥ ⌊log2(b − a)⌋ follows
directly from the definition of i∗. ⊓⊔

Algorithm:CommonClock (CC) Message j is sent from vj at time t(r′j , dj) − τvj
to

arrive at s at time t(r′j , dj) unless some other message (packet) passes vj in the interval
[rj , t(r

′
j , dj) − τvj

], in which case j is aggregated and the packet is forwarded directly.

To give a competitive analysis of this algorithm we first derive a bound on the competitive
ratio of CC for instances in which the arrival intervals Ij differ by at most a factor 2 in length.

Lemma 5. If there exists an i ∈ N such that 2i−1 < |Ij | ≤ 2i for all messages j, then CC has a
competitive ratio of at most 3 for both Min Max Energy and Min Sum Energy.

Proof. We will prove that the transit cost of each arc in the CC-solution is at most 3 times the
transit cost of this arc in the optimal solution.

Assume that in an optimal solution packets arrive at s at times t1 < · · · < tℓ. Let N∗
h be the

packet arriving at th at s. Since th ∈ Ij ∀j ∈ N∗
h and |Ij | ≤ 2i ∀j, we have Ij ⊂ [th−2i, th+2i] =: I

∀j ∈ N∗
h , and |I| = 2 · 2i. If th = k2i then in the CC-solution all messages in N∗

h may arrive at
s at times th, th − 2i or th + 2i. If th 6= k2i then I contains two different multiples of 2i, say k2i

and (k + 1)2i, such that k2i < th < (k + 1)2i. In this case, since |Ij | > 2i−1 ∀j, we have ∀j ∈ N∗
h

that Ij ∩ {k2i, k2i + 2i−1, (k + 1)2i} 6= ∅. Lemma 4 implies that in a CC-solution every message
j ∈ N∗

h arrives at s at one of {k2i, k2i + 2i−1, (k + 1)2i}. Hence, ∀h = 1, . . . , ℓ, all messages in N∗
h

arrive at s at at most 3 distinct time instants in the CC-solution. CC does not delay messages
at intermediate nodes. This implies that the arcs used by messages in N∗

h are traversed by these
messages at most 3 times in the CC-solution, proving the lemma. ⊓⊔
Let U =

maxj |Ij |
max{1,minj |Ij |}

and let U∗ := max{log U, 1}.

Theorem 8. CC is O(U∗)-competitive for Min Max Energy and Min Sum Energy.

Proof. For each i ∈ N with log(max{1,minj |Ij |}) ≤ i ≤ ⌈log(maxj |Ij |)⌉, CC sends the messages
in Ni := {j ∈ N | 2i−1 < |Ij | ≤ 2i}, at a cost of no more than 3 times the optimum, by Lemma
5. This proves O(max{log U, 1})-competitiveness if minj |Ij | ≥ 1. In case minj |Ij | = 0 we observe
that restricted to the class of messages N0 = {j ∈ N | |Ij | = 0} CC’s cost equals the optimal cost,
because there is no choice for these messages. ⊓⊔

In fact CC can be Ω(log U)-competitive on instances. Consider a chain of 2n+1 nodes u1, . . . ,
u2n+1 = s for some n ∈ N. Take τ(a) = 1 and c(a) = 1 ∀a. For j = 1, . . . , n, vj = u2j , rj = 0,
and dj = 2n+1 − 1. Hence r′j = 2n+1 − 2j = k2j for some odd k ∈ N and |Ij | = 2j − 1. Therefore,
CC makes each message j arrive at s at time r′j , no two messages are aggregated, whereas in an

optimal solution all messages are aggregated into a single packet arriving at s at time 2n+1 − 1.
Thus, the CC solution has value n against an optimal value of 1 for the Min Max Energy

objective and
∑n

j=1(2
n+1 − 2j) = (n− 1)2n+1 + 2 against an optimal value of for the 2n+1 − 2 for

the Min Sum Energy objective. Notice that U = 2n − 1 here.
The following theorem shows that CC is best possible (up to a multiplicative constant) for the

Min Max Energy objective. For the Min Sum Energy objective we do not have any better
lower bound on the competitive ratio of algorithms than the one of Theorem 5 for the centralized
model.
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Theorem 9. Any deterministic synchronous algorithm is Ω(U∗)-competitive for the Min Max

Energy sensor problem.

