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ABSTRACT Energy internet (EI) is a very complex system with various applications that not only require

a high-level of cyber-security but also need low-latency communication. Thus, cyberinfrastructure with

latency-optimal network intelligence services (NIS), in which application data flows are deeply examined

in real-time, is inevitable. In the future internet system, a set of NIS can flexibly be implemented in network

function virtualization (NFV)-based middleboxes that overlay on software-defined networking (SDN)

architecture, becoming an SDN/NFV-based cyberinfrastructure. However, how to deploy these middleboxes

is a non-deterministic optimization problem, which is complicated and time-consuming. Hence, by focusing

on latencyminimization, we develop an artificial intelligence (AI)-powered solution consisted of two phases.

First, middleboxes placement based on the graph cluster analysis, and second, NIS resource allocation based

on the prediction of service usage-ratio in each corresponding cluster. The simulation-based experimental

evaluation shows that our proposed strategy using an optimized K-means algorithm outperforms the recent

state-of-the-art middleboxes placement approaches. The average end-to-end flow latencies are around

23.81%, 18.44%, and 11.49% lower compared with the simulated annealing method, the basic sequential

algorithmic scheme, and the minimum spanning tree procedure, respectively. Besides, the proposed resource

allocation scheme optimizes further the latency minimization around 4.24%. We believe that the work

presented in this paper will aid the communication service providers (CSP) in providing a secure and

low-latency SDN/NFV-based cyberinfrastructure for the EI ecosystem.

INDEX TERMS Energy internet, artificial intelligence, network intelligence, NFV middlebox, SDN

architecture.

I. INTRODUCTION

Recently, the penetration of renewable energy generation,

such as building-integrated photovoltaics (BIPV), has been

increased in many countries [1]–[3]. With renewable energy

generation, consumers can evolve into prosumers, a new

type of energy stakeholders that can produce and use their

own electricity, and also sell their excessed energy to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mubashir Husain Rehmani .

market. Therefore, various smart grid technologies and appli-

cations have been proposed to accommodate the high pen-

etration of prosumers with distributed renewable energy

resources (DRERs) and distributed energy storage devices

(DESDs) [4], [5]. These smart grid technological advance-

ments bring opportunities to transform the current power

system to energy internet (EI), an internet business model of

the electricity grid, in which multiple energy and data flows

are in dual circulation and coupling among the entire value

chain.
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FIGURE 1. Illustration of EI ecosystem [5]. E-LAN is a localized group of energy stakeholders that can operate independently, or connected to the grid to
buy/sell energy. Similar to the internet router, the energy router is used as an intermediate device to exchange both energy and data bidirectionally
between E-LANs in the network.

In the EI ecosystem, all energy stakeholders can be joined

flexibly and seamlessly to the closest energy local area

network (E-LAN), as depicted in Fig. 1. Then, using the

so-called energy router [6], the energy can be exchanged

and transferred between one to another. Hence, the energy

sharing economy [7] can be realized, which enables energy

consumers to obtain the supplies directly from the nearest

producers. Moreover, the cascading failure or blackout could

also be resisted, which improves the stability of the whole

electricity grid. It is owing to the immense development of

the future renewable electric energy delivery and manage-

ment (FREEDM) system [4], which considerably improves

energy utilization containing all novel phases of energy gen-

eration, transmission, storage, and distribution. FREEDM

system consists of some pivotal technologies such as the intel-

ligent energy management (IEM) software, the distributed

grid intelligence (DGI) software, the solid-state transformer

(SST), the real-time remote monitoring, and the smart fault

isolation device (FID).

It should be noted that the EI has attracted increasing

attention of government and institutions in many countries.

For rural electrification in Indonesia, a country with more

than 17,000 islands, EI is the most promising solution to

enable the internet of microgrids [8]. Furthermore, as a

response to the Fukushima nuclear crisis, a large group of

firms in Japan is starting to explore EI with an expectation

to transform the country’s electricity system with distributed

energy and micro-grid integration [9]. Moreover, the EI was

also proposed in Germany following a political decision

to shut down all German nuclear reactors by 2022 [10].

Besides, the Chinese government and state grid corporation

of China (SGCC) has proposed a proposal so-called ‘‘global

EI’’ and then launches an action plan every five years [11].

Also, the EI platform has been launched in Europe as a novel

strategy to achieve decarbonizing commitment by 2050 [12].

However, being in its infancy stage, EI business values and

social benefits are becoming increasingly apparent with the

advances in smart grid technologies. Thus, more research

and development need to be performed to support the diverse

and rigorous requirements of reliability, flexibility, latency,

and security in the EI. To this end, the emerging technical

initiative (ETI) on smart grid communications (SGC) has

issued a positioning paper in 2018, which included EI as one

of the eight research agenda structures [13].

