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Abstract—Low latency is critical for delay-sensitive 

applications such as video surveillance, live streaming, and online 

data analytics. Fog computing enables the emergence of the 

latency-sensitive internet of things (IoT) network to support real-

time applications. While the distance between sensing and 

processing is minimized in the fog network, the cross-fog latency 

is yet to be determined. In this paper, we study the components 

of network delays and develop a latency estimation framework 

for fog-based IoT. The proposed framework, in particular, 

precisely predicts the end-to-end inter-node delay along the 

cloud-fog-things continuum. We investigate the benefits and use 

cases based on latency estimated by the proposed framework. A 

case study is further conducted to illustrate the validation and 

advantages, followed by future research directions. 

Keywords—Fog computing, IoT, Vivaldi algorithm, GNP, 
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I. INTRODUCTION 

Nowadays, smart environments (e.g., smart city, smart 
community and smart home) are built heavily relying on 
ubiquitous things and remote clouds promoting the emergence 
of the internet of things (IoT). With the mission to enhance the 
communication and collaboration capabilities, IoT ecosystem 
integrates things, data, processes, and people to form an 
unprecedented network along the cloud-to-things continuum. 
While the integration is barely in its infancy period, it brings 
tremendous challenges to the current internet, just to name a 
few, heterogeneity, mobility and latency. Such constraints 
drive the rising of fog computing (hereinafter fog) [1], which 
brings the powerful computing intelligence to the proximity of 
things, as shown in Figure 1. Conceptually, fog is inclusive of 
the global cloud, regional core, last mile access networks, 
clients and things. Fog, spanning from a variety of things to all 
level of users, is an end-to-end horizontal architecture in which 
processing, storage, control, management, connecting 
capabilities, and applications are distributed in the most 
efficient, logical place between data consumer and data source. 

Some heterogeneous IoT applications in the smart 
environment are delay-sensitive and real-time. In other words, 
the collected data from sensing tiers must be immediately 
processed to trigger the respective actuator without any delay 
or within a tolerable time constraint, if any. For example, in 
the connected vehicle system, safety and traffic support data 
are required to be instantly processed to prevent accidents. 
Under this circumstance, a second even milli-second level 
delay is detrimental to the interest of life and asset. Initially, 
we briefly discuss the delay components that are responsible 
for the overall end-to-end latency along a particular route [2]. 
Later, we determine how to minimize such components 
theoretically and practically. 

𝐷𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑁 ⨯ (𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑠𝑒𝑟𝑖 + 𝑑𝑝𝑟𝑜𝑝) (1) 

In (1), 𝑑𝑝𝑟𝑜𝑐 is nodal processing delay, 𝑑𝑞𝑢𝑒𝑢𝑒 is queuing 

delay, 𝑑𝑠𝑒𝑟𝑖  is serialization delay, 𝑑𝑝𝑟𝑜𝑝 is propagation delay, 

and N is the number of network segments a packet must go 
through along the IoT ecosystem.  Thus, the overall end-to-end 
delay will be approximately N times of the summation of the 
above four delays. With the advancement of both hardware 
and software, the value of 𝑑𝑝𝑟𝑜𝑐 and 𝑑𝑠𝑒𝑟𝑖  per node are on the 

order of microseconds [3], while the value of 𝑑𝑝𝑟𝑜𝑝 is about 

five micro seconds per kilometre. By the use of QoS technique, 
𝑑𝑞𝑢𝑒𝑢𝑒 can be optimized for some prioritized data. Overall, fog 

effectively cuts latency between sensor reading and resulting 

actuator response [4] by minimizing the propagation delay and 

the number of network segments (N) within one fog network. 
However, when a packet travels out of fog networks where fog 
players have no visibility on number N, the delay and jitter 
may dramatically surge. And in such case, fog’s promise to 
latency-sensitive applications can be broken by the 
accumulative high delays.  

