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Abstract. Objective: A fundamental issue in EEG event-related potentials (ERPs)

studies is the amount of data required to have an accurate ERP model. This also

impacts the time required to train a classifier for a brain-computer interface (BCI).

This issue is mainly due to the poor signal-to-noise ratio, and to the large fluctuations of

the EEG caused by several sources of variability. One of these sources is directly related

to the experimental protocol or application designed, and may affect to amplitude or

latency variations. This usually prevents BCI classifiers to generalize among different

experimental protocols. In this work, we analyze the effect of the amplitude and the

latency variations among different experimental protocols based on the same type of

ERP. Approach: We present a method to analyze and compensate for the latency

variations in BCI applications. The algorithm has been tested on two widely used

ERPs (P300 and observation error potentials), in three experimental protocols in

each case. We report the ERP analysis and single-trial classification. Results and

significance: The results obtained show that the designed experimental protocols

significantly affect the latency of the recorded potentials but not the amplitudes; and

how the use of latency-corrected data can be used to generalize the BCIs, reducing

this way the calibration time when facing a new experimental protocol.
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1. Introduction

Event-related potentials (ERPs) reflect brain responses to external events [1], and are

modeled as the average of multiple trials of time-locked scalp EEG signals characterized

by its polarity, latency, and spatial localization [2]. These characteristics have been used

to assess psychiatric and neurological conditions [2, 3], or even for the understanding of

brain processes such as attention, or error processing [4, 5, 6, 7]. Furthermore, ERPs

have also been used for brain-computer interfacing (BCIs, see [8] for a review), where

the ERP model is trained and used to translate the EEG signals into control commands

to operate different devices such as text spellers, mobile robots, or wheelchairs [9, 10].

Characterization of ERPs require the acquisition of enough trials to build a reliable

model represented by their grand averages [1]. This is due to the poor signal-to-noise

ratio of the EEG as well as several sources of variability that may affect the amplitude or

the latency of the ERP components. For instance, the early ERP components (appearing

within 200 ms from the stimulus presentation, e.g. visually-evoked potentials, VEP) are

affected by application-specific factors such as the spatial attention [11] or the stimuli

contrast [1]; as well as user-specific factors such as arousal or valence [4]. In turn,

late ERP components (occurring later than 200 ms) are affected by application-specific

factors such as the probability of occurrence of the expected stimulus [1] or the inter-

stimulus interval [12]; user-specific factors such as the age and the cognitive capabilities

[6, 7]; or application- and user-specific variability such as the stimulus evaluation time

(i.e., the amount of time required to perceive and categorize a stimulus) [13, 1].

Typically, experiments are designed in a well-controlled manner to reduce the ERP

variability. In consequence, it is not clear whether the obtained model also reflects the

same neural phenomena under different conditions. This is of particular importance

for practical BCI applications where decoding algorithms are expected to keep their

performance level irrespective of external factors. Moreover, BCIs often exploit the

same brain processes in different applications with different associated stimuli, feedback

modality or controlled device (e.g., see [14, 15, 16, 17] for different applications based on

error-related processing). In the ideal case, these systems should be able to generalize

across different operating BCIs independently of the device that is being controlled. In

practice, however, there is a need for training a model for each new experimental protocol

or session, which is a time-consuming operation and a major issue when deploying BCIs

out of the lab. To address this issue, previous researches have tried to reduce this

calibration time either by using adaptive classifiers [18, 15], or by initializing the model

with data from a pool of subjects [19, 20].

Although previous studies have described the effect of variations in the ERP

amplitudes [16] and latencies [21] within the same BCI experimental protocol, the effect

of these variations among different protocols remains unclear. We hypothesize that it

could be possible to build or re-adjust models that compensate for these variations by

using information from previous experimental protocols, thus enabling generalization of

existing BCI decoders to different protocols or applications. The main idea is depicted
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Figure 1. (Left) Example of the latency between two grand averaged event-related

potentials elicited from different experimental protocols. Such difference prevents from

having classifiers that generalize among protocols. (Right) By estimating and removing

the latency of the two ERPs, the classifier would be able to work under different

experimental protocols.

in Figure 1 (Left), where two experimental protocols elicit the same ERP with similar

waveforms and amplitudes but different latencies. If we could estimate the latency

variations between the two experimental protocols, the model of one experimental

protocol could be used in the new protocol after compensating for the latency shift

(see Figure 1 Right).

In this paper, we analyze the effect of ERP amplitude and latency variations among

different experimental protocols based on the same cognitive process. We also present

a method to analyze and compensate for the latency variations in BCI applications.

