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Abstract— Computation off-loading in mobile edge
computing (MEC) systems constitutes an efficient paradigm of
supporting resource-intensive applications on mobile devices.
However, the benefit of MEC cannot be fully exploited, when the
communications link used for off-loading computational tasks
is hostile. Fortunately, the propagation-induced impairments
may be mitigated by intelligent reflecting surfaces (IRS),
which are capable of enhancing both the spectral- and energy-
efficiency. Specifically, an IRS comprises an IRS controller
and a large number of passive reflecting elements, each of
which may impose a phase shift on the incident signal, thus
collaboratively improving the propagation environment. In
this paper, the beneficial role of IRSs is investigated in MEC
systems, where single-antenna devices may opt for off-loading
a fraction of their computational tasks to the edge computing
node via a multi-antenna access point with the aid of an IRS.
Pertinent latency-minimization problems are formulated for both
single-device and multi-device scenarios, subject to practical
constraints imposed on both the edge computing capability and
the IRS phase shift design. To solve this problem, the block
coordinate descent (BCD) technique is invoked to decouple the
original problem into two subproblems, and then the computing
and communications settings are alternatively optimized
using low-complexity iterative algorithms. It is demonstrated
that our IRS-aided MEC system is capable of significantly
outperforming the conventional MEC system operating without
IRSs. Quantitatively, about 20 % computational latency
reduction is achieved over the conventional MEC system in a
single cell of a 300 m radius and 5 active devices, relying on a
5-antenna access point.

Index Terms— Intelligent reflecting surface, mobile edge com-
puting, latency minimization.

Manuscript received December 17, 2019; revised April 15, 2020; accepted
May 8, 2020. Date of publication July 3, 2020; date of current version
October 16, 2020. The work of Tong Bai and of Arumugam Nallanathan
was supported by the Engineering and Physical Sciences Research Council
under Project EP/R006466/1. The work of Lajos Hanzo was supported in
part by the Engineering and Physical Sciences Research Council under
Project EP/N004558/1, Project EP/P034284/1, and Project EP/P003990/1
(COALESCE), in part by the Royal Society’s Global Challenges Research
Fund Grant, and in part by the European Research Council’s Advanced Fellow
Grant QuantCom. (Corresponding authors: Cunhua Pan; Tong Bai.)

Tong Bai, Cunhua Pan, Maged Elkashlan, and Arumugam Nallanathan
are with the School of Electronic Engineering and Computer Science,
Queen Mary University of London, London E1 4NS, U.K. (e-mail:
t.bai@qmul.ac.uk; c.pan@qmul.ac.uk; maged.elkashlan@qmul.ac.uk;
a.nallanathan@qmul.ac.uk).

Yansha Deng is with the Department of Engineering, King’s College
London, London WC2R 2LS, U.K. (e-mail: yansha.deng@kcl.ac.uk).

Lajos Hanzo is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
lh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.3007035

I. INTRODUCTION

A. Motivation and Scope

I
N THE Internet-of-Things (IoT) era, myriads of machines

and sensors are envisioned to be connected [1]. How-

ever, since these devices typically have limited computing

capabilities, resource-intensive applications cannot be readily

supported by these devices due to their resultant excessive

computational latency. Aimed at tackling this issue, powerful

computing nodes can be deployed at the edge of the network

(typically co-located with the access points (APs)) [2]. As a

benefit, the computational latency of these resource-intensive

applications can be reduced, by employing both local com-

puting on the devices and edge computing for processing

these computational tasks, provided that these tasks can be

successfully off-loaded. This paradigm is referred to as mobile

edge computing (MEC) [3]–[14]. At the time of writing, the

potential of this MEC paradigm has not been fully exploited,

predominantly because the computation off-loading link is far

from perfect. For example, the devices located at the cell edge

typically suffer from a low off-loading success rate, and/or

their computation off-loading may impose higher latency than

computing their tasks locally. Hence these devices have to

rely on their own computing resources, which is however

often incapable of supporting resource-intensive applications.

Therefore, it is imperative to improve the performance of MEC

systems from a communications perspective.

The recent advances in programmable meta-materials

[15] facilitate the construction of intelligent reflecting sur-

faces (IRSs) [16] for enhancing both the spectral- and

energy-efficiency of wireless communications. Specifically,

an IRS is comprised of an IRS controller and a large number of

passive reflecting elements. Under the instructions of the IRS

controller, each IRS reflecting element is capable of adjusting

both the amplitude and the phase of the signals reflected, thus

collaboratively modifying the signal propagation environment.

The gain attained by IRSs is based on the combination of both

the virtual array gain and the reflection-aided beamforming

gain. To elaborate, the virtual array gain can be achieved by

combining both the direct and IRS-reflected signals, while the

reflection-aided beamforming gain is realized by proactively

controlling the phase shift induced by the IRS elements.

By beneficially combining these two types of gains, the IRS

becomes capable of boosting the devices’ off-loading success

rate, hence improving the potential of MEC systems. In this
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treatise, our attention is focused on investigating the role of

IRSs in MEC systems.

B. Related Works

1) Design of Mobile Edge Computing Systems: At the

current state-of-the-art, MEC systems can be categorized into

[5]: single-user [6]–[9] and multi-user systems [10]–[14].

Among the design metrics of single-user MEC systems, the

computation off-loading strategy plays a crucial role. More

explicitly, the binary off-loading strategy of [6] was proposed

to decide whether the task is executed locally at the mobile

device or remotely at the edge-cloud node. By contrast,

Wang et al. [7] conceived a partial off-loading scheme for

data-partitioning oriented applications, where a fraction of the

data can be processed at the mobile device, while the rest at

the edge. However, in realistic multi-user systems, inter-user

interference is imposed both on the radio communications link

and on the computing node at the edge, which may erode

the overall performance of the MEC system. In order to cope

with this hindrance, Sardellitti et al. [10] jointly optimized the

transmit precoding matrices and the computational resources

allocated to each user in a multi-cell multi-user scenario, while

Sheng et al. [17] proposed an energy-efficient algorithm to

optimize the resource allocation of terminals, radio access

networks, and edge servers in a multi-carrier scenario. For

the system where the devices have to make their off-loading

decisions locally, Chen et al. [11] provided a distributed joint

computation off-loading and channel selection policy relying

on classic game theory. Recently, a specific user association

scheme was also developed for multi-user systems served by

multiple edge computing nodes [13], while a mobility-aware

dynamic service scheduling algorithm was proposed for MEC

systems [14]. Furthermore, Yang et al. [18] conceived an

over-the-air computation aided federated learning algorithm

for reducing both the latency and the power consumption, and

for preserving the users’ privacy in MEC systems. At the time

of writing, the computation offloading issue of the devices

in the face of hostile communications environments has not

been well addressed. Against this background, in this paper

the performance is improved by invoking IRSs. Let us now

continue by reviewing the relevant research contributions on

IRSs as follows.

2) Intelligent Reflecting Surface Aided Wireless Networks:

In order to explore the benefits of IRSs in wireless commu-

nications, extensive research efforts have been invested into

their ergodic capacity analysis [19], channel estimation [20],

and practical reflection phase shift modeling [21], as well as

into the associated phase shift design [22]–[29]. Specifically,

a joint design of the IRS phase shift and of the precoding

at the AP was proposed for minimizing the transmit power,

while maintaining the target receive signal-to-interference-

plus-noise ratio (SINR) [22], relying on the sophisticated

techniques of the semidefinite relaxation and of alternating

optimization. These investigations were then extended to the

more practical discrete phase shift setting [23]. However, the

excessive computational complexity of the algorithm devel-

oped in [22] prohibits its application in large-scale IRSs.

In order to reduce the complexity, Guo et al. [24] proposed

three low-complexity algorithms, while Pan et al. [26] pro-

vided a pair of majorization-minimization (MM) algorithms

and complex circle manifold methods for multi-cell scenarios.

Furthermore, in order to reduce the overhead during the IRS

channel estimation, Yang et al. [29] grouped the IRS elements,

where each group shares the same phase shift coefficient, and

optimized the power allocation and phase shift in orthogonal

frequency division multiplexing (OFDM)-based wireless sys-

tems. Apart from the conventional communications scenarios,

the role of IRSs was also investigated both in terms of

improving physical-layer security [30]–[33], and simultane-

ous wireless information and power transfer (SWIPT) [34],

[35], where substantial gains were achieved. These impressive

research contributions inspired us to exploit the beneficial role

of IRSs in MEC systems.

C. Contributions and Organizations

Our main contributions are the employment of IRSs in MEC

systems, and the joint design of computing and communica-

tions for minimizing the computational latency of IRS-aided

MEC systems, detailed as follows.