Accurately predicted latency brings positive inputs to 
many applications such as path selection. Nowadays, latency 
estimation is primarily conducted through the assistance of 
network coordinate system (NCS) that establishes a virtual 
positioning system for every node. Grounded on the known 
coordinates in geometry, a node can envisage its latency to 
peer nodes. Many NCS algorithms can achieve more than 90 
percent accuracy of latency estimation on the internet. 
However, it is not appropriate in dynamic fog environment 
where the existence of a group of nodes is temporary. Our 
contribution, in this paper, is to propose an NCS algorithm for 
all network nodes in the fog that estimate end-to-end packet 
delay with higher accuracy.   
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Figure 1: The Cloud-Fog-Things Continuum 



 The remainder of the paper is organized as follows. 
Section II outlines state-of-the-art approaches for latency 
prediction, the proposed framework of latency estimation in 
the fog environment is then presented in Section III. The 
performance of the framework is evaluated and validated 
through a case study by demonstrating path optimization in 
Section IV. Section V concludes the paper with some future 
research directions.  

II. THE LATENCY ESTIMATION APPROACHES 

As mentioned earlier, NCS estimates latency based on 
known network coordinates in virtual geometric vectors. An 
NCS virtually plots the network nodes in a multidimensional 
Euclidean space by mapping the delay into the measured 
distance. For instance, if a network node 𝐴  has coordinate 
(2,4) and knows that another node 𝐵 has coordinate (5,8) in a 
two-dimensional Euclidean model, node 𝐴  can simply 
calculate its distance to node 𝐵  as 𝑑𝑃𝐴−𝐵 =

√((5 − 2)2 + (8 − 4)2) = 5 without direct communication. 
While in an n-dimensional Euclidean model, the latency 
prediction formula is  

𝑑𝑃𝐴−𝐵 = √∑ (𝐴𝑖 − 𝐵𝑖)2𝑛
𝑖=1                                             (2)  

where 𝑑𝑃𝐴−𝐵  is the prediction delay, 𝐴𝑖  and 𝐵𝑖  are their 
coordinates. Besides, the absolute relative error (RE) 

𝑅𝐸 =
|𝐸−𝑅𝑇𝑇|

min(𝐸,𝑅𝑇𝑇)
                                                                (3)  

is used as the performance metric, where 𝐸 is the estimated 
latency and 𝑅𝑇𝑇  is the actual measured distance. Based on 
one-way delay (OWD) and/or round-trip time (RTT) 
measurement, various NCSs have been developed to estimate 
the latency among the networked nodes. OWD technique 
generally requires a system with highly synchronized clocking 
and a precise time stamping to aid the delay measurement, 
however, its utilization is limited because of undesired errors. 
For this reason, RTT is adopted for measurement and 
prediction of latency in the majority of NCS. 

A. Landmark Based Coordinate System 

1) Global Network Positioning (GNP) 
Landmark based NCS relies on a small number of 

landmark nodes to compute synthetic coordinates. GNP [6] is 
a typical example in this stream that has two phases for 
positioning nodes, i.e., landmark phases and ordinary host 
phases. In the landmark phase, each landmark measures RTT 
to other landmarks, as shown in Figure 2(a), where three 
landmarks are shown in blue. In the following phase, an 
ordinary host measures its RTT to landmarks to work out its 

coordinate. The ordinary host nodes like ℎ1 and ℎ2, repeat the 
same process and get their coordinates  (𝑥1, 𝑦1) and (𝑥2, 𝑦2) 
using simplex downhill method [7]. Based on the exact 
coordinates, each node quantifies internode distance prior to 
any direct communication. The performance of GNP deeply 
relies on the distribution of landmarks. It achieves 90 percent 
above accuracy when landmarks are ideally distributed, but it 
has poor performance with badly chosen landmarks. In the 
worst case, if the landmarks are not available, the entire system 
could potentially stop working. 

2) Network Positioning System (NPS) 
To overcome the constraints of GNP, Ng et al. upgrade 

their original GNP work to NPS [8], in which, NPS allows any 
arbitrary node to act as landmarks, managed by independent 
membership server. Any node can contact the membership 
server to query primary settings of landmarks, system 
hierarchy details and a list of referencing points for further 
probing. Then, the node engages in individual probing process 
for the determination of the updated positions of and the 
respective distance to such referencing points, until its position 
is stabilized. As demonstrated in Figure 2(b), fixed landmarks 
(layer 0) are starting points of the dependency hierarchy. By 
maintaining redundant dependency with interested referencing 
points, a landmark failure becomes much less critical. As a 
result, position consistency is achieved because it is more 
tolerant in coping with temporary landmark failures.  