Two widely used signals were analyzed: the P300 evoked potentials [9, 1, 10] and the

observation error-related potentials (ErrP) [5, 14, 16]. For each kind of ERP, three

different experimental protocols with different levels of difficulty were designed. The

latencies between protocols were studied from two points of view: the characteristics of

the ERPs and the single-trial classification. The results illustrate (i) how the designed

experimental protocols significantly affect the latency of the recorded potentials but

not the amplitudes, and (ii) how the use of latency-corrected data allows for the

generalization of BCI decoders, reducing in this way the calibration time when facing

a new experimental protocol. This work extends our previous work [22] with a more

robust technique to compensate the latencies and shows its application to ERPs of

different nature.
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Figure 2. Experiments performed for the (Top) P300 potentials and (Bottom)

observation error potentials (from left to right: experiments 1 to 3).

2. Experimental methods

We focus on two types of ERPs: the P300 evoked potentials and the observation error-

related potentials (ErrP). For each of these signals, three types of experimental protocols

were designed (i.e., three different ways of evoking the P300 and the ErrPs).

2.1. Data recording and experimental setup

The recordings and signal processing were made following previous studies [10, 23]. EEG

was recorded by means of a gUSBAmp amplifier (gTec medical engineering, Schiedelberg,

Austria) with 16 active electrodes, with the ground and reference placed on the forehead

and left earlobe. Different montages were made for the P300 and ErrP protocols (see

details below). EEG was digitized at 256 Hz, power-line notch filtered at 50 Hz, and

zero-phase Butterworth band-pass filtered at [1, 10] Hz. Participants were seated on a

comfortable chair facing the visual displays of the protocols approximately one meter

away. During all experiments participants were asked to restrict eye movements and

blinks to specific resting periods.

2.1.1. P300 experimental protocols For these protocols we recorded EEG signals with

the BCI2000 framework [24] from 16 active electrodes located at Fp1, Fp2, Fz, FC1,

FCz, FC2, Cz, CP1, CPz, CP2, P3, Pz, P4, O1, Oz and O2 according to the 10-

10 system and following previous studies [10]. Five participants (one female, mean age

27.80±2.49 years) took part in the study. We synchronized the onset of the visual stimuli

with the EEG by means of an optical trigger placed on the monitor [25]. This removed

latencies introduced by the protocol implementation and thus the latency variations

across experiments were restricted to the user side [13].
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Three experimental protocols were used to evoke the P300 potentials (Figure 2,

Top), with different types of stimuli (with overall workloads of 39.10±11.11, 42.45±9.98,

and 64.83± 18.23, estimated from six subjects using the NASA TLX). The stimulation

process followed the oddball paradigm [9], where subsets of potential targets (e.g. an

entire row or column) are sequentially highlighted in random order. The stimulus (row or

column) remained highlighted for 125 ms on the screen, and the inter-stimulus interval

was randomly set within the range [1.7, 3.0] s. The participants were instructed to

observe the stimulation process fixing their attention to a given target, and to count

the times the target was highlighted while ignoring the other stimuli. All participants

executed the experiments in the same order, each experiment lasting ≈ 1.5 hours and

with a time between experiments of 1.10± 0.81 days.

Experiment 1, 2D Simulated Wheelchair (Figure 2 Left, Top) [10] The visual display

showed a virtual environment with 20 possible targets to drive a wheelchair, located

in 2D in a 4x5 matrix. For the stimulation process, the rows and columns were

highlighted showing a blue dot over each possible target position. The probability

of target appearance was 22%. For each subject, all possible target positions were

recorded, obtaining 144 target (P300) and 720 non-target responses respectively.

Experiment 2, 2D Speller (Figure 2 Middle, Top) [9] The visual display showed a

matrix of 36 possible letters to spell represented in 2D as a 6x6 matrix. The stimulation

was made by highlighting the corresponding row or column. The probability of target

appearance was 17%. For each subject, all possible target positions were recorded,

obtaining 200 and 700 target and non-target responses respectively.

Experiment 3, 3D Augmented Reality Protocol (Figure 2 Right, Top) The display

showed a gray background and 27 possible targets located in 3D in a 3x3x3 matrix.

The stimulation was made by illuminating rows, columns, and depths. To facilitate the

user’s distinction among the three depths, each depth was illuminated with a different

colour (green, blue or red). The probability of target appearance was 33%. For each

subject, all possible target positions were recorded, obtaining 273 and 610 target and

non-target responses respectively.

