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The present work is an introduction to Latent Class Growth Modelling (LCGM).
LCGM is a semi-parametric statistical technique used to analyze longitudinal data. It is
used when the data follows a pattern of change in which both the strength and the
direction of the relationship between the independent and dependent variables differ
across cases. The analysis identifies distinct subgroups of individuals following a
distinct pattern of change over age or time on a variable of interest. The aim of the
present tutorial is to introduce readers to LCGM and provide a concrete example of
how the analysis can be performed using a real-world data set and the SAS software
package with accompanying PROC TRAJ application. The advantages and limitations

of this technique are also discussed.

Longitudinal data is at the core of research exploring
change in various outcomes across a wide range of
disciplines. A number of statistical techniques are available
for analyzing longitudinal data (see Singer & Willet, 2003).
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One approach is to study raw change scores. By this method,
change is computed as the difference between the Time 1
and the Time 2 scores and the resulting raw change values
are analyzed as a function of individual or group
characteristics (Curran & Muthén, 1999). Raw change scores
are typically analyzed using t-tests, analysis of variance
(ANOVA), or multiple regression. An alternative approach
is to study residualized change scores. By this method, change
is computed as the residual between the observed Time 2
score and the expected Time 2 score as predicted by the
Time 1 score (Curran & Muthén, 1999). Residualized change
scores are typically analyzed using multiple regression or
analysis of covariance (ANCOVA).

Although both raw and residualized change scores can
be useful for analyzing longitudinal data under some
circumstances, one limitation is that they tend to consider
change between only two discrete time points and are thus
more useful for prospective research designs (Curran &
Muthén, 1999).
interested in modelling developmental trajectories, or patterns

Frequently, however, researchers are
of change in an outcome across multiple (i.e., at least three)
time points (Nagin, 2005). For instance, psychologists try to
identify the course of various psychopathologies (e.g.,

Maughan, 2005), criminologists study the progression of
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criminality over life stages (e.g.,, Sampson & Laub, 2005),
and medical researchers test the impact of various
treatments on the progression of disease (e.g., Llabre,
Spitzer, Siegel, Saab, & Schneiderman, 2004).

A common approach to
trajectories is to use standard growth analyses such as repeated
measures multivariate analysis of variance (MANOVA) or

studying developmental

structural equation modelling (SEM; Jung & Wickrama,
2008). Standard growth analyses estimate a single trajectory
that averages the individual trajectories of all participants in
a given sample. Time or age is used as an independent
variable to delineate the strength and direction of an average
pattern of change (i.e., linear, quadratic, or cubic) across
time for an entire sample. This average trajectory contains
an averaged intercept (i.e, the expected value of the
dependent variable when the value of the independent
variable(s) is/are equal to zero) and an averaged slope (i.e., a
line representing the predicted strength and direction of the
growth trend) for the entire sample. This approach captures
individual differences by estimating a random coefficient
that represents the variability surrounding this intercept and
slope. By this method, researchers can use categorical or
continuous independent variables, representing potential
risk or protective factors, to predict individual differences in
the intercept and/or slope values. By centering the age or
time variable, a researcher may set the intercept to any
predetermined value of interest. For instance, a researcher
could use self-esteem to predict individual differences in the
intercept of depression at the start, middle, or end of a
semester, depending on the research question. Results could
indicate that people with higher self-esteem report lower
levels of depression at the start of the semester. Similarly,
researchers could use self-esteem to predict individual
differences in the linear slope of depression. Results could
indicate that people with higher self-esteem at baseline
experience a slower increase in depressive symptoms over
the course of the semester, indicating that self-esteem is a
possible protective factor against a more severe linear
increase in depression.

Standard growth models are useful for studying research
questions for which all individuals in a given sample are
expected to change in the same direction across time with
only the degree of change varying between people
(Raudenbush, 2001). Nagin (2002) offers time spent with
peers as an example of this monotonic heterogeneity of
change. With few exceptions, children tend to spend more
time with their peers as they move from childhood to
adolescence. In this case, it is useful to frame a research
question in terms of an average trajectory of time spent with
peers. However, some psychological phenomena may
follow a multinomial pattern in which both the strength and
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the direction of change are varying between people (Nagin,
2002). Raudenbush (2001) uses depression as an example by
arguing that it is incorrect to assume that all people in a
given sample would be experiencing either increasing or
decreasing levels of depression. In a normative sample, he
states, many people will never be high on depression, others
will always be high, others will become increasingly
depressed, while others may fluctuate between high and
low levels of depression. In such instances, a single averaged
growth trajectory could mask important individual
differences and lead to the erroneous conclusion that people
are not changing on a given variable. Such conclusions
could be drawn if 50% of the sample increased by the same
amount on a particular variable whereas 50% of the sample
decreased by the same amount on that variable. Here, a
single growth trajectory would average to zero, thus
prompting researchers to conclude an absence of change
despite the presence of substantial yet opposing patterns of
change for two distinct subgroups in the sample (Roberts,
Walton, & Viechtbauer, 2006). For this class of problems,
alternative modelling strategies are available that consider
multinomial heterogeneity in change. One such approach is
a group-based statistical technique known as Latent Class

Growth Modelling (LCGM).