• New IRS-aided MEC system design and latency minimiza-

tion problem formulation: In order to further exploit the

potential of MEC systems, we first propose IRS-aided

MEC systems, for assisting the computational task

off-loading of mobile devices. A latency-minimization

problem is formulated for multi-device scenarios, which

optimizes the computation off-loading volume, the edge

computing resource allocation, the multi-user detec-

tion (MUD) matrix, and the IRS phase shift, subject to

both the total edge computing capability and to the IRS

phase shift constraints. Owing to the coupling effect of

multiple optimization variables, the latency-minimization

problem cannot be solved directly. Hence, relying on

the block coordinate descent (BCD) technique, the orig-

inal problem is decoupled into two subproblems for

alternatively optimizing computing and communications

settings.

• Computing design: Given a fixed communications setting,

we decouple the computation off-loading volume and the

edge computing resource allocation, again using the BCD

technique. Our analysis reveals that given a fixed edge

computing resource allocation, the optimal computation

off-loading volume can be determined by assuming the

equivalence of the latency induced by local computing

and by edge computing. Given a fixed computation

off-loading volume, the subproblem is proved to be a con-

vex problem, and the optimal edge computing resource

can be found by relying on the KKT conditions and on

the classic bisection search method.

• Communications design: Given a computing setting,

the objective function (OF) becomes available in a

non-convex sum-of-ratios form, which cannot be solved

using the algorithms developed in [22], [24], [26], [35].

To tackle this challenge, this problem is transformed to an

equivalent parameterized form by introducing auxiliary
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variables. Our analysis reveals that this equivalent form

can be decomposed into a series of tractable subproblems.

Then, an iterative algorithm is developed to find the

solution. In each iteration, the auxiliary variables are

updated using the modified Newton’s method, while upon

reformulating this series of tractable subproblems by

exploiting the equivalence between the weighted sum-rate

maximization problem and the weighted mean square

error (MSE) minimization problem, closed-form expres-

sions are provided for the MUD matrix and for the IRS

phase shift, using the weighted minimum MSE method

and MM algorithm, respectively. Our analysis reveals that

the proposed algorithm exhibits a low complexity.

• Study of the single-device scenario: In order to complete

the investigations, the single-device scenario is also stud-

ied, where neither the edge computing resource allocation

nor the multi-user interference has to be considered.

A low-complexity iterative algorithm is proposed by sim-

plifying the algorithm developed in the aforementioned

multi-device scenario.

• Numerical validations and evaluations: The numerical

results verify the convergence of the proposed algorithms,

and quantify the performance of our IRS-aided MEC

system in terms of its latency in diverse simulation

environments.

The rest of the paper is organized as follows. In Section II,

we establish the system model and formulate the latency

minimization problem. The solution of this latency mini-

mization problem is provided in Section III. In Section IV,

we investigate the solution of the special case, where a single

device is served by the MEC system. Our numerical results are

discussed in Section V. Finally, our conclusions are offered in

Section VI.

Notation: In this paper, scalars are denoted by italic letters.

Boldface lower- and upper-case letters denote vectors and

matrices, respectively; C
M×N represents the space of M ×N

complex matrices; IIIN denotes an N × N identity matrix; j
denotes the imaginary unit, i.e. j2 = −1. The maths operations

used throughout the paper are summarized in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, our system model is elaborated on, from

both communications and computing perspectives. Following

this, a latency-minimization problem is formulated for our

IRS-aided MEC system, detailed as follows.

A. Communications Model

As shown in Fig. 1, we consider an MEC system operating

in a single-cell scenario, where K single-antenna devices may

opt for off-loading a certain fraction of or all of their computa-

tional tasks to an edge computing node via an M -antenna AP

through the wireless transmission link. The edge computing

node and the AP are assumed to be co-located and connected

using high-throughput low-latency optical fiber. Then, the

latency imposed by the data communication between the AP

and the edge computing node is deemed to be negligible.

An IRS comprised of N reflecting elements is placed in

TABLE I

MATH OPERATIONS

Fig. 1. Illustration of the system model, where a N -element intel-
ligent reflecting surface (IRS) assists the computation off-loading of K
single-antenna devices to the edge computing node via the M -antenna access
point.

the cell for assisting the devices’ computation off-loading.

We assume that both the antenna spacing at the AP and

the element spacing of the IRS are high enough so that the

small-scale fading associated both with two different antennas

and with two different reflecting elements is independent,

respectively.

The equivalent baseband channels spanning from the k-th

device to the AP, and from the k-th device to the IRS, as well

as from the IRS to the AP are denoted by hhhd,k ∈ CM×1,

hhhr,k ∈ CN×1, and GGG ∈ CM×N , respectively. These chan-

nels are assumed to be perfectly estimated1 and quasi-static,

hence remaining near-constant when devices are scheduled

for off-loading their computational tasks. As for the IRS,

we simply set the amplitude reflection coefficient to 1 for

all reflection elements and denote the phase shift coefficient

vector by θθθ = [θ1, θ2, . . . , θN ]T , where θn ∈ [0, 2π) for all

n ∈ {1, 2, . . . , N}.2 Then, we have the reflection-coefficient

1Naturally, this assumption is idealistic. Hence the algorithm developed in
this paper can be deemed to represent the best-case bound for the latency
performance of realistic scenarios.

2Due to the associated hardware limitations, only a limited number of dis-
crete phase shifts can be provided for each IRS element in practice [23]. Our
proposed algorithms provide the best-case bound for the latency of realistic
scenarios. The phase-quantization effects are evaluated in Section V -A3.
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matrix of the IRS ΘΘΘ = diag
�

ejθ1 , ejθ2 , . . . , ejθN

�

, where j
represents the imaginary unit. It is assumed that the IRS phase

shift setting is calculated at the AP in accordance with both

the channel and computing dynamics, which is then sent to

the IRS controller along the dedicated channel. The composite

device-IRS-AP channel is modeled as a concatenation of the

device-IRS link, the IRS reflection characterized by its phase

shift, and the IRS-AP link.

Here, it is assumed that the computation off-loading of

the K devices takes place over a given frequency band B
within the same time resource. Upon denoting the off-loading

power, and off-loading signal of the K devices, as well as

the noise vector by pt, sss = [s1, s2, . . . , sK ]T , and nnn =
[n1, n2, . . . , nM ]T , respectively, the signal yyy ∈ CM×1 received

at the AP is readily formulated as

yyy =
√

ptHHHsss + nnn =
√

pt

K
X

k=1

(

hhhd,k + GGGΘΘΘhhhr,k

)

sk + nnn, (1)

where we assume nm ∼ CN (0, σ2) for m = 1, 2, . . . , M .

Furthermore, we define hhhk � hhhd,k + GGGΘΘΘhhhr,k and HHH �
�

hhh1,hhh2, . . . ,hhhK

�

. As a computational complexity compromise

at the AP, a linear MUD technique is invoked. Upon denoting

the MUD matrix by WWW ∈ CM×K , the signal recovered at the

AP is obtained as

ŝss = WWWHyyy = WWWH(
√

ptHHHsss + nnn). (2)

As for the k-th device, its recovered signal is formulated as

ŝk = wwwH
k

"

√
pt

K
X

j=1

(

hhhd,j + GGGΘΘΘhhhr,j

)

sj + nnn

#

, (3)

where wwwk is the k-th column of the matrix WWW . Then, the SINR

of the k-th device’s signal recovered is given by

γk(wwwk, θθθ)=
pt

�

�wwwH
k

(

hhhd,k + GGGΘΘΘhhhr,k

)�

�

2

pt

PK
j=1,j 6=k

�

�wwwH
k

(

hhhd,j + GGGΘΘΘhhhr,j

)�

�

2
+ σ2|wwwH

k |2
.

(4)

Accordingly, upon assuming a perfect capacity-achieving

transmission scheme is invoked, we arrive at the maximum

achievable computation off-loading rate of the k-th device,

formulated as

Rk(wwwk, θθθ) = B log2

�

1 + γk(wwwk, θθθ)
�

. (5)

B. Computing Model

We consider the data-partitioning based application of [7],

where a fraction of the data can be processed locally, while the

other part can be off-loaded to the edge node. The computing

model is detailed for the local and edge computing as follows.

• Local computing: For the k-th device, Lk, `k, and ck

are used to represent its total number of bits to be

processed, its computation off-loading volume in terms

of the number of bits, and the number of CPU cycles

required to process a single bit, respectively. As for

the local computing, upon denoting the computational

capability at the k-th device in terms of the number

of CPU cycles per second by f l
k, the time required

for carrying out the local computation is formulated as

Dl
k(`k) = (Lk − `k)ck/f l

k.

• Edge computing: we denote the maximum number of

executable CPU cycles at the edge and the computational

capability allocated to the k-th device by fe
total and fe

k ,

respectively, which obey
PK

k=1 fe
k ≤ fe

total. Here, it is

assumed that the edge computing for the k-th device

only begins its operation, when all its `k bits are com-

pletely off-loaded. In this case, the total latency of edge

computing is jointly constituted by the computation off-

loading, and by the edge computing, as well as by the

end-to-end delay of sending the computational result

back. Given that the computation result is typically of

a small size [5], the feedback latency can be negligible,

upon using the technique of ultra-reliable low-latency

communications [36]. Then, the total latency imposed by

the computation off-loading and the edge computing is

given by De
k(wwwk, θθθ, `k, fe

k) = `k/Rk(wwwk, θθθ) + `kck/fe
k .