2.1.2. Error potentials experimental protocols We recorded ErrPs with a custom C++

framework using 16 active electrodes located at Fz, FC3, FC1, FCz, FC2, FC4, C3,

C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 according to the 10-10 system and

following previous studies suggesting that these signals are generated in fronto-central

areas [23]. Six participants (one female, mean age 27.33± 2.73 years) took part in the

study. In these experiments, the use of an optical trigger was not possible since one

experiment involved a real robotic device instead of visual stimuli on the screen (see

Experiment 3). Thus, latency variations could be originated by both the subject and
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the implementation (i.e. the amount of time of receiving and executing the delivered

command).

The three experimental protocols designed to elicit error potentials (Figure 2,

Bottom) had different setups and devices (with overall workloads of 35.50 ± 11.53,

53.50 ± 19.88, and 58.11 ± 16.47, estimated from six subjects using the NASA TLX),

where in all cases the goal of the device was to reach a target from different starting

points. The device executed random movements with approximately 30% probability of

performing an erroneous movement. The time between two movements was randomly set

within the range [1.7, 4.0] s. The target position was randomly changed after 100 actions.

The participants were instructed to observe the device movements and evaluate them as

correct when there was progress towards the target position, and as incorrect otherwise.

Each participant executed the experiments in the same order, each experiment lasting

≈ 2.5 hours and with a time between experiments of 17.58± 10.09 days.

Experiment 1, Virtual Moving Square (Figure 2 Left, Bottom) [16] The visual display

showed a one-dimensional space with 9 possible positions (marked by a horizontal grid),

a blue square (device) and a red square (target). The device could execute two discrete

actions: move one position to the left or to the right. For each subject, the left- and

right- most positions were tested as targets, and around 250 and 600 error and non-error

potentials were recorded.

Experiment 2, Simulated Robotic Arm (Figure 2 Middle, Bottom) The display showed

a simulated robotic arm (Barrett WAM) with 7 degrees of freedom (device) [26] moving

within a two-dimensional space with 13 possible positions (marked in orange), and a

target location (green square). The robot was situated behind the squares pointing at

one position, and could perform four possible actions: moving one position to the left,

right, up, or down. The robot actions were continuous, with each displacement lasting

≈ 500 ms. For each subject, the left-, right-, up- and down-most positions were tested

as targets, and around 300 and 700 error and non-error potentials were recorded.

Experiment 3, Real Robotic Arm (Figure 2 Right, Bottom) This experiment followed

the same configuration of Experiment 2 but using a real Barret WAM robotic arm

(Barret Technology Inc.). The user was seated two meters away from the robot, and

between them there was a transparent panel to mark the positions (the distance between

two neighbor positions was 15 cm). For each subject, the left-, right-, up- and down-most

positions were tested as targets, and around 300 and 700 error and non-error potentials

were recorded.

2.2. Analysis of Event-Related Potentials

We assessed protocol-dependent variations in the latency and amplitude of the ERPs

of each experimental protocol. First, the grand averaged signals were computed for
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each condition (target and non-target trials for the P300; error and correct trials for

the ErrP), for the time window [−200, 1000] ms, being 0 ms the stimulus/action onset.

Following previous studies, we analyzed the activity over parietal areas from the target

average [1] for the P300, and over fronto-central areas from the difference average (error

minus correct averages) for the ErrPs [16]. A one-way within-subjects ANOVA was

performed separately for each type of signal (P300 or ErrP), where the factor was the

experiment (three levels corresponding to each experiment), and two dependent variables

were tested: the peak amplitudes and the peak latencies. For the P300 experiments, the

peak amplitudes and latencies were measured from the P3 component (most prominent

positive peak) of the target average from the parieto-occipital channels. For the ErrP

experiments, amplitudes and latencies were measured from the P3 and N4 components

(most prominent positive and negative peaks) of the difference average from the fronto-

central channels. When needed, the Geisser-Greenhouse correction was applied to data

to assure sphericity [1]. Pairwise post-hoc tests (Bonferroni-corrected t-tests) were

computed to determine the differences between pairs of experiments.

2.3. Estimation and evaluation of latencies among different protocols

The first goal is to estimate the temporal variations between two experimental protocols,

which can be achieved using cross-correlation. Cross-correlation has been used in the

past for the detection and analysis of brain signals with successful results [21, 27, 28]. In

order to assure the best estimations, the input to the cross correlation (for each channel)

were the grand averages of the condition of interest, with the time window narrowing

to the event-related potential elicitation. For the P300 experimental protocols, the

average ERP for target stimuli within the time window [50, 400] ms was used; for the

ErrP experimental protocols, the error average within the time window [0, 500] ms was

used. These windows were chosen following two premises: (i) the ERP components

of interest were within the windows; and (ii) an r2 discrimination analysis between

conditions (i.e. targets vs. non-target, error vs. non-error) showed that the most

significant differences were present in those windows. The cross-correlation outputs

were the maximum correlation value of the two grand averages and the latency variation

between them (i.e. the shift that yields the maximum cross-correlation).