B. Distributed Network Coordinate System 

1) Vivaldi 

Unlike landmark based NCS that relies on predefined 
landmarks in latency estimation, Dabek et al. advocate another 
NCS called Vivaldi that does not need any dedicated 
infrastructure [9]. As an analogy to the natural length of mass 
springs, the prediction latency is assumed to be stable between 
any two nodes. As illustrated in Figure 2(c), the current length 
of each spring is treated as the distance between nodes locally. 
If the spring is stretched, it indicates that the RTT is over-
estimated. While the spring is compressed, it suggests that the 
RTT is under-estimated. Likewise, the natural length of spring 
is a sign that the RTT is exactly estimated. According to 
Hooke’s law, the natural length of springs among nodes a, b, c 
and d determine the distance between the four nodes. In such 
a coordinate space, Vivaldi sets synthetic coordinates to each 
host, so as to estimate the data transmission RTT with 
minimum error. A squared error function is used in [9] as 
below: 
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Figure 2: Network Coordinate System          a) GNP  b) NPS  c) Vivaldi  d) Pharos 



 

𝐸 = ∑ ∑ (𝑅𝑇𝑇𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗||)
2

𝑗𝑖                                   (4)  

Where 𝑅𝑇𝑇𝑖𝑗 is the actual latency, ||𝑥𝑖 − 𝑥𝑗|| is the estimated 

distance between nodes 𝑖  and 𝑗 . During the process of 
minimizing the errors, the nodes are pushed or pulled towards 
the perfect coordinates. In other words, Vivaldi moves each 
node 𝑥𝑖 over a short distance at each interval to get close to the 
exact position step by step.  

Initially, when a new node joins the system, Vivaldi 
assigns a random coordinate to it. As the new node starts 
communicating with another node, it surveys the RTT to that 
node and simultaneously learns the current coordinates of that 
node. This process is repeated each time whenever new nodes 
participate in this algorithm. Vivaldi nodes allow themselves 
to be moved by a small-time step(𝛿). With each movement, a 
node reduces its error with respect to others. Eventually, each 
node keeps its own coordinates in the hope that the prediction 
delay is equal to the measured delay. The authors of Vivaldi 
obtained 90 percent above accuracy in simulation of 1740 
DNS servers on the Internet. Unfortunately, it is still an open 
issue to select the good value for 𝛿  in a complex network, 
which makes it difficult to balance prediction accuracy and 
convergence speed. 

2) Pharos 
Maintaining a global spring system with significantly 

changeable distances is very hard. To improve Vivaldi in 
short-link distance prediction, Chen et al. developed Pharos 
[10] that classifies nodes into two distinct groups according to 
their interspace. Both short-distance and long-distance 
coordinates are assigned to each node. As a result, both local 
cluster overlay for short-link distance and base overlay for 
medium or long-link distance are hierarchical as represented 
in Figure 2(d). Unlike a landmark node that must participate in 
the process of computing coordinates in the system, an anchor 
node needs only to respond to echo request regardless of actual 
participation of positioning process. 

Whenever a new node joins Pharos system, it broadcasts 
its latency to locate the nearest anchor node and joins the 
respective cluster. After joining, it starts connecting many 
nodes in the same cluster, while some nodes in the cluster may 
establish base connection with nodes in remote clusters. At the 
end, Vivaldi is used to attain the two sets of coordinates for 
both overlays. 

C. The Comparison 

Each of the aforementioned NCS has advantages and 
disadvantages in a variety of use cases, while none can address 

all the challenges in computing coordinates. To begin with, the 
landmark system generally requires stable landmarks to serve 
other nodes, and the landmarks must be available and well-
distributed. Furthermore, the change of distance between 
landmarks may not be timely updated to ordinary nodes, 
leading to an inaccurate estimation. Nevertheless, a good 
landmark based NCS empowers the accurate latency 
prediction without any direct communication between two 
nodes. Another strong point of landmark based system is its 
easiness to integrate a dedicate server that simplifies the 
positioning process and manages network coordinates for all 
level of nodes, regardless of their computing intelligence. 

On the other hand, fully distributed NCS like Vivaldi does 
not require any dedicated device, instead, it relies on specific 
Algorithm 1: Landmark candidate (re)registration with FILE 
server through Vivaldi 

// A Fog node x sends query to FILE server to determine if it 
is 

// required to run Vivaldi. 

 Send (𝑄𝑢𝑒𝑟𝑦); 

// FILE server responds to the node, either true or false. When  

// true, it sends back an initiative coordinates 𝑥𝑖 and a  

// recommended list of other landmark nodes to probe. 