To this end, the latency of the k-th device can be readily

calculated by selecting the maximum value between those

imposed by the local and by the edge computing, formulated

as

Dk(wwwk, θθθ, `k, fe
k) = max

�

Dl
k(`k), De

k(wwwk, θθθ, `k, fe
k)

�

= max




(Lk − `k)ck

f l
k

,
`k

Rk(wwwk, θθθ)
+

`kck

fe
k

�

.

(6)

C. Problem Formulation

In this paper, we aim for minimizing the weighted compu-

tational latency of all the devices, by jointly optimizing the

computation off-loading volume `̀̀ = [`1, `2, . . . , `K ]T , the

edge computing resources fffe = [fe
1 , fe

2 , . . . , fe
K ]T allocated

to each device, the MUD matrix WWW , and the IRS phase shift

θθθ. Specifically, the weighted delay minimization problem is

formulated as

P0 : min
WWW,θθθ,`̀̀,fffe

K
X

k=1

$kDk(wwwk, θθθ, `k, fe
k)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N, (7a)

`k ∈ {0, 1, . . . , Lk}, k = 1, 2, . . . , K, (7b)
K

X

k=1

fe
k ≤ fe

total, (7c)

fe
k ≥ 0, k = 1, 2, . . . , K. (7d)

where $k represents the weight of the k-th device. (7a)

specifies the range of the phase shift of the IRS elements; (7b)

indicates that the computation off-loading volume should be

an integer between 0 and Lk for the k-th device; Finally, (7c)

and (7d) restrict the range of the edge computing resources

allocated to each device.

Remark 1: In Problem P0, we have a total of four optimiza-

tion variables, namely, the off-loading volume, edge computing

resource allocation, MUD matrix, and IRS phase shift. The

optimization of the former two variables is related to the
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computing setting, while the optimization of the other two

specifies the communications design. The difficulties of solving

Problem P0 are owing to three aspects. The first one is the

segmented form of the OF. The second one is the coupling

effect between the MUD matrix WWW and the IRS phase shift

vector θθθ. The final one is that the OF is non-convex regarding

the phase shift θθθ. Hence, it is an open challenge to obtain

a globally optimal solution directly. In this paper, a locally

optimal solution is provided. Specifically, upon using the

popular BCD technique for decoupling the communications

and computing designs, the segmented form of the OF can be

easily transformed to a more tractable form. Similarly, optimal

solutions can be provided for the MUD matrix WWW and for

the IRS phase shift vector θθθ, after they are decoupled using

the BCD technique in the communications design. To tackle

the non-convexity regarding θθθ, the Majorization-Minimization

(MM) algorithm is invoked, which is capable of iteratively

approaching a locally optimal solution at low complexity.

III. JOINT OPTIMIZATION OF COMPUTING AND

COMMUNICATIONS SETTING

The joint optimization of computing and computations

settings is realized relying on the BCD technique. The pivotal

idea of the BCD technique is to optimize one of the variables

while fixing the other variables in an alternating manner,

until the convergence of the OF is achieved. In the rest of

this section, the joint optimization of the off-loading volume

and of the edge computing resource allocation is presented

while fixing the communications setting, followed by the joint

optimization of the MUD matrix and of the IRS phase shift

while fixing the computing setting. Our goal is the joint

optimization both of the communications and of the computing

design.

A. Joint Optimization of the Off-Loading Volume and the

Edge Computing Resource Allocation While Fixing the

Communications Settings

Given an MUD matrix WWW and an IRS phase shift vector θθθ,

Problem P0 can be simplified to

P1 : min
`̀̀,fffe

K
X

k=1

$kDk(`k, fe
k)

s.t. (7b), (7c), (7d). (8a)

The optimization of `̀̀ and fffe can be decoupled, relying on the

aforementioned BCD technique, detailed as follows.

1) Optimization of ℓℓ: The value of `̀̀ can be optimized, with

the aid of the proposition below.

Proposition 1: Given an MUD matrix WWW , and an IRS

phase shift coefficient vector θθθ. as well as an edge com-

puting resource allocation vector fffe, the optimal number of

off-loaded bits is given by

`∗k = arg min
ˆ̀
k∈

�

bˆ̀∗
k
c,dˆ̀∗

k
e
�

Dk(ˆ̀k), (9)

where b·c and d·e represent the floor and ceiling operations,

respectively, and ˆ̀∗
k is selected for ensuring that the value of

Dl
k(ˆ̀k) becomes equivalent to that of De

k(ˆ̀k), i.e.

ˆ̀∗
k =

LkckRkfe
k

fe
kf l

k + ckRk

(

fe
k + f l

k

) . (10)

Proof: See Appendix A.

2) Optimization of fffe: Here, the edge computing resource

allocation fffe is optimized, while fixing the MUD matrix WWW ,

the IRS phase shift coefficient vector θθθ, and the off-loading

volume `̀̀. Specifically, upon substituting (10) into the OF of

Problem P1, the problem can be reformulated as:

P1-E : min
fffe

K
X

k=1

$k(Lkc2
kRk + Lkckfe

k)

fe
kf l

k + ckRk(fe
k + f l

k)

s.t. (7c), (7d). (11a)

Problem P1-E can be proved to be a convex optimization

problem following the proposition below.

Proposition 2: Problem P1-E is a convex optimization

problem.

Proof: See Appendix B.

Since Problem P1-E is convex and the Slater’s condition

[37] is satisfied,3 the Karush–Kuhn–Tucker (KKT) may be

imposed on the problem for finding its optimal solution.

Specifically, the Lagrangian function associated with Problem

P1-E is given by

L(fffe, µ,ννν) =

K
X

k=1

$k(Lkc2
kRk + Lkckfe

k)

ckRkf l
k + (f l

k + ckRk)fe
k

+ µ

� K
X

k=1

fe
k − fe

total

�

, (12)

where the variable µ is the non-negative Lagrange multiplier,

while the optimal edge computing resource allocation vector

fffe∗ and the optimal Lagrange multiplier µ∗ should satisfy the

following KKT conditions, for k = 1, 2, . . . , K:

∂L
∂fe

k

=
−$kLkc3

kR2
k

�

ckRkf l
k + (f l

k + ckRk)fe
k
∗
�2 + µ∗ = 0, (13)

µ∗

� K
X

k=1

fe
k
∗ − fe

total

�

= 0, (14)

fe
k
∗ ≥ 0. (15)

The value of fe
k can be directly derived from (13) for a given

µ, which is written as

fe
k =

q

$kLkc3
k
R2

k

µ
− ckRkf l

k

f l
k + ckRk

, k = 1, . . . , K. (16)

In order to ensure fe
k ≥ 0 in (16), we have

q

$kLkc3
k
R2

k

µ
−

ckRkf l
k ≥ 0, which is reformulated as µ ≤ $kLkck

f l

k

2 .

Given that µ 6= 0 in (16), the optimal µ∗ can be found

in the range of (µl, µu] =
�

0, min
k

(

$kLkck

f l

k

2

)

i

to ensure

3In words, the Slater’s condition for convex programming states that strong
duality holds if all constraints are satisfied and the nonlinear constraints are
satisfied with strict inequalities.
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(14), using the well-known bisection search method associated

with the termination coefficient of 
, because
PK

k=1 fe
k can

be proved to be monotonically decreasing with respect to

µ. The procedure of solving Problem P1 is summarized in

Algorithm 1. The complexity of Algorithm 1 is dominated

by calculating fffe(t1+1)
using (16) and by calculating µ using

the bisection search method. Its complexity is on the order of

O
(

log2(
µu−µl

�
)K

)

. Thus the total complexity of Algorithm 1

is O
(

tmax
1 log2(

µu−µl

�
)K

)

.

Algorithm 1 Joint Optimization of `̀̀ and fffe, Given WWW and θθθ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, K , $k, Lk, ck, f l
k, fe

total, tmax
1 ,


, WWW , θθθ, and f̂ff
e

satisfying (7c) and (7d)

Output: Optimal `̀̀∗ and fffe∗, given WWW and θθθ
1. Initialization

initialize t1 = 0, 

(0)
1 = 1, fffe(0) ← f̂ff

e

calculate RRR using (5)

2. Joint optimization of `̀̀ and fffe

while 

(t1)
1 > 
 && t1 < tmax

1 do

• calculate `̀̀(t1+1) using (10)

• calculate fffe(t1+1)
and µ by using (16) and the bisection

search method, respectively

• 

(t1+1)
1 =

�

�obj

(

`̀̀(t1+1),fffe(t1+1)
)

−obj

(

`̀̀(t1),fffe(t1)
)�

�

obj

(

`̀̀(t1+1),fffe(t1+1)
)

• t1 ← t1 + 1
end while

3. Output optimal `̀̀∗ and fffe∗

`̀̀∗ ← `̀̀(t1) and fffe∗ ← fffe(t1)

B. Joint Optimization of the MUD Matrix and the IRS Phase

Shift Coefficient While Fixing the Computing Settings

Given an off-loading volume vector `̀̀ and an edge comput-

ing resource allocation vector fffe, Problem P0 is reformulated

as

P2 : min
WWW,θθθ

K
X

k=1

$kDk(wwwk, θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (17a)

Remark 2: The challenges of solving Problem P2 are due

to two aspects. The first one is the segmented form of

Dk(wwwk, θθθ) that is caused by the operation max as detailed

in (6), while the second issue is that the OF is the summation

of fractional functions, with respect to WWW and θθθ as shown in

the OF of Problem P2-E1 below, which makes the problem a

non-convex sum-of-ratios optimization. In order to tackle these

two issues, we transform the problem as follows.