Among novel future internet technologies, software-defined

networking (SDN) is expected to be adopted in the building

of cyberinfrastructure for end-to-end interactions across the

entire value chain in the EI. Utilizing the SDN approach, both

energy and data flows can be managed flexibly following

the four principles, which are 1) logically centralized man-

agement, 2) separation of control, data, and energy planes,

3) programmability, and 4) open interfaces [14]. There-

fore, some research works have been conducted recently

to develop a framework and evaluate the performance of
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SDN-based EI cyberinfrastructure [14]–[16]. However, EI is

a very complex system with various applications that have

specific and strict functional requirements [17], [18]. Many

applications, including distribution automation, load control

signaling, and outage alarming, are described to require

low-latency communication. Although some other applica-

tions, e.g., smart-meter data collection, are more latency

tolerant, however, they need to have a high level confiden-

tially, availability, and integrity. Thus, various network intel-

ligence services (NIS) such as network security applications,

traffic analysis elements, and deep-packet inspection (DPI)

tools are indispensable to be utilized, fulfilling the required

cyber-security in EI [18], [19].

In recent years, the ETI for network intelligence has

worked together to support and endorse research towards

embedding AI, SDN, and network function virtualization

(NFV). In the context of cyber-security, taking service poli-

cies as inputs, a set of AI-powered NIS can be applied

virtually in NFV-based middleboxes that overlay on SDN

architecture, and they are becoming SDN/NFV-based cyber-

infrastructure [20]. However, the use of this approach to

secure and protect application data flows may increase end-

to-end flow latency significantly. Considering that the relia-

bility requirement is defined in [21], the successful delivery

of the application data flows, but with the latency higher than

the defined requirement, can be considered as a failure.

Taking into account the balance between required

cyber-security and low-latency communication is essential

for many applications in the EI. In this paper, we present

our work to provide latency-optimal NIS in SDN/NFV-

based EI cyberinfrastructure. In fact, the end-to-end flow

latency always depends on the middleboxes’ placement in

the network. However, some previous research works proved

that this problem is a non-deterministic polynomial-time

(NP)-hard, which is a complicated and time-consuming

decision problem [22]–[25]. Hence, a trade-off optimization

method is needed to achieve a heuristic solution. Among

existing approaches, graph cluster analysis is the most pop-

ular AI-powered solution to solve the problem. However,

the recent state-of-the-art graph cluster analysis methods

[26]–[28], having at least two drawbacks that can not guaran-

tee the end-to-end flow latency, can beminimized, i.e., 1) ran-

domly choosing the clusters’ threshold and 2) arbitrarily

selecting the initial center. Hence, the main contributions of

this paper are as follows.

1) We introduce the utilization of NIS for fulfilling the

main cyber-security requirements in the EI ecosystem.

All NIS are virtually implemented in a number of

NFV-based middleboxes.

2) We reformulate an objective function for the latency

minimization problem. It should be noted that for

the time-critical energy control signaling application,

the end-to-end latency should be less than 3 ms [6].

3) We consider three main constraints, i.e., the mid-

dleboxes’ processing power capacity, the forward-

ing nodes’ memory resource, and the communication

network configuration. These constraints are

the minimum obstacles in such SDN/NFV-based

cyberinfrastructure.

4) We develop the AI-powered solution, which consists

of two phases. First, an optimized K-means algorithm

is utilized to find the latency-optimal middleboxes

placement in several clusters. Second, a prediction of

NIS usage-ratio is employed to develop a dynamic

resource allocation scheme, which optimizes further

latency minimization in the corresponding clusters.

5) We evaluate our proposed method along with the

recent state-of-the-art approaches, i.e., the simulated

annealing [22], the basic sequential algorithmic scheme

(BSAS) [26], the minimum spanning tree (MST) [27],

and the modified BSAS [28]. The simulation-based

experimental comparison is carried out on two net-

work topologies, i.e., FatTree [29] and Abilene [30].

We expect that these two topologies are represent-

ing both layered and irregular network structures of

SDN/NFV-based EI cyberinfrastructure, respectively.

We believe that the result of this work can be used as a guide-

line for communication service providers (CSP) to provide a

secure but also low-latency cyberinfrastructure for the EI.

The rest of this paper is organized as follows. In the next

section, we provide related works to utilize NIS in the EI

ecosystem. Section III describes the system model, problem

formulation, and recent state-of-the-art methods. Section IV

explains the proposed solution, section V presents our evalu-

ation, and finally, section VI concludes this paper.

II. RELATED WORK

A. SERVICE ABSTRACTION MODEL

In recent years, the national institute of standards and tech-

nology (NIST) and the open smart grid (OpenSG) network

task force have comprehensively analyzed all possible func-

tional requirements of various applications for the future EI.

Currently, not less than 1400 application data flows have

been specified in detail, including their payload size and type,

security, latency, reliability, data transmission frequency, and

so forth [31]. On the other hand, several groups work together

to specify the quality of services (QoS) requirements for the

specific application. For example, the North American syn-

chrophasor initiative network (NASPInet), a working group

with the mission to improve power system reliability and

visibility through wide-area measurement and control.

The NASPInet has contextualized five classes of data

services for synchrophasor applications with specific traffic

attributes. As depicted in Table 1 [32], class A is to support

the needs of high-performance feedback control applications.