Proof. Consider an intree of depth δ = 2n+1 with n the number of messages, and where each node,
except the leaves, has indegree n. We assume τ(a) = 1 for all a ∈ A. For any on-line algorithm we
will construct an adversarial sequence of n messages all with latency L = δ, such that there exists
a node at which the adversary can aggregate all messages in a single packet, but at which none of
them is aggregated by the on-line algorithm. Using a similar argument as in the proof of Lemma
1 (i) the fact that all messages can be aggregated in a single packet implies that there exists a
solution such that every node sends at most one packet, hence the cost of the adversarial solution
is 1, whereas the cost of the on-line algorithm is n.

Fix any on-line algorithm. Given an instance of the problem, let Wj(u) be the time interval
message j spent at node u by application of the algorithm, the waiting time interval of message j
on u. We denote its length by |Wj(u)|. Note that

∑

u |Wj(u)| ≤ |Ij | for each message j. We notice
that the waiting time of a message in a node can be influenced by the other messages that are
present at that node or have passed that node before. Since the algorithms are distributed the
waiting time of a message in a node is not influenced by any message that will pass the node in
the future.

The adversary chooses the source node vj with total transit time τvj
:= δ − 2j from s, for

j = 1, . . . , n, so that |Ij | = 2j . Thus, U = 2n−1 = δ/4. The choice of the exact position of vj and
the release time rj is made sequentially and, to facilitate the exposition, described in a backward
way starting with message n. The proof follows rather directly from the following claim.

Claim. For any set of messages {k, . . . , n} the adversary can maintain the properties:
(i) all messages in {k, . . . , n} pass a path pk with 2k nodes;
(ii) Ik(u) =

⋂

j≥k Ij(u) ∀u ∈ pk;
(iii) if k < n, then Wk+1(u)

⋂

Ik(u) = ∅ ∀u ∈ pk;
(iv) if k < n, then Wi(u)

⋂

Wj(u) = ∅ ∀u ∈ pk, i = k, . . . , n, j > i.

We notice that for any message j and any node u on the path from vj to s, Wj(u) may have length
0 but is never empty; it contains at least the departure time of message j from node u.

Note that properties (i) and (ii) for k = 1 imply that all messages can indeed be aggregated
into one packet, hence as argued above, the adversarial solution has a cost of 1. Properties (iv)
and (i) for k = 1 imply that the on-line algorithm sends all messages separately over a common
path with 2 nodes, yielding a cost of n. This proves the theorem.

We prove the claim by induction. The basis of the induction, k = n, is trivially verified. Suppose
the claim holds for message set {k, . . . , n} and pk is the path between nodes v and v̂. We partition
pk into two sub-paths p and p̂ consisting of 2k−1 nodes each, such that v ∈ p and v̂ ∈ p̂. We denote
the last node of p by u and the first node of p̂ by û. We distinguish two cases with respect to the
waiting times the algorithm has selected for message k in the nodes on pk.

Case a:
∑

u∈p |Wk(u)| ≥ (1/2)|Ik|. The adversary chooses vk−1 with total transit time τvk−1
=

δ − 2k−1 such that its path to s traverses p̂ but not p. More precisely, we ensure that the first
node message k − 1 has in common with any other message is û. This is always possible, since
the node degree is n. This choice immediately makes that setting pk−1 = p̂ satisfies property (i).
The release time of k − 1 is chosen so that Ik−1(û) and Ik(û) start at the same time, implying
that Ik−1(u) and Ik(u) start at the same time for every u ∈ p̂. Since |Ik−1(u)| = |Ik(u)|/2 we have
Ik−1(u) ⊂ Ik(u) for all u ∈ p̂, whence property (ii) follows by induction.

Note that, as we consider distributed algorithms, message k− 1 does not influence the waiting
time of j, j > k − 1, on p as û is the first node which both j and k − 1 traverse. In particular,
Wk(u),∀u ∈ p is not influenced by k − 1

Now, the equal starting times of Ik−1(û) and Ik(û) together with
∑

u∈p |Wk(u)| ≥ (1/2)|Ik|
and |Ik−1(û)| = |Ik(û)|/2 imply that k will not reach û before interval Ik−1(û) ends. This, together
with the consideration above, implies property (iii).