1) Problem Transformation: As detailed in Proposition 1,

the optimal solution of Problem P0 results in Dk = Dl
k = De

k.

Hence upon replacing Dk by De
k and removing the constant

terms, Problem P2 is reformulated as:

P2-E1 : min
WWW,θθθ

K
X

k=1

$k`k

Rk(wwwk, θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (18a)

It is then rewritten as the following equivalent form:

P2-E2 : min
WWW,θθθ,βββ

K
X

k=1

βk

s.t.
$k`k

Rk(wwwk, θθθ)
≤ βk, k = 1, 2, . . . , K, (19a)

0 ≤ θn < 2π, n = 1, 2, . . . , N. (19b)

The following proposition may assist us in solving Prob-

lem P2-E2.

Proposition 3: If (WWW ∗, θθθ∗,βββ∗) is the solution of Problem

P2-E2, a λλλ∗ = [λ1, λ2, . . . , λK ] exists that (WWW ∗, θθθ∗) satisfies

the KKT conditions of the following problem, when we set

βββ = βββ∗ and λλλ = λλλ∗

P2-E3 : min
WWW,θθθ

K
X

k=1

λk

�

$k`k − βkRk(wwwk, θθθ)
�

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (20a)

Furthermore, (WWW ∗, θθθ∗) also satisfies the following equations,

when we set βββ = βββ∗ and λλλ = λλλ∗















λk =
1

Rk(www∗
k, θθθ∗)

, k = 1, 2, . . . , K,

βk =
$k`k

Rk(www∗
k, θθθ∗)

, k = 1, 2, . . . , K.

(21)

Correspondingly, if (WWW ∗, θθθ∗) is a solution to Problem P2-E3
and satisfies (21) when we set βββ = βββ∗ and λλλ = λλλ∗,

(WWW ∗, θθθ∗,βββ∗) is the solution of Problem P2-E2 associated

with the Lagrange multiplier λλλ = λλλ∗.

Proof: See Appendix C.

To this end, the sum-of-ratios form in Problem P2-E1
has been transformed to a parameterized subtractable form in

Problem P2-E3, which can be solved in two steps [38]–[40]:

the first step is to obtain WWW ∗ and θθθ∗ by solving Problem

P2-E3, given βββ and λλλ; the second step is to update βββ and

λλλ using the modified Newton’s method until the convergence

is achieved. The procedure is summarized in Algorithm 2,

where we have

χk(λk) = λkRk(www∗
k, θθθ∗) − 1, k = 1, 2, . . . , K, (22)

κk(βk) = βkRk(www∗
k, θθθ∗) − $k`k, k = 1, 2, . . . , K. (23)

The complexity of Algorithm 2 is analyzed at the end of

Section III-B.

Let us now focus our attention on the first step of solv-

ing Problem P2-E3, i.e. optimizing WWW ∗ and θθθ∗, given a

set of βββ and λλλ as well as an off-loading volume vec-

tor `̀̀. In this case, Problem P2-E3 can be simplified to

max
WWW,θθθ

PK

k=1 λkβkRk(wwwk, θθθ) subject to (20a), which constitutes

a weighted sum-rate maximization problem. As revealed in

[41], maximizing the weighted sum-rate can be accomplished

via weighted MSE minimization. The latter problem is easier

to handle, because it is convex regarding each optimization

variable, while fixing others. As such, we focus our attention

on constructing the corresponding weighted MSE minimiza-

tion problem. Specifically, following Theorem I in [41],

we introduce an auxiliary weight variable Υk for the k-

th device and formulate the corresponding weighted MSE
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Algorithm 2 Joint Optimization of WWW and θθθ, Given `̀̀ and fffe

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, `̀̀, and fffe

Output: Optimal WWW ∗ and θθθ∗, given `̀̀ and fffe

1. Initialization

initialize t2 = 0, ζ ∈ (0, 1), 
 ∈ (0, 1), and θθθ(0) satisfying

(7a)

calculate WWW (0) and RRR(0) using (31) and (34), respectively

calculate λλλ(0) and βββ(0) using (21)

2. Joint optimization of WWW , θθθ, λλλ and βββ
repeat

• update WWW (t2+1) and θθθ(t2+1) using Algorithm 3

• update λλλ(t2+1) and βββ(t2+1) as follows

λ
(t2+1)
k = λ

(t2)
k − ζi(t2+1)

χk

(

λ
(t2)
k

)

Rk

(

www
(t2+1)
k , θθθ(t2+1)

)

, (24)

and

β(t2+1) = β(t2) − ζi(t2+1)

κk

(

β
(t2)
k

)

Rk

(

www
(t2+1)
k , θθθ(t2+1)

)

, (25)

where i(t2+1) is the smallest integer among i ∈
{1, 2, 3, . . .} satisfying

K
X

k=1

�

�

�

�

χk

�

λ
(t2)
k − ζiχk(λ

(t2)
k )

Rk(www
(t2+1)
k , θθθ(t2+1))

��

�

�

�

2

+

K
X

k=1

�

�

�

�

κk

�

β(t2) − ζiκk(β(t2))

Rk(www
(t2+1)
k , θθθ(t2+1))

�
�

�

�

�

2

≤ (1−
3ζ
i)2

K
X

k=1

h

�

�χk

(

λ
(t2)
k

)�

�

2
+

�

�κk

(

β(t2)
)�

�

2
i

. (26)

• t2 ← t2 + 1
until the following conditions are achieved

λ
(t2)
k Rk(www

(t2)
k , θθθ(t2)) − 1 = 0, (27)

βkRk(www
(t2)
k , θθθ(t2)) − $k`k = 0 (28)

3. Output optimal WWW ∗
and θθθ∗

WWW ∗ ← WWW (t2) and θθθ∗ ← θθθ(t2)

minimization problem as:

P2-E4 : min
WWW,θθθ

K
X

k=1

�

Υkek(WWW,θθθ)

−λkβk log2(λ
−1
k β−1

k Υk) − λkβk

�

s.t. 0 ≤ θn < 2π, ∀n ∈ {1, 2, . . . , N}, (29a)

where the mathematical expression of {Υk} is given in

Section III-B3 and ek represents the MSE of the k-th user,

which is given by

ek(WWW,θθθ) � E
�

(ŝk − sk)(ŝk − sk)H
�

=
�√

ptwww
H
k (hhhd,k + GGGΘΘΘhhhr,k) − 1

�

×
�√

ptwww
H
k (hhhd,k + GGGΘΘΘhhhr,k) − 1

�H

+ pt

K
X

j 6=k

wwwH
k (hhhd,j+GGGΘΘΘhhhr,j)(hhhd,j+GGGΘΘΘhhhr,j)

Hwwwk

+ σ2wwwH
k wwwk. (30)

As such, compared to Problem P2-E3, Problem P2-E4
becomes more tractable, because given an IRS phase shift

coefficient vector, the OF of Problem P2-E4 is convex regard-

ing an optimization variable, while fixing the other one. Again,

the BCD technique is invoked for solving this problem as

follows.

2) MUD Matrix Design: In Problem P2-E4, fixing the

phase shift coefficient vector θθθ and the auxiliary variable Υk,

the MUD vector can be obtained by forcing the first-order

derivative of the OF with respect to wwwk as 0. After several steps

of mathematical manipulations, it is readily observed that the

above minimization is equivalent to minimizing the weighted

MSE. Then, the MUD vector is given by [42, Sec. 6.2.3]

wwwk =
√

ptJJJ
−1(hhhd,k + GGGΘΘΘhhhr,k), (31)

where JJJ = pt

PK

j=1(hhhd,j+GGGΘΘΘhhhr,j)(hhhd,j+GGGΘΘΘhhhr,j)
H+σ2IIIM .