Thus, the reliable cyberinfrastructure for this class is critically

essential. It should have a fast data rate and very low latency,

as well as can guarantee a high level of data availability.

Furthermore, classes B and C are for the applications with

less strict latency requirements such as the feed-forward

estimator enhancement application and the view only appli-
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TABLE 1. NASPInet five classes of data services and their specific traffic
attributes [32].

cation, respectively. Then, class D is to support the need

for post-mortem event analysis, and class E is intended for

testing, research, and development.

To understand all the requirements above and provide NIS

appropriately, the use of a service abstractionmodel (SAM) is

indispensable. Therefore, it is worth to mention a SAM pro-

posed by G.D. Nugraha et al., in [33]. In this case, the service

requirements can be represented by three sets of parameters,

i.e., content, context, and resources. To be detailed, the con-

tent provides the service-related parameters such as payload

size and type, maximum delay, minimum bandwidth, and so

forth. Furthermore, the context serves the users/applications

related parameters concerning interest, such as data transmis-

sion frequency, schedule, and location. Last, the resources

supply the requirements of network service resources such as

networking medium, computing power, memory space, etc.

Taking advantage of this model, Fig. 2 depicts the service

abstraction template for application data flows in SDN/NFV-

based EI cyberinfrastructure.

B. NIS APPLICATIONS

The evolution and growth of internet technologies offer pos-

sibilities for CSP to provide better QoS, as well as develop

new types of services. Hence, NIS are utilized to capture the

detailed information from applications, or users’ data flows,

to provide the analysis of their demand and to manage the

usage once deployed. Some essential applications of NIS,

ranging from understanding user behavior analysis to provide

intrusion detection, are listed in Table 2.

TABLE 2. Example applications of NIS.

Recently, many research projects have been conducted

to utilize AI techniques for NIS, in terms of traffic

classification [34], traffic prediction [35], accelerates ser-

vice provisioning [36], intrusion detection [37], and so

forth. Moreover, for securing cyberinfrastructure against

FIGURE 2. Service abstraction template for application data flows in
SDN/NFV-based EI cyberinfrastructure. The service abstraction model
consists of functional requirements in three sets of parameters,
i.e., content, context, and resources.

intruders and other threats, some experiential networked

intelligence (ENI) research projects have been started

recently combining AI, SDN, and NFV. For example,

the SHIELD research project, as described in [38]. They

demonstrate an AI-powered framework to detect attacks

using a policy-driven control loop intelligently. Adopting

this framework to SDN/NFV-based EI cyberinfrastructure,

we can develop AI-powered attack detection and mitigation

recipes. Through intent-driven and autonomous-driving net-

work, fulfilling the main cyber-security requirements in EI

ecosystem are as follows [39]
1) Attack detection and resilience operation. It is

required to monitor network traffic in real-time, detect

abnormal incidents due to various attacks, and continue

operations in the presence of attacks using self-healing

ability.

2) Identification, authentication, and access control.

It is essential to ensure that the resources are accessed

only by the appropriate entities that are correctly

identified.
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FIGURE 3. Illustration of SDN/NFV-based EI cyberinfrastructure. Both data and energy are flowing inside or inter E-LAN networks.
NFV middleboxes are utilized to provide sets of NIS applications, fulfilling the cyber-security requirements in the EI ecosystem. Then,
the SDN controllers (cluster and global) managed all flows using AI-driven policy automatically.

As depicted in Fig. 3, SDN/NFV-based EI cyberinfrastruc-

ture consists of SDN controllers, SDN switches, and NFV

middleboxes that are utilized to securely control and for-

ward application data flows between users/applications in EI

ecosystem. However, it should be noted that a latency-optimal

NIS is an essential factor for the reliability of SDN/NFV-

based EI cyberinfrastructure, as mentioned in the previous

section. Hence, secure and low-latency communication are

both required for reliable information flowing delivery. How-

ever, these objectives usually contradict each other. There-

fore, a trade-off solution of the middleboxes deployment

strategy to avoid the end-to-end flow latency over than

requirement threshold is indispensable.

The next section will be detailed describe the system

model and the problem formulation for latency-optimal

NIS in SDN/NFV-based EI cyberinfrastructure. Moreover,

the detailed comparison of recent state-of-the-art solutions

for latency minimization is also be provided.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. SYSTEM MODEL

Let the SDN/NFV-based EI cyberinfrastructure is represented

as a simple directed graph G = (V, E), where V = {v1, v2,

vi, . . . , vNv} is the set of nodes and E = {vi, vj} is the set of

links, where i = {1, 2, 3, . . . ,Nv} and j = {1, 2, 3, . . . ,Nv}

are the subscripts of the node couple and Nv is total number

of the node. Let denotes the maximum number of rules can

be stored in an SDN switch S = {s1, s2, sl, . . . , sNs} ∈ V

is Ps, thus the number of rules that are currently stored in

a switch flow tables is denoted as ps ∈ Ps. If the set of
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all NIS is denoted as Cb = {cb1 , cb2 , cbn , . . . , cbNBc
}, then

an NFV-based middlebox which supplies those services is

Bc ∈ V . There may be Nq a number middleboxes available

in the network, thus let us denote NBc as the number of

NIS middleboxes where Bc ∈ Q. Each middlebox has a

maximum processing power capacity Ob to perform a set of

NIS. This processing power capacity depends on the available

central processing unit (CPU) in each middlebox, which is

represented inMbps unit. Table 3 depicts example of resource

allocation for NIS.