To prove (iv), note that by induction it is sufficient to prove that Wk−1(u)∩Wj(u) = ∅ ∀j > k−
1 ∀u ∈ p̂. Since, as just proved, Wk(u)∩ Ik−1(u) = ∅ ∀u ∈ p̂ we have Wk−1(u)∩Wk(u) = ∅ ∀u ∈ p̂.
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We have by induction that, for j > k, Wj(u) ∩ Ij−1(u) = ∅ ∀u ∈ p̂ and we just proved that
Ik−1(u) ⊂ Ij−1(u) ⊂ Ij(u) ∀u ∈ p̂, which together imply Wk−1(u) ∩ Wj(u) = ∅ ∀j > k ∀u ∈ p̂.

Case b:
∑

u∈p |Wk(u)| < (1/2)|Ik|. As in the previous case, the adversary chooses vk−1 with total

transit time τvk−1
= δ − 2k−1 such that its path to s traverses p (therefore also p̂) but does not

intersect any of the paths used by messages {k, . . . , n} before it reaches p in v. Again, this is
always possible since the indegree of each node is n. Hence, choosing pk−1 = p satisfies property
(i). The release time of k − 1 is chosen so that Ik−1(v) and Ik(v) end at the same time, implying
that Ik−1(u) and Ik(u) end at the same time for every u ∈ p. Since |Ik−1(u)| = |Ik(u)|/2 we have
Ik−1(u) ⊂ Ik(u) for all u ∈ p, whence property (ii) follows by induction.

The equal ending times of Ik−1(u) and Ik(u) together with
∑

u∈p |Wk(u)| < 1/2|Ik| and
|Ik−1(u)| = |Ik(u)|/2 implies that k has left u before Ik−1(u) begins, implying property (iii).
Indeed, this gives Wk−1(u) ∩Wk(u) = ∅,∀u ∈ p. It also implies that k − 1 could not influence the
waiting time of k on p.

The proof of (iv) follows the very same lines as in Case a, with the difference that we now refer
to nodes in p instead of p̂. ⊓⊔

Since in the proof U = δ/4 we also have the following lower bound on the competitive ratio of any
deterministic synchronous algorithm.

Theorem 10. Any deterministic synchronous algorithm is Ω(log δ)-competitive for the Min Max

Energy sensor problem. ⊓⊔

4.3 The asynchronous model

In this paragraph we consider deterministic algorithms for the asynchronous model. We propose a
deterministic algorithm and analyze its competitive ratio. We also provide a lower bound on the
competitive ratio for a broad class of algorithms including this algorithm.

In the asynchronous model nodes are equipped with a clock and a distributed algorithm. All
clocks have the same time unit, but neither the time nor the start of a new time unit on clocks is
synchronized. We assume that τ(a) = 1 for all a, such that τvj

is equal to the number of nodes on
the vj − s-path.

We propose algorithm Spread Latency (SL) for this model, which divides the latency minus
transmission time of each message j equally over the nodes on the vj − s-path: at each node of
this path the message is assigned a waiting time of (Lj − τvj

)/τvj
time units. As soon as messages

appear simultaneously at the same node they get aggregated into a packet, which is sent over the
outgoing arc as soon as the waiting time of at least one of its messages at that node has passed.

In this way, no message is delayed due to aggregation and thus the algorithm yields a feasible
solution.

Let, as in the previous subsection, U :=
maxj |Ij |

max{1,minj |Ij |}
=

maxj(Lj−τvj
)

max{1,minj(Lj−τvj
)} .

Theorem 11. The algorithm SL is O(δU∗)-competitive for Min Max Energy and Min Sum

Energy.

Proof. We prove that for all a ∈ A the number of packets SL sends through a is at most O(δU∗)
times that number in an optimal solution.

Let λ := max{1,minj(Lj − τvj
)}. Consider a packet P of messages sent by an optimal solution

through arc (u, v) at time t. Without loss of generality we do not consider messages for which
minj(Lj − τvj

) = 0 as these messages have to be sent upon release by both SL and the optimal
algorithm. To bound the number of packets sent by SL that contain at least one message from P ,
define Pk := {j ∈ P | 2k−1λ ≤ Lj − τvj

< 2kλ}, for k = 1, . . . , ⌈log U⌉. We charge any sent packet
to the message that caused the packet to be sent due to its waiting time being over. It suffices to
prove that the number of packets charged to messages in Pk is O(δ).