We then assessed whether the main ERP change was due to the latency variation

and whether this variation could be compensated for. To do so, the latency variation

across two protocols was estimated as described above using all the available data.

Let Di and Dj be the datasets from two experiments Ei and Ej, we compensate for

the variation by shifting the trials in Di by the estimated latency shift between them,

dDiDj
. Then, we computed the same ANOVA test for the peak latencies performed in

subsection 2.2.

We performed a further analysis on how sensitive the latency estimation was with

respect to (i) the number of trials used to compute the grand average for experiment

j, and (ii) the channel used to perform the estimation. Assuming that data Di from a
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Figure 3. Training and testing datasets used for each classifier. For the baseline

classifier, the classifier is trained with a subset DTr
j from experiment Ej . When reusing

a previous experiment Ei, the whole dataset Di is added to D
Tr
j . In the third case, the

latency between Di and D
Tr
j was estimated, and then Di was corrected accordingly.

previous experiment Ei is available, we computed the latency variation using a training

dataset DTr
j from the new experiment Ej (D

Tr
j ⊆ Dj). We assessed the estimation using

different sizes of the training dataset (ranging from 10 to 200 trials with increments of

10). For each size, we perform 10 repetitions and report the average of the maximum

cross-correlation value, max(C
DTr

j

Di
), and the average latency variation, dDiD

Tr
j
. In each

repetition the training subset DTr
j was randomly drawn from Dj, keeping the proportion

of target/non-target and error/correct trial. The analysis was performed independently

for each recorded channel.

The latency variations were computed in a pair-wise manner among the three

experiments for each of the signals of interest. The combinations of experiments

tested were E1E2, E1E3, and E2E3 for both the P300 and the ErrPs. For each

pair of experiments a within-subjects two-way ANOVA (factors: number of trials and

repetitions) was performed on the latency estimations. The ANOVA results served to

study the latency variations by the number-of-trials main effect, to determine whether

the amount of trials used from experiment Ej led to different latency estimations; and

by the number of trials x repetitions interaction, to determine whether different data

from a fixed number of trials affected the latency estimations.

As a sanity check, we also evaluated the method by computing the latency variation

among datasets from the same experiment (dD1

i
D2

i
), with the two datasets D1

i and

D2
i mutually exclusive. Therefore, this baseline latency computation should give

correlations close to one for latencies near to 0 ms.

2.4. Single-trial classification of latency-corrected ERPs

The objective of the single-trial classification study was to determine whether it is

possible to reduce the calibration time of a new experiment by re-using latency-corrected

data from a previous experiment. The study used the same combination of experiments

(EiEj) detailed in the previous section. To evaluate the benefit of reusing data and
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correcting the latency, three classifiers were learned each with a different training dataset

(see Figure 3).

The first case, denoted baseline classifier, followed the standard calibration

approach of current BCIs, where the classifier for experiment Ej was trained using

only a subset DTr
j of the data. For the second classifier, the training data was formed

by the whole dataset Di from a previous experiment Ei and the training data from the

new experiment DTr
j . The third classifier utilized the same training sets as the second

one, but used the latency estimated between Di and DTr
j to compensate the delay

between experiments Ei and Ej. Recall that the latency is estimated and corrected for

each channel separately as described in subsection 2.3. This correction was performed

by shifting all the trials from Di accordingly. All the single-trial analysis (latency

estimation, feature extraction and training the classifier) was done using only the

corresponding training data. Results were obtained using the same test data for all cases.

As in the previous subsection, we performed ten repetitions of this process randomly

drawing DTr
j from Dj.

2.4.1. Feature extraction and classification Feature extraction was based on a spatio-

temporal filter [29]. The filter input was a dataset with labeled trials and worked

as follows: Firstly, the EEG data were common-average-reference (CAR) filtered and

downsampled to 64 Hz. For each trial, the features were extracted using a combination

of channels and time points. For the P300, eight centro-parietal and occipital channels

(Cz, CPz, P3, Pz, P4, O1, Oz, and O2) were used within a time window of [100, 700]

ms. For the ErrP, eight fronto-central channels (Fz, FC1, FCz, FC2, C1, Cz, C2, and

CPz) were used within a time window of [200, 800] ms. For both cases, this resulted

in a feature vector of 312 features per trial. Then, the features were normalized, and

decorrelated using PCA retaining 95% of the explained variance, leading to an average

of 45± 10 features. Single-trial classification was carried out using a linear discriminant

(LDA) [30].