TABLE 3. Example of resource allocation for NIS [24].

Following the SAM as described in the previous

section, an application data flow f can be described as

fn = {sourcen, destn, cbn , on, tn}. sourcen, and destn are the

source and the destination nodes, respectively. cbn is the

must be visited NIS of a flow’s network traffic from source

to destination. Furthermore, on is the amount of middlebox

processing power capacity occupies by a NIS, and tn is the

daily clock periods of requested NIS by a flow. With the

knowledge of all information in advance, we can generate

FBc , a set of flows that requires NIS from a middlebox.

B. PROBLEM FORMULATION

Let us define end-to-end flow latency, as

Dtotf =
∑

∀on

∑

∀vij∈V

dif ,bf +
∑

∀on

∑

∀vij∈V

dbf ,ef , (1)

where, dif ,bf is the aggregate latency from the source

ingress-switch to the corresponding NIS middlebox and

dbf ,ef is the aggregate latency from the corresponding NIS

middlebox to the destination egress-switch. The aggregate

latency depends on the service processing delay α = dcbn ,on
for each NIS n, and the packet delivery time β = dvi,vj in each

link between two nodes. In a bit more details, the services

processing delay and the packet delivery time estimation are

described in [40], expressed as

dcbn ,on =
Mcbn

∗ on

Obn
, (2)

dvi,vj =
Zmax

Br
+
Xvi,vj

Ls
, (3)

where M is the number of application data flows which

request NIS. For the delay-sensitive application, the satis-

faction rate follows the sigmoid utility function, as depicted

in Fig. 4. Thus, a precise resource allocation strategy is an

avoidable task to increaseQoS. Furthermore, Zmax is themax-

imum packet size in bit, Br is the transmission bit rate in bit/s,

Xvi,vj is the distance or the length of transmission medium in

meter, and Ls is the propagation speed in the medium in m/s.

FIGURE 4. The satisfaction rate of each NIS, it should be noted that the
percentage of resource allocation affects service processing delay that
follows the sigmoid utility function.

To the best of our knowledge, the propagation speed depends

on the physical medium of the link, e.g., 2 × 108 m/s for

copper wires and 3 × 108 m/s for wireless communication.

It is worth to be mentioned that some existing works have

proposed flow routing schemes to manage data flows in the

SDN/NFV-based cyberinfrastructure. Hence, a constrained

shorted path has been formulated in [41] as

r∗ = argmin
r

{fC (r)|r ∈ Rst ,D(r) ≤ Dmax}, (4)

that is, finding a forwarding route r from a set of all routes

Rst that minimizes the objective function fC (r) such that the

delayD(r) to be less than or equal to the threshold valueDmax .

Furthermore, the constraints could be varied, ranging from

traffic-chaining ratio, bandwidth consumption, deployment

cost, energy consumption, and so on [42]. However, nomatter

what flow routing scheme is used, the middleboxes deploy-

ment provides the most significant effect on network latency.

Hence, we need to develop a proper deployment strategy,

which minimizes the total latency of each flow f ∈ FBc .

C. EXISTING SOLUTIONS

Some existing approaches have been proposed to deploy NIS

middleboxes in SDN/NFV-based cyberinfrastructure with

minimum latency. Moreover, Liu et al. [22] formulates the

latency minimization function as

min Dtotf , (5)

s.t. xn,l = 1, ∀qn ∈ Q, ∀sl ∈ S, (6)
∑

∀qn∈Q

R(qn)xn,l ≤ C(sl), ∀sl ∈ S, (7)

xn,l = e, ∀qn(e) ∈ Q, ∀sl(e) ∈ S, (8)

where xn,l, n = {1, 2, 3, . . . ,Nq}, l = {1, 2, 3, . . . ,Ns} is the

binary variables to represent middlebox placement scheme in
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a switch sl within the set of switch S , with Nq and Ns being

the total number of middleboxes and switches, also n and l

being their subscripts, respectively. Furthermore, R(qn) is the

required resource to deploy NIS middlebox qn inside the set

of Q and C(sl) is resource capacity of each switch inside S .

To provide latency minimization, three constraints are

considered, i.e., constraints (6) - (8). The constraint in (6)

is to guarantee that each middlebox should be successfully

deployed at a location, where xn,l = 1 denotes that mid-

dlebox qn is connected to switch sl , otherwise xn,l = 0.