Since the waiting time of messages j ∈ Pk at node u is at least 2k−1λ/δ, the delay between any
two packets that are charged to messages in Pk is at least 2k−1λ/δ. Since the optimal solution sends
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packet P at time t through arc (u, v), we get t ∈ Ij(u) ∀j ∈ P and thus Ij(u) ⊆ [t−2kλ, t+2kλ] ∀j ∈
Pk. Thus, the number of packets charged to messages in Pk is at most 2 · 2kλ/(2k−1λ/δ) = 4δ. ⊓⊔

The competitive ratio of SL can be Ω(δ log δ)-competitive, for both objectives. Consider the
chain um, . . . , u1, s with unit transit times; i.e. m = δ. We assume δ > 4. An adversary releases
messages ji,k at node um for i = 1, . . . , δ/4 and k = 0, . . . , log2 δ − 1. The release time of message

ji,k is r(i, k) = δ + 2k+1

δ
i− 2k and the latency is L(i, k) = 2k + δ. It follows from the observations

r(i, k) < r(i + 1, k) and r(δ/4, k) < r(1, k − 1) that messages are released ordered by decreasing
order of k and then by increasing order of i. This induces the total order ≺ on pairs (i, k) and
(i′, k′). Formally, (i, k) ≺ (i′, k′) if either k > k′ or k = k′ and i ≤ i′.

We have Iji,k
= [r(i, k) + δ, r(i, k) + L(i, k)]. As r(i, k) + δ ≤ 2δ and r(i, k) + L(i, k) ≥ 2δ for

each message ji,k, we have
⋂

j∈ji,k
Ij 6= ∅, hence the adversary may aggregate all messages at their

common release node um. Let Wj(u) be, as defined before, the waiting time interval of message

j on u determined by SL. We have Wji,k
(um) = [r(i, k), r(i, k) + L(i,k)−δ

δ
]. It follows from simple

arithmetics that r(i, k) + L(i,k)−δ

δ
< r(i′, k′) for all pairs (i, k), (i′, k′) such that (i, k) ≺ (i′, k′).

Hence, Wj(um)∩Wj′(um) = ∅ for any two messages j and j′ and SL sends all messages separately
from um. This implies that SL is Ω(δ log δ)-competitive for Min Max Energy with unit costs. For
cost structure c(um, um−1) = C ≥ δ(log δ+1), c(a) = 1∀a\(um, um−1) SL is Ω(δ log δ)-competitive
for Min Sum Energy objective.

SL determines the waiting time of each message at the nodes it traverses independently of all
other messages. We call such an algorithm a WI-algorithm. To be precise, in a WI-algorithm node
v determines the waiting time of message j based only on the message characteristics (vj , rj , dj),
transit time to the sink τv and clock time. The following lower bound shows that the competitive
ratio of SL cannot be beaten by more than a factor U∗ by any other WI-algorithm for the Min

Max Energy problem. In the derivation of the lower bound we restrict to WI-algorithms that
employ the same algorithm in all nodes with the same transit time to s. This is not a severe
restriction, given that transit time to s is the only information about the network that a node has.

Again, as in the synchronous model we do not have any better lower bound on any subclass
of algorithms for the Min Sum Energy problems than the bound of 2 from Theorem 5 for the
centralized model.

Theorem 12. Any deterministic asynchronous WI-algorithm is Ω(δ1−ǫ)-competitive for the Min

Max Energy sensor problem, for any ǫ > 0.

Proof. Consider a binary intree with root s and all leaves at distance δ from s. Let 0 ≤ λ < 1 be
such that δ1−λ ≥ 3. An adversary releases message 1 with latency L at time r1 in a leaf v1. Notice
that there are at most δλ nodes where the waiting time is at least (L− τv1

)/δλ. Hence, the v1 − s
path contains a sub-path consisting of at least δ1−λ − 2 nodes where in each node message 1 waits
less than (L − τv1

)/δλ. Choose such a sub-path and let u be the node on it which is closest to s.

Let V ′ be the set of leaves of the subtree with root u and depth δ1−λ−2. |V ′| ≥ 2δ1−λ−2 ≥ δλ/4
for any fixed λ ∈ [0, 1) and δ large enough. The adversary releases messages j = 2, . . . , δλ/4 with
latency L at times rj = r1 + j(L − τvj

)/δλ in leaf vj , such that each vj − s path passes through
a different vertex of V ′. Because τvj

= τv1
∀j and we assumed that any WI-algorithm applies the

same algorithm in nodes at equal distance, all messages are sent non-aggregated to and from u,
whereas they are aggregated as early as possible in an optimal solution, in particular at u. ⊓⊔

The lower bound does not hold for arbitrary algorithms as a node may adjust the waiting time
of subsequent messages that traverse that node. However, we notice that only if a node delays
subsequent messages longer the competitive ratio might be better. If the waiting time at a node
does not increase for subsequent messages, the competitive ratio remains Ω(δ1−ǫ). The following
theorem shows that the lower bound remains Ω(δ1−ǫ) if release nodes do not delay subsequent
messages longer than preceding messages.