3) Auxiliary Variable Design: Fixing θθθ and wwwk, the optimal

auxiliary variable can be obtained by minimizing the OF of

Problem P2-E4 with respect to Υk, given by

Υk = λkβk(ek)−1. (32)

Furthermore, substituting (31) into (30), the MSE becomes

eMMSE
k = 1−pt(hhhd,k + GGGΘΘΘhhhr,k)HJJJ−1(hhhd,k + GGGΘΘΘhhhr,k). (33)

Bearing in mind that the relationship between the SINR and

the MSE of the system equipped with the minimum mean

square error (MMSE) MUD is given by γk = (eMMSE
k )−1 − 1

[42, Sec. 6.2.3], (5) may be reformulated as

Rk = −B log2

(

eMMSE
k

)

. (34)

4) IRS Phase Shift Coefficient Design: In this subsection,

we focus our attention on optimizing the reflection phase

shift coefficients θθθ, while fixing the auxiliary variable Υk and

the MUD matrix WWW . Specifically, by substituting (30) into

the OF of Problem P2-E4 and removing the terms that are

independent of the phase shift coefficient vector θθθ, Problem

P2-E4 is reformulated as:

P2-E5 : min
θθθ

K
X

k=1

K
X

j=1

Υkptwww
H
k hhhjhhh

H
j wwwk

−
K

X

k=1

Υk

√
pthhh

H
k wwwk −

K
X

k=1

Υk

√
ptwww

H
k hhhk

s.t. 0 ≤ θn ≤ 2π, ∀n ∈ {1, 2, . . . , N}, (35)

where the first and the second terms in the OF can be

respectively formulated in expansion forms as

K
X

k=1

K
X

j=1

Υkptwww
H
k hhhjhhh

H
j wwwk

=

K
X

k=1

K
X

j=1

(

Υkptwww
H
k GGGΘΘΘhhhr,jhhh

H
r,jΘΘΘ

HGGGHwwwk

+ Υkptwww
H
k hhhd,jhhh

H
r,jΘΘΘ

HGGGHwwwk

+ Υkptwww
H
k GGGΘΘΘhhhr,jhhh

H
d,jwwwk + Υkptwww

H
k hhhd,jhhh

H
d,jwwwk

)

, (36)
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and

K
X

k=1

Υk

√
pthhh

H
k wwwk

=

K
X

k=1

(

Υk

√
pthhh

H
d,kwwwk + Υk

√
pthhh

H
r,kΘΘΘ

HGGGHwwwk

)

. (37)

Upon defining AAA �
PK

k=1 ΥkptGGG
Hwwwkwww

H
k GGG, BBB �

PK

j=1 hhhr,jhhh
H
r,j , CCC �

PK

k=1

PK

j=1 Υkpthhhr,jhhh
H
d,jwwwkwww

H
k GGG, and

DDD �
PK

k=1 Υk
√

pthhhr,kwww
H
k GGG, Problem P2-E5 may be rewrit-

ten as:

P2-E6 : min
θθθ

tr(ΘΘΘHAAAΘΘΘBBB) + tr
�

ΘΘΘH(CCC −DDD)H
�

+ tr
�

ΘΘΘ(CCC −DDD)
�

s.t. 0 ≤ θn ≤ 2π, ∀n ∈ {1, 2, . . . , N}. (38)

Defining φφφ � [φ1, . . . , φN ]T where φn = ejθn , and

vvv =
�

[CCC −DDD]1,1, . . . , [CCC −DDD]N,N

�T
, we have

tr(ΘΘΘHAAAΘΘΘBBB) = φφφH(AAA �BBB)φφφ, (39)

where � represents the Hadamard product, and

tr
�

ΘΘΘH(CCC −DDD)H
�

= vvvHφφφ∗, tr
�

ΘΘΘ(CCC −DDD)
�

= φφφTvvv. (40)

Further defining ΨΨΨ � AAA � BBB, we may equivalently rewrite

Problem P2-E6 as:

P2-E7 : min
φφφ

f(φφφ) = φφφHΨΨΨφφφ + 2<
�

φφφHvvv∗
�

s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (41)

Problem P2-E7 is a non-convex one because of the unit

modulus constraint on φn. In the following, the MM algorithm

[43] is invoked for solving this problem, which has two

steps. In the majorization step, we construct a continuous

surrogate function g(φφφ|φφφt), which represents the upperbound

of f(φφφ). Then in the minimization step, φφφ is updated by

φφφt+1 ∈ argmin
φφφ

g(φφφ|φφφt). As such, we may initialize φφφ0 that

satisfies the constraint (41), and then use the MM algorithm to

generate a sequence of feasible vectors {φφφt}, where t refers to

the iteration index. Now the surrogate function is constructed

with the aid of the proposition below.

Proposition 4: Denoting the maximum eigenvalue of ΨΨΨ by

λ̂max and given a solution φφφt at the t-th iteration, we have

the inequality below

f(φφφ) ≤ φφφH λ̂maxIIINφφφ − 2<
�

φφφH(λ̂maxIIIN −ΨΨΨ)φφφt
�

+(φφφt)H(λ̂maxIIIN −ΨΨΨ)φφφt + 2<
�

φφφHvvv∗
�

. (42)

Proof: See [26], [44].

Here, the terms on the right side of (42) is defined by our

surrogate function g(φφφ|φφφt). Then, Problem P2-E7 at the t-th
iteration is reformulated as

P2-E8 : min
φφφ

g(φφφ|φφφt)

s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (43)

Since (φφφt)H(λ̂maxIIIN −ΨΨΨ)φφφt is a constant for a given φφφt and

we have φφφH λ̂maxIIINφφφ = Mλ̂max, Problem P2-E8 can be

Algorithm 3 Joint Optimization of WWW and θθθ, Given λλλ and βββ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, tmax
2 , 
, λλλ and βββ

Output: Optimal WWW ∗ and θθθ∗, given λλλ and βββ
1. Initialization

initialize t3 = 0, 

(0)
3 = 1, θθθ(0) satisfying (7a)

2. Joint optimization of WWW and θθθ
while 


(t2)
3 > 
 && t3 < tmax

3 do

• calculate WWW (t3+1) using (31)

• calculate ΥΥΥ(t3+1) using (32)

• calculate θθθ(t3+1)
by solving Problem P2-E6 with the

aid of the MM algorithm

• 

(t3+1)
3 =

�

�obj

(

WWW (t3+1),θθθ(t3+1)
)

−obj

(

WWW (t3),θθθ(t3)
)
�

�

obj

(

WWW (t3+1),θθθ(t3+1)
)

• t3 ← t3 + 1
end while

3. Output optimal WWW ∗
and θθθ∗, given λλλ and βββ

WWW ∗ ← WWW (t3) and θθθ∗ ← θθθ(t3)

equivalently written as

P2-E9 : max
φφφ

<
n

φφφH
�

(λ̂maxIIIN −ΨΨΨ)φφφt − vvv∗
�

o

s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (44)

Then, the optimal solution of Problem P2-E9 is readily given

by

φφφt+1 = ej arg{(λ̂maxIIIN−ΨΨΨ)φφφt−vvv∗}. (45)

Accordingly, the optimal solution to Problem P2-E6 can be

obtained as

θθθt+1 = arg{(λ̂maxIIIN −ΨΨΨ)φφφt − vvv∗}. (46)

The termination condition of the MM algorithm is given by
�

�f(φφφt+1) − f(φφφt)
�

�/f(φφφt+1) ≤ 
 or t ≥ tmax
MM. The procedure

of solving Problem P2-E3 is summarized in Algorithm 3.

The complexity of Algorithm 3 is dominated by its Step 2.

Specifically, the complexity of calculating WWW (t3+1) by (31) is

on the order of O
(

max{KM3, KMN2}
)

; the complexity of

calculating ΥΥΥ(t3+1) by (32) is on the order of O(K). With

regard to the calculation of θθθ(t3+1)
using the MM algorithm,

the complexity of calculating the eigenvalue λmax of ΨΨΨ is

on the order of O(N3), while for each iteration of the MM

algorithm, the main complexity lies in the calculation of φφφt+1

in (45), whose complexity is on the order of O(N2). Hence the

complexity of the MM algorithm is O(N3 + tmax
MMN2). Sum-

ming these three terms together, we obtain the total complexity

of Algorithm 3 as O
(

max{N3 + tmax
MMN2, KM3, KMN2}

)

.

Finally, the complexity of Algorithm 2 is mainly dependent

on updating WWW (t2+1) and θθθ(t2+1) using Algorithm 3, because

all other steps are given by explicit mathematical expressions.