Furthermore, the constraint in (7) is to guarantee that the total

resource demand for NIS deployment at one location should

not exceed the switch resource capacity. Next, the constraint

in (8) is to accommodate for middleboxes that can only be

deployed in certain places. It is considered that a middlebox

may require a power supply and acceleration by some dedi-

cated platforms, which are available only at some locations.

On the other hand, to explain the typemmiddlebox, Vu and

Kim [26] formulates the objective function for latency mini-

mization as

min Dtotf , ∀f ∈ Fm, (9)

s.t. r(sl) ≤ R(sl), ∀sl ∈ S, (10)

∑

f ∈Fm

of ≤

Nq,m
∑

n=1

Omn . (11)

f is a flow from a set of data flows Fm that requires NIS type

m from source ingress-switch to destination egress-switch via

correspondingmiddleboxes. Furthermore,Nq,m is the number

of NIS middleboxes type m in the network, o is the requested

processing power, and O is the maximum processing power

capacity. In this context, we have two constraints, i.e., con-

straints (10) and (11). Constraint (10) is the switch memory

resource, which is utilized to confirm that a switch has avail-

able memory for storing new route table entries. Constraint

(11) is the middlebox processing power capacity, to ensure

that a correspondingmiddlebox has enough processing power

capacity to process the NIS requested by application data

flows.

Reference [26] solves the latency minimization problem

with two intuitive properties. The first property is derived

from [22], that it is better to deploy the middlebox as close

as possible to the most-usage switches. Next, the second

property is its own intuitive belief. It may better to divide

network such that data flow with a set of ingress-switches are

close to each other to share the same middlebox in a cluster.

Therefore, they used the BSAS-based clustering algorithm as

their proposed solution.

In order to determine a threshold for each cluster,

the packet delivery time data between each pair of

ingress-switches is utilized. However, this approach has two

main drawbacks, i.e., 1) one time and randomly choosing the

clusters’ threshold, and 2) the arbitrarily initial center selec-

tion, not being able to guarantee the end-to-end latency to

be shortened. Similarly, the MST-based clustering algorithm,

as described in [27], is also very dependent on the proximity

threshold, which utilized to remove network edges from the

MST cluster, whose lengths are greater than the threshold

value. Hence, several successive values are required to be

generated [28]. However, this solution needs to run a cluster-

ing algorithm many times, which requires high resource and

time-consuming to find the best-considered threshold. Hence,

graph cluster analysis using a threshold method should be

avoided, and a more proper approach is required.

To be more details, Table 4 presents a summary of our

investigation on the existing middlebox deployment strate-

gies to support latency-optimal NIS, ranging from proba-

bilistic search-based to graph cluster analysis-based methods.

Taking advantage of this comparative analysis, we refor-

mulate the objective function, constraints, and considered

topologies for the context of EI.

IV. PROPOSED STRATEGY

Combining both objective functions and constraints in [22],

[26], we reformulate the latency minimization problem as

follows, as

min Dtotf ∀f ∈ FBc according to (1) − (3), (12)

s.t. xN ,i = 1, ∀Bc ∈ V, (13)

∑

fi∈FBc

onfi ≤

NBc
∑

j=1

Obj , ∀Bc ∈ V, (14)

ps ≤ Ps, ∀S ∈ V . (15)

In this problem, we have three constraints, and those are the

constraint (13) - (15). Constraint (13), xN ,i = 1, otherwise =

0, is to guarantee that each middlebox should be success-

fully connected to any SDN switch in the network. Further-

more, constraint (14) is the middlebox processing power to

ensure that a corresponding middlebox having the capacity

to process the NIS requested by application data flows. Next,

the constraint (15) is the SDN switchmemory capacity, which

utilized to confirm that a switch has the available resources

for storing new rule table entries.

To solve the latency minimization problem described

above, we develop the AI-powered strategy, as depicted

in Fig. 5. This solution consisted of two phases, i.e., the graph

cluster analysis for middleboxes placement and the dynamic

resource allocation based on the prediction of NIS usage-ratio

in each corresponding cluster.

A. GRAPH CLUSTERING-BASED PLACEMENT

Let a cluster K consists of the SDN ingress-switches of

corresponding data flows, that is K = (s1, s2, . . . , sf ), where

sf is the ingress-switch of a flow f . If SBc ∈ S is the

set of ingress-switches of corresponding data flows in FBc ,

then to determine the packet delivery time between each pair

of ingress-switches, we can calculate the shortest path (SP)

delay time between them, as

dsi,sj = dSP(si,sj), for ∀ si, sj ∈ SBc . (16)
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TABLE 4. Comparative analysis of recent strategies for NIS middleboxes deployment in SDN/NFV-based cyberinfrastructure.

Note that the graph cluster analysis using a threshold method

should be avoided due to several reasons explained in the

previous section, then a more proper solution is unavoid-

able. In this context, we employ another popular clustering

technique, K-means clustering algorithm [44], with some

modification for considering several additional conditions as

follows

1) Since the objective is to find NIS middleboxes place-

ment with minimum latency, the cluster center initial-

ization method plays a critical role. Therefore, the ini-

tialization with careful seeding selection procedure is

indispensable.