Theorem 13. Any asynchronous WI-algorithm for which the waiting time of message j at its

release node is at most
L−τvj

K
is Ω(min{K,n})-competitive for the Min Max Energy objective.
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Proof. Consider a chain which consists of two nodes v and s. We assume a constant latency of L
for each message. The adversary releases K − 1 messages with an interval of (L− τvj

)/(K − 1) at
v. Since the waiting time of message j at v is at most (L − τvj

)/K, none of these messages are
aggregated in the on-line solution, whereas they are all aggregated in one packet in an optimal
solution. ⊓⊔

For arbitrary asynchronous algorithms we do not have any better lower bound than those in
Theorems 9 and 10 for the synchronous case. Furthermore, notice that for any WI-algorithm to
have a competitive ratio better than some constant times the number of messages, it should delay
messages at their release node.

Improved algorithm for the case of a chain. We describe an algorithm with improved
competitive ratio for the case that the network is a chain with s in one of its ends. We first introduce
a classification of the nodes on the chain. Initially, all nodes are unclassified. For p = ⌊log δ⌋, . . . , 0
we assign all unclassified nodes v with 2p|τv to class p. I.e. v is of class p if p is the maximal integer
such that τv = k2p for some integer k.

Notice that the resulting classification of nodes has the property that between any pair of nodes
of the same class there is at least one node of higher class.

To describe the algorithm for message j released at node vj we set wj := (Lj −τvj
)/(⌊log τvj

⌋+
1). The rough idea of the algorithm is as follows: When message j reaches a node v of class p and
j has not visited a node of higher class yet, it waits at node v for wj time units. Otherwise, if j
has already visited a node of class larger than p, it does not wait at node v at all. Since between
any pair of nodes of the same class there is at least one node of higher class, a message will wait
at most once at a node of class p for each p = 0, . . . , ⌊log δ⌋. Moreover, the highest class of a node
message j will find on its path from vj to the sink is ⌊log τvj

⌋. Thus, the overall waiting time of
message j accumulates to no more than

wj(⌊log τvj
⌋ + 1) = Lj − τvj

.

Therefore the message arrives at the sink at or before time rj + τvj
+ Lj − τvj

= dj .
As in the SL algorithm, messages are aggregated into a packet if they appear simultaneously

at an intermediate node. This packet is sent over the outgoing arc as soon as the waiting time of
at least one of its messages at that node has passed (in particular, if a packet contains a message
that does not wait at a particular node, then the packet does not wait at that node). Notice that
no message is delayed due to aggregation and the algorithm thus yields a feasible solution.

Theorem 14. The described algorithm is O(log3 δ)-competitive for Min Max Energy and Min

Sum Energy.

Proof. We prove that the number of packets sent through an arc by the algorithm above is at
most O(log3 δ) times the number of packets sent by an optimal solution through this arc.

Let λ := max{1,minj(Lj − τvj
)}. Consider a packet P of messages sent by an optimal solution

through arc a ∈ A at time t. We derive a bound on the number of packets sent by our algorithm
that contain at least one message from P .

As above, we define Pk := {j ∈ P | 2k−1λ ≤ Lj − τvj
< 2kλ} for k = 1, . . . , ⌈log U⌉. Moreover,

for p = 0, . . . , ⌊log δ⌋, let Pk,p denote the subset of Pk that consists of all messages j that have
visited a node of class p but no node of class p + 1 before being sent through arc a. Notice that
the number of subsets Pk,p is O(log δ log U) = O(log2 δ).

We charge any packet sent by our algorithm to one of its messages j ∈ Pk,p where k and p
are chosen maximally. The waiting time of a message j ∈ Pk,p at a node of class p is at least
2k−1λ/(log δ + 1). On the other hand, messages in Pk,p can only pass this node of class p within a
time interval of 2 ·2kλ (see proof of Theorem 11). Thus, the number of packets charged to messages
in Pk,p is at most 4(log δ + 1) ∈ O(log δ). Since the number of subsets Pk,p is O(log2 δ), the result
follows. ⊓⊔
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We give a slightly better result for the case of common latency L.