C. Overall Algorithm to Solve Problem P0

Based on the above discussions, we provide the detailed

description of the BCD algorithm used for solving Problem P0
in Algorithm 4. Note that a decreasing OF value of Problem

P0 is guaranteed in Step 2 and Step 3. Furthermore, the OF

value has a lower bound due to the constraint on the total
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Algorithm 4 Joint Optimization of `̀̀, fffe, WWW and θθθ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, Lk, ck, fe
total, and 


Output: Optimal `̀̀, fffe, WWW and θθθ
1. Initialization

initialize t4 = 0, 

(0)
4 = 1

initialize θθθ(0) satisfying (7a) and fffe(0)
satisfying (7c) and (7d)

calculate WWW (0) using (31)

2. Joint optimization of `̀̀ and fffe, given WWW (t4) and θθθ(t4)

calculate `̀̀(t4+1) and fffe(t4+1)
using Algorithm 1

3. Joint optimization of WWW and θθθ, given `̀̀(t4+1) and fffe(t4+1)

calculate WWW (t4+1) and θθθ(t4+1)
using Algorithm 2

4. Convergence checking



(t4)
4 =

�

�obj

(

`̀̀(t4+1),fffe(t4+1),WWW (t4+1),θθθ(t4+1)
)

−obj

(

`̀̀(t4),fffe(t4),WWW (t4),θθθ(t4)
)�

�

obj

(

`̀̀(t4+1),fffe(t4+1),WWW (t4+1),θθθ(t4+1)
)

if 

(t4)
4 > 
 && t4 < tmax

4 holds then

t4 = t4 + 1
Go to Step 2

else

integerize `(t4+1) by (9)

Output the optimal `̀̀∗, fffe∗, WWW ∗ and θθθ∗

end if

edge computing resources. Hence, Algorithm 4 is guaranteed

to converge.

The computational complexity of Algorithm 4 is mainly

dependent on its Step 2 and Step 3, whose complexities

have been analyzed in the above subsections. Furthermore,

the simulation results in Section V show that Algorithm 4

converges rapidly, which demonstrates the low complexity of

our algorithms.

IV. SPECIFIC CASE STUDY: THE SINGLE-DEVICE

SCENARIO

In order to fully characterize the IRS-aided MEC system,

a special case is investigated in this section, where a single

device is served by the MEC system. The optimization prob-

lem of the single-device scenario becomes much simpler for

the following reasons. Firstly, the edge computing resource

allocation no longer has to be considered, because all the edge

computing resources can be assigned to this single device.

Secondly, the sum-of-ratios form in Problem P2-E1 becomes

a single-ratio form, which implies that the optimization prob-

lem is more tractable. Thirdly, the multi-user interference does

not have to be considered, when the detection vector and the

IRS phase shift coefficient vector are optimized. The joint

optimization is detailed as follows.

Problem P0 can be simplified for the single-device scenario

as

P3 : min
www,θθθ,`

D(www,θθθ, `)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N, (47a)

` ∈ {0, 1, . . . , L}, (47b)

where the OF D(www,θθθ, `) becomes

D(www,θθθ, `) = max




(L − `)c

f l
,

`

R(www,θθθ)
+

`c

fe
total

�

. (48)

As illustrated in Proposition 1, for a given set of www and θθθ,

D(www,θθθ, `) achieves its minimum value when ` is selected to

ensure
(L−`)c

f l = `
R(www,θθθ) + `c

fe

total
. Therefore, the optimal value

of the relaxation of ` is given by

ˆ̀∗ =
LcRfe

total

fe
totalf

l + cR
(

fe
total + f l

) . (49)

Then, Problem P3 is reformulated as

P3-E1 : min
www,θθθ

`

R(www,θθθ)
+

`c

fe
total

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N, (50a)

which is equivalent to

P3-E2 : max
www,θθθ

R(www,θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (51a)

Substituting (4) and (5) into the OF of Problem P3-E2, and

taking several steps of mathematical manipulation, Problem

P3-E2 may be equivalently transformed into

P3-E3 : max
www,θθθ

pt

�

�wwwH
(

hhhd + GGGΘΘΘhhhr

)�

�

2

σ2|wwwH |2
s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (52a)

Again, the BCD technique is invoked for optimizing www
and θθθ in Problem P3-E3. Specifically, given a θθθ, www can

be optimized following the well-known maximum ratio

combining (MRC) criterion [45], which is given by

www =
√

pt(hhhd + GGGΘΘΘhhhr)/σ, (53)

while for a given www, we have the following inequality for the

OF of Problem P3-E3,

pt

�

�wwwH
(

hhhd + GGGΘΘΘhhhr

)
�

�

2

σ2|wwwH |2 ≤ pt

�

�wwwHhhhd

�

�

2

σ2|wwwH |2 +
pt

�

�wwwHGGGΘΘΘhhhr

�

�

2

σ2|wwwH |2 .

(54)
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Algorithm 5 Joint Optimization of `, www and θθθ Proposed for

the Single-User Scenario

Input: hhhr, hhhd, GGG, B, pt, σ2, L, c, fe
total, and 


Output: Optimal `, www and θθθ
1. Initialization

initialize t5 = 0, 

(0)
5 = 1

initialize θθθ(0) satisfying (7a)

calculate www(0) using (53)

2. Joint optimization of www and θθθ
repeat

• calculate θθθ(t5+1)
and www(t5+1) using (55) and (53),

respectively

• 

(t5)
5 =

�

�obj

(

www(t5+1),θθθ(t5+1)
)

−obj

(

www(t5),θθθ(t5)
)�

�

obj

(

www(t5+1),θθθ(t5+1)
) , where the

obj refers to the OF of Problem P3-E3
• t5 = t5 + 1

until 

(t5)
5 ≤ 
 || t5 > tmax

5

3. Optimization of `̀̀
calculate ˆ̀(t5+1) using (49)

integerize `(t5+1) by (9)

The equality in (54) holds only when the IRS phase shift coef-

ficient obeys arg{wwwHhhhd} = arg{wwwHGGGΘΘΘhhhr}. Accordingly,

the reflection phase shift vector θθθ may be readily obtained as

θθθ = arg{wwwHhhhd} − arg{diag{wwwHGGG}hhhr}. (55)

In Algorithm 5, we provide the overall algorithm that is used

for solving our optimization problem for the single-device

scenario.

The complexity of Algorithm 5 is dominated by calculating

θθθ(t5+1)
and www(t5+1) using (55) and (53), whose complexities

are on the order of O
(

max{MN, N2}
)

and of O(MN2),
respectively. Hence the complexity of Algorithm 5 is on the

order of O(MN2).

V. NUMERICAL RESULTS

In this section, the benefits of deploying the IRS in a MEC

system are evaluated, relying on our algorithms developed in

Section III and IV. We consider a single-cell MEC system for

both the single-device and two-device as well as multi-device

scenarios. As shown in Fig. 3, the AP’s coverage radius is

R = 300 m and the IRS is deployed at the cell edge. The

location of the device is specified both by d and by d in

the single-device scenario, while in the two-device scenario,

the devices’ locations are specified by (d1, d1) and (d2, d2),
respectively. Furthermore, in the multiple-device scenario, it is

assumed that the devices are uniformly distributed within a

circle, whose size and location are prescribed by its radius r,

as well as d and d, respectively. The default value of these

parameters are set in the “Location model” block of Table II.

As for the communications channel, we consider both the

small scale fading and the large scale path loss. Specifically,

the small scale fading is i.i.d. and obeys the complex Gaussian

distribution associated with zero mean and unit variance, while

the path loss in dB is given by

PL = PL0 − 10α log10

� d

d0

�

, (56)

Fig. 2. Convergence of the algorithms for (a) the single-device scenario
using Algorithm 5 and (b) the two-device scenario using Algorithm 4. The
parameters are set as follows: fe

total = 50 × 109 cycle/s; ck = 750 cycle,

Lk = 300 Kb, and f l

k
= 0.5×109 cycle/s for all devices. (a): d = 280 m;

(b): d1 = d2 = 280 m.

TABLE II

DEFAULT SIMULATION PARAMETER SETTING

where PL0 is the path loss at the reference distance d0; d and

α represent the distance of the communications link and its

path loss exponent, respectively. Here we use αua, αui and

αia to denote the path loss exponent of the link between the

device and the AP, that of the link between the device and

the IRS, as well as that of the link between the IRS and the

AP, respectively. The zero-mean additive white Gaussian noise

associated with the variable of σ2 is imposed on the off-loaded

signal. The default settings of these parameters are specified in

the “Communications model” block of Table II. The variables

Lk, ck and f l
k obey the uniform distribution, whose ranges are

given in the “Computing model” block of Table II.

The following subsections detail our simulation results,

in terms of the properties of our proposed algorithm and of

the latency performance in both the single-device, and two-

device, as well as multi-device scenarios in various simulation

environments. The following three schemes are considered:
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Fig. 3. Top-view setting of (a) the single-device scenario, (b) the two-device scenario, and (c) the multiple-device scenario.

• With IRS: The off-loading volume, edge computing

resource allocation, MUD matrix, and IRS phase shift are

optimized relying on Algorithm 4 and Algorithm 5 in the

multi-device and single-device scenarios, respectively.

• RandPhase: The off-loading volume, edge computing

resource allocation, as well as MUD matrix are optimized

using Algorithm 4 and Algorithm 5 in multi-device and

single-device scenarios, respectively, while skipping the

step of designing the IRS phase shift, which is randomly

set obeying the uniform distribution in the range of

[0, 2π).
• Without IRS: The composite channel GGGΘΘΘhhhr,k taking into

account the IRS is set to 0. The off-loading volume, edge

computing resource allocation, and the MUD matrix are

designed following Algorithm 4 and Algorithm 5 in the

multi-device and single-device scenarios, respectively.