2) Moreover, the recalculated cluster center should be

selected from the SDN ingress-switch. Then, the cluster

refinement procedure is performed to re-assign all SDN

switches to the appropriate cluster.

3) Also, the distance calculation method needs to accom-

modate the nodes with an indirect connection or may

not physically be connected to the cluster center.

Denote C = {C1,C2,Ck , . . . ,CK } as the set of clusters

and let M = {µ1, µ2, µk , . . . , µK } is the nearest mean of

each cluster, the default K-means algorithm usually uses to

partition np observations into K (≤ np) clusters in which each

observations belong to the cluster Ck with the nearest mean

µk , expressed as the objective function J (C,M) [44], as

J (C,M) = argmin
C

K
∑

k=1

∑

np∈Ck

||np − µk ||
2. (17)

Since the results of partitioning in K-means-based clustering

is following the Voronoi cells, the Euclidean or Manhattan

distance is employed to measure silhouette value for validat-

ing similarity and dissimilarity of each point to its own cluster

and other clusters [45], as

sv(nd ) =
b(nd ) − a(nd )

max(a(nd ), b(nd ))
, (18)

where, a(nd ) is the average distance from nd -th point to other

points within the same cluster, b(nd ) is the minimum of all

average distance from the nd -th point to the points in each k-

th cluster. Let the sv(nd ) range is from −1 to 1. If the sv(nd )

is close to 1, it indicates that the corresponding i-th point lies

well with the cluster it belongs.
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FIGURE 5. Flowchart of proposed strategy for latency-optimal NIS in SDN/NFV-based EI cyberinfrastructure. The graph cluster analysis is performed at
the first step to find optimal NIS middleboxes placement in a number of clusters. Then, the second step employs NIS usage-ratio prediction in the
corresponding clusters to find optimal resource allocation for each service.

As depicted in Algorithm 1, at first, we collect the SP

computation between each pair of flow’s ingress-switches.

Then, we initialize clusters using a careful seeding initial-

ization procedure, as described in [46]. Furthermore, almost

similar to the K-medoids clustering method [47], the pro-

posed graph clustering-based middlebox placement uses the

selected node, in which the SDN switch is used as the cluster

center instead of using the nearest mean, expressed as the

objective function J (K ,Me), as

J (K ,Me) = argmin
K

k
∑

i=0

∑

sf ∈Ki

||sf − Kc(i)||
2 (19)

whereMe = {Kc(0),Kc(1), . . . ,Kc(i)}.

The center of each cluster is then updated and validated

to minimize the sum of SP delay time to reach all switches

in the optimal number of clusters. However, to satisfy the

constraint in (15), we need to check and calculate the number

of stored policies in each SDN switch. Repeat the steps until

it is partitioned into optimal K sub-networks. Then, finally,

put NIS middleboxes in each cluster center.

B. DYNAMIC RESOURCE ALLOCATION

After all NIS middleboxes are placed in the optimal position,

we then allocate resources for each NIS dynamically. In this

context, the resource allocation for each service at a partic-

ular time depends on the ratio of those services repeatedly

requested by applications/users in a corresponding cluster.

Taking advantage of the historical data of application data

flows as inputs, the usage-ratio for the next time windows is

predicted using the regression trees algorithm as described in

[48].

In fact, NIS with the predicted usage-ratio higher than a

particular threshold θu is subject to be considered as one of

important service, similar to

URij =
n |

∑T
t=1 Pijn(t) ≥ θu

Nt
, (20)
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Algorithm 1 Graph Cluster Analysis Using Optimized

K-Means Algorithm for NIS Middleboxes Placement.

Input: G = (S,E), FBc , SBc ∈ S

Output: NIS middleboxes placement in K clusters

1: Step 1: Compute dSP(si,sj) between each pair of switches

in G.

2: Step 2: Select the number of clusters K and select nodes

from SBc ∈ S as the initial center of each cluster Kc using

careful seeding initialization procedure as in [46].

3: Step 3: Compute packet delivery time from each node sf
to existing cluster centers as dsf ,Kc(i). Then, assign each

node to the closest cluster.

4: Step 4: Update cluster centers Kc′ to find the closest

switch to each obtained cluster, where the sum of shortest

path delay time to reach all ingress-switches in a cluster

is minimized as expressed in (19).

5: Step 5: Calculate the number of stored policies ps for

each node sf ∈ K

If ∃sf ∈ K such that ps ≥ Ps then

K ′
c is unqualified, exclude it then back to Step 2

6: Step 6: Validate similarity and dissimilarity of each node

to its own cluster and other clusters using silhouette value

measurement as depicted in (18) to define the optimal

number of clusters.

7: Step 7: Repeat Steps 3-6 until it is partitioned into opti-

mal K sub-networks.

8: Step 8: Put NIS middleboxes in each cluster centers.