Corollary 2. If all messages share the same latency L, the competitive ratio of the algorithm is
O(log2 δ).

Proof. In the proof of Theorem 14, it can be observed that for k > k′ and p < p′ it holds that
Pk,p 6= ∅ implies Pk′,p′ = ∅ (that is, messages that originate further away from the sink have seen
nodes of higher classes). In particular, the number of nonempty subsets Pk,p is O(log δ + log U) =
O(log δ) in this case. This yields the improved competitive ratio O(log2 δ). ⊓⊔

It follows from Theorem 12 that this algorithm is Ω(log δ)-competitive on a chain.

5 Conclusions and Open Problems

The results we presented in this paper are the first results on a rich class of problems which are
both theoretically and practically interesting. We have described the great variety of problems in
this class in the introduction.

The main results of this paper are summarized in Table 1. As the table shows many challenging
questions remain open. First, we comment on the results and open questions within the models
studied. Then, we conclude with research questions for various other models that we consider
particularly interesting.

Model Graph Min Max Energy Min Sum Energy

Off − line complexity approximation complexity approximation

lower bound lower bound

tree NP − hard, 2 − apx open NP − hard, 2 − apx open

chain open open polynomial time −

On − line competitive ratio competitive ratio competitive ratio competitive ratio

upper bound lower bound upper bound lower bound

−centralized tree O(U∗) 2 O(U∗) 2

chain 2
√

2 2
√

2
const.

latency

−synchronous tree O(U∗) Ω(U∗) O(U∗) 2
−asynchronous tree O(δU∗) Ω(U∗) O(δU∗) 2

chain O(log3 δ) 2 O(log3 δ) 2

Table 1. Approximation and competitiveness results on the sensor problem

For the off-line problem we have proved that the problem is NP-hard on a tree; we presented
a 2-approximation for both objectives, but we have no lower bounds on the approximability. It
would be interesting to see if there exists an approximation preserving reduction from an APX-
hard problem. For the special case where the graph is a chain and message latencies are constant
we presented a Dynamic Programming formulation which solves the Min Sum Energy sensor
problem in O(n3) for this case.

Of all on-line models, the centralized model poses most open questions. It is not clear at all
whether there exists a on-line algorithm with constant competitive ratio for arbitrary latencies.
Although this model is least relevant in practice, the state of present knowledge is theoretically
unsatisfactory.

For the synchronous model we presented an O(U∗)-competitive algorithm for both objectives
and we showed that this algorithm is best possible for Min Max Energy. For the asynchronous
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model we presented an O(δU∗) -competitive algorithm for both objectives. There remains a gap
between this bound and the lower bound of Ω(U∗) from the synchronous model. Theorem 12
shows that improvements in the upper bound should come from algorithms that are essentially
different from the one we presented here.

We conclude our paper with listing some research problems which, in our opinion, are practi-
cally and/or theoretically interesting:
- Extend the results in this paper to more general cost functions. This looks achievable for transit
cost functions that are concave in packet size.
- Consider a geometrical model of the sensor network in which transmission to other nodes is pos-
sible within some range, where transmission to more distant nodes is more expensive (in transit
cost) than to nearer nodes. In this case, in addition to which time to send also to which node to
send a message becomes part of the decision process. As a first attempt at solving this problem
one could concentrate on the tree, with a length-function on the arcs, as the underlying model.

References

1. I. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey.
Computer Networks Journal, 38(4):393–422, 2002.

2. A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in sensor networks: an energy - accuracy
tradeoff. Elsevier Ad-hoc Networks Journal (special issue on sensor network protocols and applica-
tions), 1(2-3):317–331, 2003.

3. C. Brito, E. Koutsoupias, and S. Vaya. Competitive analysis of organization networks or multicast
acknowledgement: how much to wait? In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 627–635, 2004.

4. A. Z. Broder and M. Mitzenmacher. Optmial plans for aggregation. In ACM Symposium on Principles
of Distributed Computing (PODC), pages 144–152, 2002.

5. J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In Proceedings of the
2001 International Parallel and Distributed Processing Symposium (IPDPS), Workshop on Parallel
and Distributed Computing Issues in Wireless and Mobile Computing, pages 1965–1970, 2001.

6. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broad-
casts. In Proceedings of the 5th ACM Symposium on Operating System Design and Implementation
(OSDI), pages 147–164, 2002.
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