2.4.2. Analysis of the single-trial classification We compared the accuracies of the three

different classifiers for a fixed dataset of the new experiment, namely DTe
j , composed of

400 trials (see Figure 3). As in the delay estimation analysis, the size of the training

dataDTr
j was varied to assess the accuracy of the classifier for different calibration times.

Additionally, the performance of these three classifiers was compared with the ten-fold

cross-validation (CV) performance obtained using all the data Dj from Ej.

For each pair of experiments (E1E2, E1E3, and E2E3), the receiver operating

characteristic (ROC) curve was computed [31], and we compared the area under the

curve (AUC) obtained for each case and classifier. To assess statistical differences

among the classification results, two-tailed paired t-tests were computed with the p-

values adjusted with the false discovery rate (FDR) procedure [32].
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Figure 4. Grand averages and r
2 (lower part) of each experiment for the (Left)

P300 potentials at channel Pz, and (Right) error potentials at channel FCz. Time

0 ms indicates when the stimulus was presented on the screen (P300), or when the

device started the action (ErrPs). For the P300, the topographic interpolation of the

most prominent positive peak of the target average is shown. For the ErrPs, the

topographic interpolation of the most prominent positive and negative peaks of the

difference average are shown. The bottom plot shows the GA of the three experiments

for the target (P300) and difference (ErrP) conditions.
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3. Results

3.1. Analysis of Event-Related Potentials

Figure 4 shows the ERP grand averages of all experiments. In the P300 experiments,

as in previous studies [9, 1, 10], a clear sharp positive peak (P3) appears on parietal

channels after presentation of the target stimuli. For the ErrP experiments, the

difference grand averages (error minus correct) are also consistent with the literature

[16], with two early positive and negative peaks in fronto-central sites, followed by two

larger positive and negative peaks (P3 and N4).

Regarding the P300 experimental protocols, the amplitude of the P3 component

showed no statistical differences among the three experiments (p = 0.123). In contrast,

its latency does exhibit statistical differences (F(2,8) = 22.924, p = 0.0005). Post-hoc

tests revealed significant differences between experiments 2 and 3 (p = 0.032), and

between experiments 1 and 3 (p = 0.01), but not between experiments 1 and 2 (p = 1.0).

Similarly, no differences were found for the P3 and N4 amplitudes of the ErrPs

(p = 0.510 and p = 0.391 respectively). Interestingly, significant differences were found

on the latencies of both the P3 (F(2,10) = 29.422, p = 0.00006) and the N4 component

(F(2,10) = 6.979, p = 0.013). For the former, post-hoc tests showed significant differences

between experiments 1 and 2 (p = 0.018), and between experiments 1 and 3 (p = 0.003),

and nearly significant differences between experiments 2 and 3 (p = 0.053). For the N4

component, there were significant differences between experiments 1 and 3 (p = 0.006),

but not between experiments 1 and 2 (p = 0.472) nor between experiments 2 and 3

(p = 0.492). Thus, the main differences on the elicited ERPs across the experiments

were due to latency variations of the components, while the amplitudes remained similar.

3.2. Analysis of latency estimations

The ANOVA analysis yielded no significant differences in latency after performing the

correction for the P300 (p = 0.12 for the P3 component), nor for the ErrP experiments

(p = 0.67 and p = 0.17 for the P3 and N4 components, respectively). Thus, the latency

correction algorithm successfully removed the latency variations among experiments.

Figures 5 and 6 (Top) show the maximum correlation (see section 2.3) for all

electrodes when different numbers of trials from Ej are used. Unsurprisingly, correlation

values increase until they converge to an upper value as more trials are used to compute

the grand average. ERPs elicited in the P300 experiments (Figure 5, Top) show high

correlation (≥ 0.8) in parieto-occipital channels when more than 50 trials are used. In

turn, the ErrPs (Figure 6, Top) required at least 100 trials to yield correlation values

higher than 0.8, always over fronto-central channels. These locations, as for the P300,

agree with the locations reported as more discriminant for these phenomena.