Definitions (re-described for better readability): G, Network

graph; S, Set of switches; E, Set of communication links;

FBc , Set of corresponding flows; SBc , Set of ingress-switches;

dSP, The shortest path delay time; K, Number of clusters; Kc,

Cluster center; sf , Ingress-switch of a flow; ps, Stored rules in

a particular switch flow table; Ps, Maximum number of rules

capacity in a switch.

where i, j, n, and t are re-used in the remain equations

to indicate the targeted cluster, index of NIS application,

and the number of time-windows t that services have been

operated, respectively. Pijn is the amount of middlebox pro-

cessing power occupied by each NIS application in previ-

ous time-windows from Nt total number of observed time-

windows.

Then, the predicted usage-ratio is normalized to the range

ofURij [−1:1]. Using this information, we define the resource

allocation capacity of each service for the next time-window

is as

RAij = Resvij + (Resvij ∗ URij), (21)

where Resvij is the percentage of guaranteed CPU allocation

for a service at the previous time window. Hence, unlike the

existing solution in [43], which the number of NIS is adjusted

based on the incremental approach. In our approach, the NIS

with a higher predicted usage-ratio obtain higher resource

FIGURE 6. An example of dynamic resource allocation based on the
prediction of usage-ratio, in which if the NIS application in the
corresponding middlebox is considered as an important service, it will get
a higher allocated CPU resource at a particular time-window.

TABLE 5. The characteristic of network topologies.

allocation in the next period and vice versa accordingly.

Fig. 6 shows an example of the CPU resource allocation

for a set of NIS at a particular time-window. Furthermore,

to protect NIS from failures due to excess and un-predicted

requests, we employ NFV-Throttle procedure [49]. When

the volume of the demand exceeds the resource allocation

capacity, we evaluate the fraction of the request to drop as

drop_rate = 100 ·

(

1 −
RAij

incoming_request

)

, (22)

if incoming_request ≥ max_capacity; otherwise,

drop_rate = 0.

V. EVALUATION

A. SIMULATION TESTBED

We implement a testbed based on the NFV infrastructure

emulation platform (NIEP) [50] in two machines, and each

device has 3.40 GHz eight-core CPUs and 8192 MB RAM.

In more detail, NIEP utilizes the Mininet [51] and the Click-

on-OSv [52] to provide a complete simulation of SDN/NFV-

based cyberinfrastructure. Furthermore, we decide to use

two network topologies, i.e., Abilene and FatTree, which are

explained in the previous section to represent two possible

architectures of SDN/NFV-based EI cyberinfrastructure. The

characteristics of these network topologies are summarized

in Table 5.

For the graph cluster analysis, we set our testbed with

several assumptions as follows. First, the communication
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TABLE 6. Parameter setting for the performance evaluation.

medium between two nodes is a copper-wires with randomly

assigned losses following the normal distribution. Second,

the transmission bit rate in each switch-port is 100 Mbps,

but the distances between the two switches are randomly dif-

ferent. Third, there are five NFV-based middleboxes in each

simulation, and those middleboxes could provide five kinds

of NIS. Next, there are also five sets of application data flows

that randomly request specific services. Last, the maximum

number of clusters follows the total number of middleboxes.

Moreover, to evaluate the effects of the resource allocation

strategy, we develop the following scenario. The set of appli-

cation data flows, starting from 30 flows and increase one

by one until 70 flows are generated 100 times, respectively.

Furthermore, we record the type and the number of requested

resources from each generated set. Then, 70% of recorded

data are used as training data to develop the usage-ratio pre-

diction model. Using the rest of the recorded data, the usage-

ratio is predicted, which can be utilized further to reallocate

the CPU resource for each service dynamically. The summary

of the parameters setting is described in Table 6.

B. LATENCY MINIMIZATION ANALYSIS

For the first evaluation, we compare the result of our cluster

center initialization strategy with the original method of the

K-means algorithm. Fig. 7 depicts the sum of SP delay time

for various initialization numbers of both approaches. The

result shows that the cluster center initialization with care-

ful seeding always guarantees that the packet delivery time

between the cluster center and other nodes in the sub-network

to be shortened.

Furthermore, we evaluate the end-to-end latency of each

application data flow in the network. As depicted in Fig. 8,

we simulate experimental comparison between our pro-

posed strategy with recent state-of-the-art solutions for

latency minimization problem, those are, 1) the simu-

lated annealing-based method [22], 2) the BSAS-based

scheme [26], 3) the MST-based procedure [27], 4) the modi-

fied BSAS-based approach [28], and 5) the original K-means

algorithm. Moreover, we run all the threshold-based graph

clusteringmethods twice, with andwithout the careful thresh-

old selection procedure.

The simulation result shows that on both network topolo-

gies, our strategy using the optimized K-means clustering

FIGURE 7. Cluster center initialization with careful seeding always
provides a lower of the sum of SP delay time result compared to the
arbitrarily (random) method of the default K-means algorithm.