 Receive (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑥𝑖 , (𝐿1𝑖 , 𝐿2𝑖 , … , 𝐿𝑛𝑖)); 

// If required to run Vivaldi, the node becomes a possible  

// landmark. Then it needs to evaluate its latency to other  

// Landmark nodes, until the prediction error is acceptable 

if (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 == 𝑡𝑟𝑢𝑒) 

do { Vivaldi(𝑟𝑡𝑡𝑖𝑗 , 𝑒𝑗, 𝑥𝑗); }  

while (𝑒𝑖 > 𝐴𝑐𝑐𝑝𝑡𝐸𝑟𝑟); 

// If not required to run Vivaldi, the node is a common node.  

// Then it needs to calculate its coordinate towards Landmarks, 

//where Dimensions defines an n-dimensional Euclidean model.  

else if (𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 == 𝑓𝑎𝑙𝑠𝑒) 

Landmark(𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡) ); 
 

traffic patterns (piggybacking traffic) to enable self-motivated 
positioning. This dependency on traffic patterns limits the scope 
of application areas. Another weak point of Vivaldi is the 
shortage of mature architecture for managing network 
coordinates. It thoroughly relies on each node to adaptively 
position itself individually, which does not benefit much to low-
end nodes.  Despite that, such nodes can quickly respond to 
network changes, enabling an up-to-date latency estimation.  

III. FOG-BASED IOT LATENCY ESTIMATION (FILE) 

As studied in Section II, all the NCS are developed on 
hypothesis that there will be an exact distance between any two 
network nodes. Besides, the NCS performs best in computing 
the coordinates for persistent objects, such as DNS servers on 
the Internet. However, the prosperity of IoT has significantly 
changed the environment, where myriads of things may 
frequently change their locations. In a fog network, enormous 
amounts of things and people may come and leave a from time 
to time. For instance, a driving vehicle is admitted as a fog 
node. Because lots of fog nodes intermittently join and disjoin 
a fog network, it is not always practical to calculate network 
coordinates for all of them. As such, none of the current NCSs 

 
Figure 3: FILE Performance 
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is immediately applicable to fog-based IoT. We therefore 
propose a new framework in this regard.  

Although the multitude of nodes are very dynamic in fog 
based IoT ecosystem, many nodes are still relatively fixed 
along the cloud-fog-things continuum. For example, various 
servers (storage server, application hosting server, etc.) in both 
fog and cloud collaboratively reinforce other fog nodes, which 
generate enormous piggybacking traffic that can be used by 
Vivaldi for accurate internode latency estimation. When things 
join a fog network, such nodes can be engaged as the 
landmarks, to base the positioning of ordinary nodes in GNP. 
Hence, there are two phases in the proposed FILE system, i.e., 
Vivaldi phase and GNP phase. Next, we detail the algorithms 
in each process.  

Algorithm 2: Landmark coordinate calculation in Fog (Vivaldi)  

// Operation 1: 

// FILE server initializes the coordinate of 𝑥𝑗 and inform a list  

// of nodes with their coordinates (𝐿1𝑗 , 𝐿2𝑗, … , 𝐿𝑛𝑗) at the  

// beginning, then the nodes measure their RTT in between to  

// establish their coordinate and know their local error estimate.   

 Receive (𝑡𝑟𝑢𝑒, 𝑥𝑗 , (𝐿1, 𝐿1𝑗), (𝐿2, 𝐿2𝑗), … , (𝐿𝑛 , 𝐿𝑛𝑗)); 

Measure (𝑅𝑇𝑇𝑗𝐿𝑚
); 

Calculate (𝑒𝑗); 

Update (𝑥𝑗 ); 

// Node j report its coordinate to FILE server. 

Send ((𝑗, 𝑥𝑗); 

// Operation 2: 

// When a new node 𝑖 join the system, the FILE server set its  

// coordinate 𝑥𝑖 approximately. It also informs the new node a  

// number of nodes with coordinates (including node𝑗) for  

// calibration.  

Receive (𝑡𝑟𝑢𝑒, 𝑥𝑖 , (… , (𝑗, 𝑥𝑗), … )); 

// Node 𝑖 measures node j, learns an error estimate 𝑒𝑗 and  

// coordinate 𝑥𝑗.  