When we computed the correlation using data from the same experiment, we

obtained correlations above 0.8 when more than 40 and 70 trials were used (P300 and

ErrP respectively). Thus, both cases needed a number of trials to reach high correlations
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Figure 5. Latency results computed for each pair of P300 experiments EiEj (from

left to right, E1E2, E1E3, and E2E3). For each pair of experiments, the results

represent: (Top) Colour encoded image of the maximum correlation values (averaged

for all subjects), when varying the number of trials used from D
Tr
j (x-axis) and the

channel used for the latency computation (y-axis). The topographic interpolation of

the correlation values is shown when using 20, 100, and 200 trials from D
Tr
j (for the

sake of simplicity, the topographic plot is shown only within the field of the recorded

channels). (Middle) Mean ± SEM latency estimations (in ms) of each subject, and

subject-wise average latency for channel Pz while varying the number of trials used

(20, 100 and 200 trials), and (Bottom) Mean ± SEM latency estimations (in ms) of

each subject, and subject-wise average latency for 200 trials while varying the channels

(Fz, P3, Pz and Oz). Figure is best viewed in colour.

comparable to the generalization cases.

Figures 5 and 6 (Middle) show the latency values of each subject computed for

different number of trials in DTr
j (20, 100 and 200 trials). We show the latency

calculation for channels Pz and FCz for the P300 and ErrP experiments respectively,

since they had high correlation values and are commonly used for studying these

signals [1, 16]. For the P300 experiments (Figure 5, Middle), the baseline latencies

(i.e. computed on the same experiment) after 200 trials from DTr
i were −1.17 ± 14.01

ms, −3.90 ± 7.69 ms, and −3.13 ± 13.87 ms for experiments 1 to 3 respectively. The

latency between E1 and E2 using 200 trials was of 0.16 ± 9.36 ms. This agrees with
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ErrP EXPERIMENTS

Figure 6. Latency results computed for each pair of ErrP experiments EiEj . (Top)

Maximum correlation values. (Middle) Latency estimations for channel FCz while

varying the number of trials (20, 100 and 200 trials) and (Bottom) Latency estimations

for 200 trials while varying the channels (FC1, FCz, Cz, and CPz).

the previous results, where no statistical differences in the latencies were found between

these experiments (c.f. Section 3.1). For the E1E3 and E2E3 cases, larger latencies were

estimated (on average 55.54 ± 37.51 and 29.45 ± 5.16 ms, respectively). No statistical

differences were found in the computed latencies as the number of trials varied (p > 0.05

for the three combinations of experiments). Similarly, no significant interactions between

the number of trials and repetitions was found (p > 0.05). These results suggest that the

latency estimation is rather robust to the number of trials used for their computation,

and that the specific trials used (i.e. repetition) did not affect the latencies obtained.

For ErrPs (Figure 6, Middle), the baseline latencies after 200 trials were 5.40±5.62,

12.96±21.77, and 2.02±4.80 ms for experiments 1 to 3. On the other hand, the latency

variations across experiments were larger than those obtained for the P300: 60.42±25.24,

108.85± 22.86 and 41.02± 12.95 ms for the E1E2, E1E3, and E2E3 pair of experiments.

Larger inter-subject variability was also observed. There were statistical differences in

the latency computation as the number of trials increased for the E1E2 and E2E3 cases

(F(19,95) = 3.329, p = 0.0001, and F(19,95) = 2.249, p = 0.005, respectively), but not for

the E1E3 (p > 0.4). On the other hand, no significant interactions between number of
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trials and repetitions were found for any case (p > 0.05). This indicates that the latency

estimation was robust to the trials used. However, the latency estimation was affected

by the number of trials used from Ej.

Figures 5 and 6 (Bottom) show the latency values of each subject computed for

different channels. The number of trials remained fixed to 200. For the P300 experiments

(Figure 5, Bottom), using frontal channels (e.g. Fz in the plot) for the latency calculation

led to different results and higher standard deviations than using parietal channels

(e.g. P3 and Pz). Regarding the ErrP experiments (Figure 6, Bottom), the latency

estimations were more uniform across channels. Nonetheless, higher standard deviations

and lower correlation values were obtained when using parietal channels, except for the

E2E3 case, where similar results were obtained.
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Figure 7. Mean values of the area under the curve (AUC) when correcting the latency

from E1E2, E1E3 and E2E3 for the P300 experiments. The x-axis represents the

number of trials of the training dataset DTr
j . Blue-dashed, green-dotted and red-solid

lines represent, respectively, the results for the baseline classifier, the classifier trained

when not correcting the latency, and the classifier trained when correcting the latency.

Horizontal black lines mark the ten-fold cross-validation AUC of the Ej experiment.
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Figure 8. Mean AUC when correcting the latency from E1E2, E1E3 and E2E3 for

the ErrP experiments.