A. Properties of the Proposed Algorithms

In this subsection, the properties of Algorithm 4 and 5 are

investigated, with the aid of numerical results.

1) Convergence: Fig. 2 shows the device-average latency

versus the number of iterations under various settings of the

IRS phase shift number, i.e. N = 10, 20, and 40, for both

the single-device and multi-device scenarios. We have the

following two observations. Firstly, a larger number of phase

shifts leads to a slightly slower convergence, especially for

the multi-device scenario. This is because more optimizing

variables are involved. Secondly, the proposed algorithms are

capable of achieving a convergence within 5 iterations, which

validates its practical implementation.

2) Impact of the Initialization Settings: As elaborated on in

Remark 1, locally optimal results are provided by our proposed

algorithms. Hence, the results obtained are directly dependent

on the initialization settings of Algorithm 4 and 5. In order

to clarify its impact, Fig. 4 presents the latency performance

under different initialization settings both for single- and

multi-device scenarios. Specifically, for each realization of

the wireless channels and computing tasks to be processed,

100 locally optimal results are obtained using our proposed

algorithms, where each of the initializations is randomly set.

Among these locally optimal results, the maximum latency

value that can be deemed to be the worst-case result using

our proposed algorithms is labeled as “Max” in Fig. 4, while

the minimum latency value is labeled by “Min” in Fig. 4 which

may resemble the globally optimal result. It is shown that these

two values are almost identical for the single-device scenario,

while their gap ranges from 2% to 17% in the multi-device

Fig. 4. Simulation results of the the maximum and minimum latency versus
the realization index obtained under 100 random initialization settings for
(a) the single-device scenario using Algorithm 5 and (b) the two-device
scenario using Algorithm 4. “Max” and “Min” refer to the maximum and
minimum value, respectively. The parameters are set as follows: N = 40.
(a): d = 280 m; (b): d1 = d2 = 280 m.

scenario, which implies that our proposed algorithms are

capable of approaching the optimal performance.

3) Impact of the Phase Quantization: Due to the associated

hardware limitation, only a limited number of discrete IRS

phase shifts can be provided in practice [23], which pro-

hibits the direct implementation of our proposed algorithms.

An intuitive practical solution to this issue is to round the

continuous phase shift obtained to its nearest discrete phase

shift. Naturally, a performance loss is imposed, owing to the

associated quantization effect. Fig. 5 evaluates the impact

of phase quantization on the latency, where three practical

assumptions are considered. Specifically, under the assumption

of continuous phase shifts, the phase shift of each IRS element

can be set as an arbitrary value in the interval of [0, 2π];
Determined by a 1-bit control signal, the phase shift of each

IRS element has to be either 0 or π under the assumption of

1-bit phase shift; for a 2-bit control signal, the phase shift of

each IRS element has to be one of the values in the set of
�

0, π
2 , π, 3π

2

�

. Particular to the schemes under discrete phase

shift assumptions, the values of WWW , `̀̀, and fffe are updated

based on the quantized phase shifts and then the latency is
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Fig. 5. Simulation results of the latency versus the realization index under
different assumptions of IRS phase shifts for (a) the single-device scenario
and (b) the two-device scenario. “Cont.”, “1-bit” and “2-bit” refer to the
assumptions of continuous, 1-bit, and 2-bit phase shifts, respectively. The
parameters are set as follows: N = 40. (a): d = 280 m; (b): d1 = d2 =

280 m.

calculated accordingly. We have the following observations.

Firstly, as expected, the latency decreases upon increasing the

number of discrete phase shifts. Secondly, the performance

gap between the schemes under the assumptions of continuous

phase shifts and 2-bit phase shifts ranges from 1% to 5%,

which implies that the quantization loss becomes negligible

for as few as four phase shifts in practice.

B. Single-Device Scenario

Fig. 6-8 present the latency versus various parameter set-

tings in the single-device scenario, discussed as follows.

1) Impact of the Number of Reflecting Elements: Fig. 6

presents the latency versus the number of the reflecting ele-

ments, for the various phase shift design schemes. Our obser-

vations are as follows. Firstly, the performance gap between

the schemes “Without IRS” and “RandPhase” becomes higher

upon increasing the number of reflecting elements, which

implies that the IRS is capable of assisting the computation

off-loading even without carefully designing the phase shift.

This is because the received SINR can be improved by

deploying an IRS for computation off-loading. The gain was

termed as the virtual array gain in Section I. Secondly, the

performance gain of the scheme “With IRS” over the scheme

“RandPhase” is around 11 ms when we set N = 10, while it

becomes 46 ms when we have N = 100. This implies that a

sophisticated design of the IRS phase shift response provides

a beamforming gain, and that increasing the number of IRS

elements leads to a higher reflection-based beamforming gain.

Combining these two types of gains together, IRSs are capable

of efficiently reducing the latency in MEC systems.

Fig. 6. Simulation results of the latency versus the number of the IRS
elements in the single-device scenario, where we set d = 280 m and fe

total =

50× 109 cycle/s.

Fig. 7. Simulation results of the latency versus the edge computing capability
in the single-device scenario, where we set d = 280 m and N = 40.

2) Impact of the Edge Computing Capability: Fig. 7 shows

the latency versus the edge computing capability, for various

IRS phase shift schemes. Our observations are as follows.

For all these three schemes, the increase of fe
total drastically

reduces the latency when fe
total is of a small value, while the

reduction of the latency becomes smaller when fe
total reaches a

certain threshold value, say 30× 109 cycle/s. This is because

the latency imposed by the edge computing dominates when

fe
total is of a small value, whereas the latency imposed by

computation off-loading plays a dominant role when fe
total

reaches a high value. Therefore, it is not necessary to equip the

edge computing node with an extremely powerful computing

capability for latency minimization.

3) Impact of the Device Location: Fig. 8 depicts the latency

versus the device location, equipped with various IRS phase

shift schemes. Our observations are as follows. In the case

where no IRS is employed, the latency increases upon increas-

ing the distance between the AP and the device. In the case

where the IRS’s phase shift is randomly set, the advantage of

using the IRS becomes visible when the distance between the

device and the IRS is less than 20 m. By contrast, the benefit
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Fig. 8. Simulation results of the latency versus the device location in the
single-device scenario, where we set N = 40 and fe

total = 50×109 cycle/s.

Fig. 9. Simulation results of the latency versus the number of the IRS
elements in the two-device scenario, where we set d1 = 260 m, d2 = 280 m,
and fe

total = 50× 109 cycle/s.

of the IRS becomes notable for a much larger coverage of

100 m for the “With IRS” scheme. This observation implies

that a sophisticated design of the IRS phase shift response is

capable of extending the coverage of the IRS. Furthermore,

the latency reaches its maximum value at d = 260 m and

thereafter becomes smaller for the “With IRS” scheme. This is

because the direct device-AP link dominates the computation

off-loading when the device’s location obeys d ≤ 260 m, while

the composite device-IRS-AP link plays a dominant role, when

we have d ≥ 260 m. This observation further consolidates that

a higher gain can be achieved in the near-IRS area, where the

composite device-IRS-AP link dominates the computation off-

loading.

C. Multi-Device Scenario

Fig. 9-12 present the latency in the two-device scenario, and

Fig. 13-14 show the latency in the multiple-device scenario,

which are discussed as follows.

1) Impact of the Number of IRS Elements: Fig. 9 depicts

the latency versus the number of the IRS elements in

the two-device scenario, equipped with various phase shift

Fig. 10. Simulation results of the latency versus the edge computing resource
in the two-device scenario, where we set d1 = 260 m, d2 = 280 m, and
N = 40.

schemes. Apart from the insights obtained in the single-device

scenario, we also have the following observations. Firstly,

Device 2 outperforms Device 1 for the “With IRS” scheme,

whilst Device 1 has a lower latency both for the “Without

IRS” and “RandPhase” schemes compared to Device 2. This

is in accordance with the comparative relationship between

the devices located at d = 260 m and at d = 280 m in

terms of the latency using those three phase shift schemes,

as shown in Fig. 8. This also implies that IRSs may change

the latency ranking of the devices in MEC systems. Secondly,

upon increasing the number of IRS elements, Device 2 obtains

a higher gain than Device 1. This is because Device 2 is

located closer to the IRS, where the composite device-IRS-

AP channel dominates the computation off-loading. Again, this

implies that given a specific path loss exponent, a higher array

and passive beamforming gain may be achieved if the device

is located closer to the IRS.

2) Impact of the Edge Computing Capability: Fig. 10

presents the latency versus the edge computing capability

in the multi-device scenario, equipped with various phase

shift schemes. This scenario follows similar trends to the

single-device case illustrated in Fig. 7.