Measure (𝑅𝑇𝑇𝑖𝑗); 

Study (𝑥𝑗 , 𝑒𝑗) 

// Node 𝑖 set an error estimate 𝑒𝑖, set the constants 𝑐𝑒 , 𝑐𝑐 

Set (𝑒𝑖 , 𝑐𝑒 , 𝑐𝑐); 

// The main Vivaldi function 

Vivaldi(𝑟𝑡𝑡𝑖𝑗, 𝑒𝑗 , 𝑥𝑗) 

{ 

// Sample weight balances local and remote error.  

𝑤 =
𝑒𝑖

𝑒𝑖 + 𝑒𝑗

 

 // Compute relative error of this sample.  

𝑒𝑠 =
|𝑟𝑡𝑡𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗|||

𝑟𝑡𝑡𝑖𝑗

 

 // Update weighted moving average of local errors.  

𝑒𝑖 = 𝑒𝑠 ⨯ 𝑐𝑒 ⨯ 𝑤 + 𝑒𝑖 ⨯ (1 − 𝑐𝑒 ⨯ 𝑤)  

// Update local coordinates.  

𝛿 = 𝑐𝑐 ⨯  𝑤  

𝑥𝑖 = 𝑥𝑖 + 𝛿 ⨯ (𝑟𝑡𝑡𝑖𝑗 − ||𝑥𝑖 − 𝑥𝑗||) ⨯ 𝑢(𝑥𝑖 − 𝑥𝑗)  

} 

// Once this node gets accurate coordinate, it updates the 

// FILE server with the latest information. report the 

// up-to-date coordinate to FILE server 

if (𝑒𝑖 <= 𝐴𝑐𝑐𝑝𝑡𝐸𝑟𝑟) 

Send ((𝑖, 𝑥𝑖); 

 

Algorithm 3: Ordinary node coordinate calculation through 
Simplex Downhill algorithm 

// A node x receives response from FILE server, required to  

// run Simplex Downhill. The server also sets an original  

// coordinate, recommended landmarks and their coordinates.   

 Receive (𝐹𝑎𝑙𝑠𝑒, 𝑥𝑖 , (𝐿1, 𝐿1𝑖), (𝐿2, 𝐿2𝑖), … , (𝐿𝑛 , 𝐿𝑛𝑖)); 

// Through the given coordinate, the node learns the  

// dimension numbers used in the Euclidean model. While the  

// probe is the interested landmarks, the target is IP addresses 
// of any node.   

Landmark(𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡) ) 

{ 

// Measure distance between probes 

 Measure (𝑅𝑇𝑇𝑖𝐿𝑖
); 

// Measure distance between targets 

Measure (𝑅𝑇𝑇𝑖𝑡𝑖
); 

// Then, run call Simplex Downhill function, to evaluated  

// errors until the error estimate rate is acceptable. 

 while (𝑅𝐸 >  𝐴𝑐𝑐𝑒𝑝𝐸𝑟𝑟)  

do { 𝑆𝑖𝑚𝑝𝑙𝑒𝑥𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙(𝐷𝑖𝑚𝑒𝑛, 𝑃𝑟𝑜𝑏𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡); } 

// After that, the node reports its coordinates to FILE server 

 Send ((𝑖, 𝑥𝑖); 

 } 

A device in fog is assumed to connect and register to cloud 
before the device could communicate and exchange data with 
other entities. In regard to latency estimation, a dedicate 
membership server is setup in cloud to store system 
configuration parameters and to keep soft state about 
participating networked nodes.  Hence, a FILE server in the 
cloud is liable to oversee the positioning of all level nodes 
encompassing the IoT ecosystem. A FILE server that provides 
primary system configuration information is able to 
dynamically selects some nodes as landmarks when the current 
landmark is unavailable or too heavily loaded. Initially, a node 
needs to query the FILE server regarding its alternative role in 
the system, i.e., landmark or ordinary nodes through 
Algorithm 1. If the FILE server determines the querying node 
is a candidate of landmarks, Algorithm 2 is used to calculate 
its coordinate, otherwise, Algorithm 3 finds the positioning of 
ordinary nodes. 

In particular, Algorithm 1 brings two benefits to FILE 
system. One is to reflect the up-to-date inter-landmark latency, 
and the other is to update its position to FILE server that 
notifies the distance variation between landmarks. Next, the 
Vivaldi phase is presented. 