3.3. Single-Trial classification of latency-corrected ERPs

3.3.1. P300 potentials Figure 7 shows the mean area under the curve (AUC) for all

experiments and tested conditions (see Figure 3). In the E1E2 case the AUC of the
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baseline classifier (i.e. trained only with data from the new experiment) increased as

more examples were added, reaching 76.33% after 200 trials. In contrast, using data from

the previous experiment (E1) significantly improved (two-tailed paired t-test, p < 0.001)

the AUC, both when correcting the latency (reaching 79.10% after 200 trials) and when

not correcting the latency (80.87% after 200 trials). In these cases, only 10 trials from E2

were enough to improve the AUCs with respect to the baseline classifier. Additionally,

these two classifiers had better AUC than the ten-fold CV with more than 50 trials from

E2. Thus, re-using data from a previous experiment allowed for an improvement both

in the classifier AUC and calibration time. However, at least 110 trials were required

for the latency correction method to perform similarly to the no correction approach,

seemingly due to errors in the latency estimation.

Compared to the previous case, going from E1 to E3 resulted in lower AUCs for all

types of classifiers (c.f. Figure 7 central column), always lower than the CV AUCs. After

200 trials the AUCs were of 62.67%, 61.60% and 64.34% for the baseline, not correcting

latency and correcting latency classifiers, respectively. The AUC when correcting the

latency was significantly better than the baseline (p < 0.05). On the other hand, re-

using data where the latency was not corrected did not significantly improve the baseline

AUC (p > 0.1).

In the last case (E2E3, c.f. Figure 7 right), the latency correction mechanism yielded

significantly higher AUCs (p < 0.05) than the baseline or no correction approaches

(66.84%, 63.34%, and 64.91% after 200 trials, respectively), converging to the AUC of

the 10-fold CV. These differences appeared even when a small number of trials were

available. Thus, the use of latency-corrected data allowed for a significant improvement

in the AUCs.

3.3.2. Error potentials Results for the ErrP protocols are shown in Figure 8. In the first

case, E1E2, the AUC of the baseline classifier reached 79.42% after using 200 trials for

training. The latency-corrected classifier showed a peak performance of 79.06%, a 6%

lower than the ten-fold CV AUC. Notably, the latency-corrected classifier performed

significantly better than the baseline for less than 90 trials (two-tailed paired t-test,

p < 0.05). In contrast, the use of previous data without correcting the latency always

led to significantly lower AUCs than the other classifiers (p < 0.05), reaching 67.01%

after 200 trials.

In the second case, E1E3, the latency-corrected classifier significantly outperformed

the baseline when less than 150 trials were used (p < 0.05), obtaining similar AUCs after

200 trials (81.01% and 80.25% respectively) without reaching the AUC of the ten-fold

CV. Again, the classifier using not corrected data always performed significantly worse

than the others (p < 0.001), with an AUC of 65.77% after 200 trials.

In the last case (E2E3, c.f. Figure 8 right), the baseline classifier was always

significantly worse than the latency-corrected one (p < 0.0001). After 200 trials, the

baseline classifier reached a 79.93% of mean AUC versus a 82.97% when correcting the

latency, close to the ten-fold CV classifier. The latter classifier was also significantly
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better than the non-corrected classifier with 30 trials or more (p < 0.0001).

To summarize, apart from one case –generalization from the P300 experiments E1

to E2– the latency-correction mechanism improved the classification performance in all

cases. It allows to obtain significantly better classifiers than the baseline ones when a

small number of trials from the new experiment are available.

4. Discussion

A practical issue in the study of event-related brain activity and its use for BCI

applications is the time required to acquire sufficient data to have a reliable model

or a usable classifier of the EEG signals. In general, each protocol is addressed as a

completely new experiment even if they are tapping into similar cognitive processes.

Besides the increase in the required time and resources, this also provides little

information about how similar responses are across experimental conditions. Using

several protocols on two well-studied signals, we showed that the experimental design

mainly affected the ERP latencies. Moreover, we proposed a simple, yet powerful

mechanism to compensate for these changes allowing to generalize BCI classifiers across

experiments using a reduced amount of new data.

Variations in our protocols did not result in statistically significant amplitude

differences across experiments. As stated in the introduction, however, there are several

factors that could affect the amplitude of the ERP components. Indeed, it is well known

that the P300 amplitude can vary depending on the target-to-target interval, a measure

encoded by the target stimulus probability and the inter-stimulus interval among others

[1, 33]. Similarly, previous studies have reported modulations on the ErrP amplitude

depending on the error probability [16] or the error magnitude [34].