3) Impact of the Device Location: Fig. 11 plots the latency

versus the location of Device 1, while fixing the location of

the AP, the IRS, and Device 2. As for the “With IRS” scheme,

the curve of Device 1’s latency intercepts that of Device 2 at

d1 = 220 m and d1 = 280 m, which implies that the devices

at these two locations have the same channel gain. In other

words, the IRS is capable of assisting the device at d = 280 m
to achieve the same latency as the device at d = 220 m.

Note that the specific values of these two equivalent-latency

locations are dependent on the specific values of the path loss

exponents of the device-IRS, IRS-AP, and device-AP channels,

as presented below.

4) Impact of the Path Loss Exponent: Fig. 12 illustrates

the latency versus the path loss exponent value associated

with the IRS. It can be observed that the intercept point

disappears, when αIRS is changed for the “With IRS” scheme.

Furthermore, the latency of devices increases upon increasing
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Fig. 11. Simulation results of the latency versus the user location in the
two-device scenario, where we set d2 = 280 m, N = 40, and fe

total =

50× 109 cycle/s.

Fig. 12. Simulation results of the latency versus the path loss exponent in
the two-device scenario, where we set αui = αia = αIRS. The parameters
are set as follows: d1 = 220 m, d2 = 280 m, N = 40, and fe

total =

50× 109 cycle/s.

αIRS. This is because higher αIRS leads to a lower array and

beamforming gain by the IRS. This provides important insights

for engineering design: the location of the IRS should be

carefully selected to avoid obstacles, for achieving a lower

αui and αia.

5) Impact of the Number of Devices: Fig. 13 shows

the latency versus the number of devices in the cycle in

multi-device scenario. It can be readily observed that the

device-average latency increases upon increasing the number

of devices in the IRS-aided MEC system. This is partially

because of the reduced edge computational resources allocated

to each device and partially due to the reduced beamforming

gain achieved at each device. The former issue may be

overcome by equipping the edge node with more powerful

computing capability, while the latter problem can be solved

by deploying more IRSs in the MEC system for forming

stronger beams. Nonetheless, compared to the “Without IRS”

scheme, our “With IRS” scheme is capable of reducing the

device-average latency from 177 ms to 139 ms, when we

have 5 devices in the MEC system. This again validates the

benefits of our proposed system.

Fig. 13. Simulation results of the device-average latency versus the number
of devices K . The parameters are set as follows: d = 280 m, d = 10 m,
r = 10 m, N = 40, and fe

total = 50× 109 cycle/s.

Fig. 14. Simulation results of the device-average latency versus the ICI-to-

noise ratio. The parameters are set as follows: K = 3, d = 280 m, d = 10 m,
r = 10 m, N = 40, and fe

total = 50× 109 cycle/s.

6) Impact of Inter-Cell Interference: In realistic scenarios,

inter-cell interference (ICI) also degrades computation off-

loading. To quantify the impact of ICI, Fig. 14 presents the

latency versus the ICI-to-noise power ratio, where the BS is

assumed to know the power of the received interference but

not the specific signal transmitted from other cells. Observe

that the benefit of employing IRSs in MEC systems decreases

upon increasing the ICI-to-noise power ratio. To elaborate,

when computation off-loading is used in the face of strong

ICI, the fraction of tasks that can be off-loaded becomes

marginal. In this case, the wireless devices have to rely on their

own computing capabilities. In other words, the potential of

IRSs may not be fully exploited. This observation suggests

an important insight for engineering design: the spectrum

allocation of adjacent cells has to be carefully managed for

minimizing the ICI in IRS-aided MEC systems.

VI. CONCLUSION

In order to reduce the computational latency, an IRS

was proposed for employment in MEC systems. Based on
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this model, a latency-minimization problem was formulated,

subject to practical constraints on the total edge computing

capability and IRS phase shifts. Sophisticated algorithms were

developed for optimizing both the computing and commu-

nications settings. The benefits of using IRSs in the MEC

system were evaluated under various simulation environments.

Quantitatively, the device-average computational latency was

reduced from 177 ms to 139 ms, compared to the conven-

tional MEC system operating without IRSs in a single cell

associated with the cell radius of 300 m, a 5-antenna access

point and 5 active devices. Furthermore, the rapid conver-

gence of our proposed algorithm was confirmed numerically,

which validates their benefits. As our future work, an energy-

minimization based design will be conceived for IRS-aided

MEC systems.

APPENDIX A

THE PROOF OF PROPOSITION 1

ˆ̀
k ∈ [0, Lk] is used to represent the relaxation [46] of

the integer value `k ∈ {0, 1, . . . , Lk}. Furthermore, given the

values of WWW,θθθ and fffe, we define the delay associated with
ˆ̀
k to be D̂k(ˆ̀k) � max

�

Dl
k(ˆ̀k), De

k(ˆ̀k)
�

, which can be

reformulated from (6) as a segmented form below

D̂k(ˆ̀k)=



















(Lk − ˆ̀
k)ck

f l
k

, 0 ≤ ˆ̀
k ≤ LkckRkfe

k

fe
kf l

k + ckRk(f l
k+fe

k)
,

ˆ̀
k

Rk

+
ˆ̀
kck

fe
k

,
LkckRkfe

k

fe
kf l

k+ckRk(f l
k + fe

k)
< ˆ̀

k≤Lk.

(57)

A glance at (57) reveals that D̂k(ˆ̀k) decreases upon increas-

ing ˆ̀
k in the range of ˆ̀

k ∈
�

0,
LkckRkfe

k

fe

k
f l

k
+ckRk

(

fe

k
+f l

k

)

�

, while

D̂k(ˆ̀k) increases upon increasing ˆ̀
k in the range of ˆ̀

k ∈
�

LkckRkfe

k

fe

k
f l

k
+ckRk

(

fe

k
+f l

k

) , Lk

�

. Therefore, it is readily inferred that

D̂k(ˆ̀k) achieves its minimum value when we set ˆ̀
k =

LkckRkfe

k

fe

k
f l

k
+ckRk

(

fe

k
+f l

k

) , which is denoted by ˆ̀∗
k. Bearing in

mind that the optimal value of `k has to be an integer,

it may be obtained by carrying out the operation `∗k =
arg min

ˆ̀∈
�

bˆ̀∗
k
c,dˆ̀∗

k
e
�

Dk(ˆ̀k). This completes the proof.

APPENDIX B

THE PROOF OF PROPOSITION 2

Let us denote the second derivative of the OF of Problem

P1-E with respect to fe
k by Φ1-E , which is calculated as

Φ1-E =
2$kLkc3

kR2
k(f l

k + ckRk)
�

fe
kf l

k + ckRk

(

fe
k + f l

k

)�3 . (58)

Since the values of $k, ck, Rk, f l
k are all positive and we

have Lk ≥ 0, fe
k ≥ 0, it may be readily demonstrated that

Φ1-E ≥ 0. Hence the OF is a convex function with respect

to fe
k . Furthermore, the constraint functions (7c) and (7d) are

all of linear forms. Hence, Problem P1-E is shown to be a

strictly convex problem.

APPENDIX C

THE PROOF OF PROPOSITION 3

The Lagrangian of Problem P2-E2 is given by

L(WWW,θθθ,βββ,λλλ)=

K
X

k=1

βk +

K
X

k=1

λk

�

$k`k − βkRk(wwwk, θθθ)
�

(59)

where {λk} is the non-negative Lagrange multiplier. If

(WWW ∗, θθθ∗,βββ∗) is the solution of Problem P2-E2, there exists

λλλ∗ satisfying the following KKT conditions

∂L
∂θk

= −λ∗
kβ∗

k▽Rk(www∗
k, θθθ∗) = 0, k = 1, 2, . . . , K, (60)

∂L
∂wwwk

= −λ∗
kβ∗

k▽Rk(www∗
k, θθθ∗) = 0, k = 1, 2, . . . , K, (61)

∂L
∂βk

= 1 − λ∗
kRk(www∗

k, θθθ∗) = 0, k = 1, 2, . . . , K, (62)

λ∗
k

�

$k`k − β∗
kRk(www∗

k, θθθ∗)
�

= 0, k = 1, 2, . . . , K, (63)

λ∗
k ≥ 0, k = 1, 2, . . . , K, (64)

$k`k − β∗
kRk(www∗

k, θθθ∗) ≤ 0, k = 1, 2, . . . , K, (65)

0 ≤ θ∗k ≤ 2π, k = 1, 2, . . . , K. (66)

Since we have Rk(wwwk, θθθ) > 0, (62) is equivalent to

λ∗
k =

1

Rk(www∗
k, θθθ∗)

, ∀k ∈ {1, 2, . . . , K}, (67)

and then (63) is equivalently written as

β∗
k =

$k`k

Rk(www∗
k, θθθ∗)

, ∀k ∈ {1, 2, . . . , K}. (68)

Furthermore, Eq. (60), (61) and (66) are exactly the KKT

conditions of Problem P2-E3, when we set λλλ = λλλ∗ and βββ =
βββ∗. This proves the first conclusion of Proposition 3. Following

the same procedure, the second conclusion of Proposition 3

may also be readily shown.
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