A. Vivaldi Phase       

This algorithm has two operations. In the first instance, a 
number of nodes measure their internode 𝑅𝑇𝑇  to set up a 
reference system. Later on, the new-comer nodes figure out 
their coordinates using those referencing nodes.  

We introduce FILE server in Algorithm 2 with 
management functions that significantly differentiated our 
approach compared to Vivaldi. FILE server initially sets the 



coordinate uniformly in D-dimensional Euclidean model. Also, 
it assigns approximate coordinates at the beginning, resulting 
in the mitigation of positioning workloads. On top of this, due 
to the global view and thorough understanding about fog 
deployment, FILE server advises nodes of interest in the probe 
process, which improves the performance of overall latency 
estimation. 

B. GNP Phase 

As investigated in Vivaldi phase, each Vivaldi-running 
node must report its accurate coordinate to FILE server. 
Grounded on the harvest of nodes and their coordinates, FILE 
server not only provides the comprehensive supports for 
Vivaldi running nodes, but also supplies all level of landmarks 
along the cloud-fog-things continuum. As delineated in Figure 
1, there are five function layers in the deployed continuum 
including global cloud, regional core, neighbourhood access, 
customer premises equipment gateway and things. Such 
deployment seeks to place processing where it is just-in-need, 
which creates a classic scenario of the utilization of landmark 
based NCS. Thereupon, we inspect the detailed operations.  

Landmark operation and succeeding ordinary nodes 
operation are the components of this GNP phase. In the 
landmark operation, traditionally, it is to use certain number of 
fixed nodes as landmarks. Theoretically, there shall be at least 
D+1 landmarks in D-dimensional Euclidean model. Though 
increasing the number of landmark nodes contributes to higher 
accuracy, the distribution of landmarks is critical in such NCS. 
Since the landmarks are fixed at some location, it is hard to 
timely reflect the network topology change. However, the 
landmarks can be flexibly and dynamically selected from the 
potential landmark list under control of FILE server, through 
which, the landmarks are ideally maintained to warranty 
accuracy and liability.  

Although the distance between landmarks has been 
estimated in Vivaldi phase and reported to FILE server, it is 
also measured in the landmark operation for further calibration. 
The measured and estimated values are reported to FILE 
server for further calibration, in this way, the server sets the 
landmark coordinates accurately. Subsequently, the ordinary 
nodes measure the RTT to the selected landmarks, calculate 
their coordinates using Simplex Downhill algorithm. 
Algorithm 3 is used in GNP phase. 

As long as the coordinates are precisely estimated, the 
latency prediction is easily achieved through Formula 2. 
Beyond that, it is possible to predict latency between resource-
limited nodes that cannot run FILE, e.g., a bar code scanners 
collecting visitor ID information. Such latency may be 
quantified on the uplink application server that collects the 
latency from the scanner based on time tag, plus the accurately 
predicted latency between application servers. 

To sum up, FILE assumes that things require to be 
connected either to fog, cloud or both after their registration. 
A hybrid of centralized and distributed network coordinate 
methods is used to position nodes in the complicated 
ecosystem. This FILE framework empowers perfect landmark 
suppliers, through which, ordinary nodes calculate their 
coordinates individually. It enables the latency estimation 
among all nodes in fog environment. Thereafter, we evaluate 
the accuracy performance against GNP and showcase the 
advantages. 

IV. PERFORMANCE EVALUATION AND CASE STUDY 

A. Performance Evaluation 

The absolute relative error (𝑅𝐸) is studied as the 

performance metric, in comparison the accuracy of FILE with 

GNP. Attempt to acquire the latency from fog to cloud, we 

inspect twenty home routers to Amazon and Azure cloud in 

both Sydney and Melbourne. Over and above that, a couple of 

well-known cloud speed testing webpage tools [11, 12] are 

also used as our test-result reference. An average of 500ms of 

RTT is observed. Then, each router is treated as one fog node 

along the home routers to data center path. The average inter-

node latency is about 10ms and Chang et al. also demonstrate 

same in [13]. Thus, we set the inter-fog node latency as 10ms. 

The inter-fog and things-to-cloud latency data are used in our 

experiment with 100 computers that are distributed in 6 Fog 

networks. These Fog networks are connected to Cloud with 

various distance. After that, FILE algorithm is conducted on 

this setting. Figure 3 plots the prediction error rate with 

different numbers of landmarks. FILE achieves more than 90 

percent accuracy with 13 or more landmarks, while 16 

landmarks are required to achieve similar accuracy in GNP. 