In contrast, ERP latencies were found to be different across several experiments

(c.f. Section 3.1). In the P300 experiments, significant variations appeared between the

pairs E1E3 and E2E3. Interestingly, experiment 3 had the most complex visual stimuli

(a three-dimensional grid), seemingly requiring the subject longer time to evaluate the

stimulus. This was supported by the NASA TLX questionnaire showing that experiment

3 induced a significantly higher workload than the other two; and by neurophysiological

studies suggesting that the P300 is related to the stimulus evaluation time [13, 35].

Regarding the error potentials experiments, the latency changes were larger for

both peaks (P3 and N4) than for P300 when changing experimental conditions. In this

case, the NASA TLX revealed that the workload increased significantly from experiment

1 to experiment 2, and increased on average but not significantly from experiments 2 to

3. The selected protocols were designed so as to have an increased level of complexity

both in the number and type of possible actions: changing from two to four possible

actions at each state (from E1 to E2 and E3); changing from 1D to 2D (from E1 to E2

and E3); and changing from a simulated to a real device (from E2 to E3). Accordingly,

increasingly longer latencies were found from protocols E1 to E3. It should be noticed

that for the ErrP protocols part of the measured latencies may be also due to differences
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between the virtual and the real robot such as the time it takes the robot to start the

movement after the control command has been issued or the velocity of its actions.

Nonetheless, the use of a simple technique such as cross-correlation significantly allowed

removing these latency jitters among experiments, as presented by the ANOVA results

after correcting the latencies.

Despite one of the reasons behind these latency variations might be the overall

workload of the performed task, there could be additional factors that affect the ERP

latencies. For instance, different system implementations are a common source of latency

jitter obtained in different experimental protocols [25]. More generally, the stimulus

evaluation time is a well-known factor that affects the ERP latencies [13, 1]. This way,

similar workloads of two experiments could have different ERP latencies. Similarly, there

are other aspects that could affect direct or indirectly the stimulus evaluation time such

as perceptibility [1], fatigue [36], target-to-target interval [33], recognition performance

[37] or even cognitive capabilities [6]. Nonetheless, the latency estimation method should

in principle be independent of the reason behind the latency differences, and thus should

estimate these differences irrespectively of their nature. Studying these variations and

how the latency estimation works under these circumstances is an interesting issue to

address in future work.

Focusing on applications of brain-computer interfacing, we propose a simple latency

correction mechanism to re-use data from previous experiments when building classifiers

for new experiments on a related phenomenon. This yields a reduction in the calibration

time as a smaller number of trials is required to achieve similar classification performance

than if a new classifier is built from scratch (c.f. Figures 7 and 8). In those cases where

there is no latency between protocols (e.g. moving from P300 experiment E1 to E2),

the latency-corrected classifier was still better than the baseline one. In a similar way,

Thompson et al. [21] also found that the latency variations among trials but within

the same experimental protocol were one of the main problems for the classification

performance, and proposed the use of within-experiment latency variations as a predictor

of online BCI accuracies. The authors also argued that a brute-force method (i.e. testing

a classifier for each possible latency and taking the classifier with maximum accuracy)

could be used to estimate these latencies. Similarly, Aricò et al. found that larger

within-experiment latency jitters present in covert-attention P300 spellers could be the

reason behind a lower system performance [38]. It would be thus interesting to test the

proposed approach as a way of correcting this jitter during online control and improve

this way the system performance.

The latency variations have been assessed on two different ERPs (P300 and

observation error potentials), showing their effect on the single-trial classification. In

the future, the generalization of BCI decoders across protocols can be assessed for

other ERPs, such as those generated during rapid visual processing [39], the N2

evoked component [40], or more generally the visually-evoked potentials (VEPs) [1],

also present in the experiments performed in this work. Here, we correct the latency

for each separate channel, and thus the latency estimation may be different for each
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channel depending on its most relevant components. However, we have not specifically

addressed the fact that different components such as the VEPs could have different

latency variations across protocols. An algorithm estimating the latency on each

separate component could thus be useful to further improve the classifier generalization

capabilities. Moreover, additional studies of event-related potentials in controlled and

non-controlled applications may yield new findings. The proposed method could be used

to elucidate common patterns across conditions, not only in BCI applications but also

in neurophysiological studies, e.g. comparing latency variations between error-related

activity in choice reaction tasks [5], and in feedback tasks [41].

Furthermore, more sophisticated techniques could be tested to cope with the latency

variations such as dynamic time warping [42, 43]. Finally, one disadvantage of the

proposed approach is that it relies on the assumption that there are only temporal

changes in the ERPs, whereas the spatial contributions remain fixed among experiments.

However, this assumption may be wrong. Thus, a more complete approach could be

designed by performing a spatio-temporal compensation of the ERP variations.
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