FIGURE 8. The average latency of application data flows in both FatTree
and Abilene network topologies. It is shown that our middlebox
placement method based on the optimized K-means clustering algorithm
is outperform the recent state-of-the-art approaches, ranging from the
simulated annealing-based method to the other graph clustering-based
procedures, i.e., the BSAS, the MST, and the original K-means algorithms.

algorithm provides an enormous impact on reducing end-

to-end flow latency. The average end-to-end flow latency

is around 25.22% and 23.81% lower compared with the

totally random and the simulated annealing placement

methods, respectively. Moreover, the average latency min-

imization is also improved around 18.44% and 11.49%

are compared to other graph clustering-based placement

approaches, the BSAS-based scheme, and the MST-based

procedure, respectively. Hence, these results prove the intu-

itive properties and considerations, as described in the pre-

vious section. First, with the knowledge of application data

services in advance, it is better to put the NIS middleboxes as

near as possible to the data flow ingress-switches and divide
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FIGURE 9. The comparison of average NIS middleboxes resource
utilization from all placement strategies.

them into several clusters. Second, the graph clustering-based

placement using an arbitrarily clusters’ threshold assignment

should be avoided. Third, the cluster center initialization

method plays a critical role, in which careful seeding ini-

tialization procedure proposed in this paper is essential to

find all NIS middleboxes placement with minimum latency

in SDN/NFV-based EI cyberinfrastructure.

Next, Fig. 9 shows the average of NIS middleboxes

resource utilization from all placement strategies. Based

on these results, we conclude that the utilization increases

along with the increasing number of application data flow.

It should be noted that the middlebox processing power

capacity depends on the available CPU in each middlebox.

Hence, we apply the proposed dynamic resource allocation

mechanism for 1) minimizing the NIS processing delay con-

sidering the middleboxes processing capacity constraint in

(14), and 2) avoiding the functionality failures due to overload

usage of reliability-aware implementation asmentioned in the

previous section.

Figure 10 depicts the effects of the proposed dynamic

resource allocation scheme in latency minimization. It is

shown that the average end-to-end latency decreases

compared to just merely the graph cluster analysis

approach.Moreover, compared with the incremental resource

allocation approach in [43], our dynamic resource alloca-

tion scheme optimizes further latency minimization around

4.24%. The best improvement comes from the fifty per-

cent usage-ratio threshold configuration. However, it should

be noted that the prediction error of usage-ratio is still

around 17.13%. Hence, a better setting of the regression

tree algorithm is needed to be implemented to improve the

performance. To this end, enhancement using an ensembling

method with other AI-driven predictive algorithms or per-

forming a deep learning analysis can be applied in the future.

FIGURE 10. The dynamic resource allocation scheme optimize further the
latency minimization of graph clustering-based NIS middlebox placement.

C. CHALLENGES AND DISCUSSIONS

The latency minimization analysis demonstrates in the pre-

vious subsection prove that our proposed strategy can be

utilized to provide the latency-optimal NIS in SDN/NFV-

based EI cyberinfrastructure. Furthermore, Table 7 depicts

the detailed comparison of our contribution to the existing

works in the building of cyberinfrastructure for end-to-end

interaction across the entire value chain in the EI using the

SDN approach. However, some challenges need to be handled

in future research, such as:

1) Since there is no unique criterion to define the struc-

ture of EI cyberinfrastructure, the energy stakeholders

may implement their own network topology or that

suggested by the CSP. Therefore, it will be growing

both in size and complexity. Hence, a loop-based topol-

ogy analysis [40] may be needed to be adopted to

provide reliable SDN/NFV-based EI cyberinfrastruc-

ture with a more dynamic network topology in the

future.

2) To analyze application data flows in this work,

a detailed SAM for NIS is required. However, to avoid

information leaked by non-trusted parties, it would bet-

ter to also be provided with a privacy-preserving data

scheme, e.g., using the so-called differential privacy

mechanism [53].

3) Even though the objective of our work is to minimize

end-to-end latency. However, more targets, such as

energy-saving scenarios, could be implemented in the

future. Furthermore, effective resource management

based on traffic demand, as depicted in [54], may also

be adopted.
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TABLE 7. The most recent work in developing SDN-based EI cyberinfrastructure.

VI. CONCLUSION

In this paper, the utilization of SDN/NFV-based NIS for

fulfilling the cyber-security requirements in the EI ecosystem

has been introduced. Furthermore, the AI-powered solution

has been proposed to deploy NIS with the minimum end-

to-end flow latency. This solution consisted of two phases:

1) NIS middlebox placement based on the optimized K-

means-based graph clustering analysis, 2) dynamic resource

allocation using predicted NIS usage-ratio based on the

regression tree analysis. Moreover, the evaluation results

have verified that our proposed approach could improve

latency minimization significantly in two network topolo-

gies, i.e., Abilene and FatTree. The average end-to-end

latency is more than 15% lower compared to the state-

of-the-art threshold-based clustering algorithm. This result

proves our intuitive properties and considerations that the

graph clustering-based placement using an arbitrarily clus-

ters’ threshold assignment should be avoided, and the cluster

center initialization method plays a critical role. However,

even though the main objective of this paper is minimiz-

ing flow latency, more targets such as energy-saving or

more complex topology scenarios can be implemented in the

future.
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