More interestingly, FILE allows to use any waypoint as 

referencing point for positioning to improve the estimation 

accuracy. 

In summary, the proposed framework assists to predict the 

delay between things, fog and cloud nodes, before their direct 

communication. Because the latency prediction is one of the 

key parameters to optimize the fog performance, it brings 

comprehensive benefits to the entire IoT ecosystem including 

service discovery, IoT placement, content distribution, path 

selection, and so on. Next, a case study is conducted to 

demonstrate the advantages of the proposed framework 

further. 

B. Case Study 

Poor weather is one of the primary reasons for traffic 
accidents along the millions-kilometres Chinese expressways 
[14]. In particular, the ground fogs in lake or mountain area 
can suddenly cause visibility down to the meter-level in a 
second. In this case, the drivers brake hard subconsciously 

 
Figure 4: The Real-time Driving-condition Information System 

 

Table 1: Data Setting in the Simulation 
 

Data Settings Value 

Fog to Cloud Delay 500ms 

Fog to Cloud Jitter 100ms 

Fog to Fog Delay 10ms 

Fog to Fog Jitter 2ms 

 



causing disasters of rear end collisions and massive highway 
pileups. Due to the difficulties of forecasting such weather, 
RDIS (real-time driving-condition information system) is 
deployed to make early warnings ahead of such areas. This 
system is composed of weather sensors, cameras, roadside 
service units, infotainment systems, patrol and rescue vehicles. 
As displayed in Figure 4, fog nodes are deployed to enable 
RDIS along the roads. FILE is used for quick response to the 
protection of lives and assets, as it globally oversees and 
manages the coordinates infrastructure. 

Landmarks are dynamically maintained to base accurate 
latency prediction for the nodes, which warrants the least 
latency of data transmission.  We use GNS3, an open source 
network simulator used by networking professionals [15], to 
deploy our testbed. Cisco 7204 routers are used to simulate all 
the network nodes, except for delay and jitter generator that is 
simulated by WANem [16]. Table 1 presents the data set 
applied in the simulation. We configure the testbed to generate 
three data paths to carry data from DCSI (driving condition 
surveillance infrastructure) to STMC (smart traffic 
management centre). The data paths include cloud (case 1), 
fog with the least hop count (case 2), and fog with the least 
latency (case 3).  

Figure 5 depicts the instantaneous end-to-end latency 
changes in the three cases when the packet size is 100 bytes. 
In case 1, when the data must go through the cloud, the 
maximum, minimum and average delays are 2349.25 ms, 
1745.18 ms, and 2038.31 ms respectively. Case 2 illustrates 
the fog routing without NCS, where the maximum, minimum 
and average delays are 493.11 ms, 303.86 ms, and 381.54 ms 
respectively. When FILE predicts the delay in real-time, each 
node can send data over the route with the least latency. Hence, 
in case 3 the maximum, minimum and average delays are 
406.77 ms, 210.50 ms, and 264.80 ms respectively between 
DCSI (sensing) and STMC (processing). Also, we examine the 
latency with the varying packet size of 500, 1000 and 1500 
bytes. Overall, the end-to-end latency does not change much 
in all the cases. Table 2 presents the result of the varying size 
of packets.  

V. CONCLUSION 

Since we can only minimise rather than eliminate the end-

to-end network latency, latency prediction is of paramount 

importance for the fog optimization. By taking advantage of 

both Vivaldi (fully distributed) and GNP (landmark-based) 

alogrithm, our proposed FILE can predict the latency with high 

accuracy for both fog nodes and things. Following the 

illustrated benefits, we showcase the rerouting based on the 

lowest end-to-end latency to further expedite the data 

transmission. The result concludes that FILE gives very 

positive input for real-time applications. As the low latency is 

the driving reason for fog adoption, we believe it is worth 

much more research, and in particular, we are going to 

investigate the FILE convergence behaviour on different 

overlays and Fog deployment strategies. 
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Figure 5: The Latency Comparison on Packet Size 100 

 

Table 2: Latency with Various Packet Size 
 

 Average Latency (milliseconds) 

Packet size 100 500 1000 1500 

Case 1 2038.31 2049.82 2032.06 2057.24 

Case 2 381.54 381.23 386.37 388.58 

Case 3 264.80 264.65 265.57 261.93 
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