Theoretical basis of LCGM

Given the substantial contribution of Nagin (1999; 2005)
to both the theory and methodology of LCGM, the following
explanations of the technique draw primarily from his work
and from recent extensions proposed by his collaborators.
LCGM is a semi-parametric technique used to identify
distinct subgroups of individuals following a similar pattern
of change over time on a given variable. Although each
individual has a wunique developmental course, the
heterogeneity or the distribution of individual differences in
change within the data is summarized by a finite set of
unique polynomial functions each corresponding to a
discrete trajectory (Nagin, 2005). Given that the magnitude
and direction of change can vary freely across trajectories, a
set of model parameters (i.e., intercept and slope) is
estimated for each trajectory (e.g., Nagin, 2005). Unlike
standard latent growth modelling techniques in which
individual differences in both the slope and intercept are
estimated using random coefficients, LCGM fixes the slope
and the intercept to equality across individuals within a
trajectory. Such an approach is acceptable given that
individual differences are captured by the multiple
trajectories included in the model. Given that both the slope
and intercept are fixed, a degree of freedom remains
available to estimate quadratic trajectories of a variable

measured at three time points or cubic trajectories with data



available at four time points.

Although the model is widely applicable, the rating scale
of the instrument used to measure the variable of interest
dictates the specific probability distribution used to estimate
the parameters. Psychometric scale data necessitate the use
of the censored normal model distribution, dichotomous
data require the use of the binary logit distribution, and
frequency data dictate the use of the Poisson distribution.
For example, in the censored normal model, each trajectory
is described as a latent Variable(y;) that represents the
predicted score on a given dependent variable of interest
(Y) for a given trajectory ( ]) at a specific time (t) and is
defined by the following function:

(v2) =B+ BIX, + BIX: + BIX;, + 2,

In this equation, X,,, Xi, and Xi represent the independent
variable (i.e., Time or Age) entered in a regular, squared, or
cubed term, respectively. Further, ¢, is a disturbance term
assumed to be normally distributed with a mean of zero and
a constant standard deviation. Finally, 8/, B/, Bl, and
B are the parameters defining the intercept and slopes (i.e.,
linear, quadratic, cubic) of the trajectory for a specific
subgroup ( ]) As demonstrated in the above polynomial
function, the trajectories are most often modelled using
either a linear (X”), quadratic (Xi), or cubic (XZ) trend,
depending on the number of time points measured. A linear
pattern of change is defined by the (X”) parameter and a
linear trend may either steadily increase or decrease at
varying magnitudes or remain stable. A quadratic pattern of
change is defined by the (Xi) parameter and a quadratic
trend may increase, decrease, or remain stable up to a
certain time point before changing in either magnitude or
direction. Furthermore, a cubic trajectory is defined by
the (Xi) parameter and a cubic trend will have two changes
in either the magnitude or direction across time points.
Using LCGM, researchers must specify the number of
distinct trajectories to be extracted from the data and select
the model with the number of trajectories that best fits the
data. It is preferable to have a priori knowledge concerning
the number and the shape of trajectories whenever theory
and literature exists in the area of study. Researchers
evaluate which model provides the best fit to the data by
interpreting and comparing both the fit statistics and the
posterior probabilities for each model tested. The Bayesian
Information Criterion (BIC) value is obtained for each model
tested and is a fit index used to compare competing models
that include different numbers of trajectories or trajectories
of various shapes (e.g., linear versus quadratic). More
specifically, nested models testing the inclusion of a
different number of trajectories can be compared using an
estimate of the log Bayes Factor defined by the following
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formula (Jones, Nagin, & Roeder, 2001):
2log, (B,,) ~ 2(BIC)

The estimate is approximately equal to two times the
difference in the BIC values for the two models being
compared. Here, the difference is calculated by subtracting
the BIC value of the simpler model (i.e., the model with the
smaller number of trajectories) from the more complex
model (i.e, the model with the larger number of
trajectories). A set of guidelines has been adopted for
interpreting the estimate of the log Bayes Factor in order to
measure the extent of evidence surrounding the more
complex model thereby ensuring model parsimony.
According to these guidelines, values ranging from 0 to 2 are
interpreted as weak evidence for the more complex model,
values ranging from 2 to 6 are interpreted as moderate
evidence, values ranging from 6 to 10 are interpreted as
strong evidence, and values greater than 10 are interpreted
as very strong evidence (Jones et al., 2001). Initially, for each
model, the linear, quadratic, and cubic functions of each
trajectory can be tested, depending on the number of time
with  the

recommendations of Helgeson, Snyder, and Seltman (2004),

points. To ensure parsimony, consistent
non-significant cubic and quadratic terms are removed from
trajectories in a given model, but linear parameters are
retained irrespective of significance (as cited in Louvet,
Gaudreau, Menaut, Genty, & Deneuve, 2009). Once non-
significant terms have been removed, each model is retested
yielding a new BIC value. The fit of each nested model is
then compared using the estimate of the log Bayes factor.
This process of comparing the fit of each subsequent, more
complex model, to the fit of the previously tested, simpler
model, continues until there is no substantial evidence for
improvement in model fit. In addition, both the posterior
and the

probabilities for each trajectory are examined to evaluate the

probabilities averaged group membership
tenability of each model.

The parameter coefficients estimated in LCGM provide
direct information regarding group membership prob-
abilities. A group membership probability is calculated for
each trajectory and corresponds to the aggregate size of each
trajectory or the number of participants belonging to a given
Ideally, should hold an
approximate group membership probability of at least five

trajectory. each trajectory
percent. However, in clinical samples, some trajectories may
model the profile of change of only a fraction of the sample.
Posterior probabilities can be calculated post hoc to
estimate the probability that each case, with its associated
profile of change, is a member of each modelled trajectory.
The obtained posterior probabilities can be used to assign

each individual membership to the trajectory that best
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@ File Edit Wew Tools Run Soltions ‘Window Help - |8 X
| Dl en o HEl kX OS
= DATA DISEN; A
INFUT ID DISE1-DISE3 T1-T3 :
CARDS:
1 3.00 3.00 .50 .oo 1.00 2.00
Z 1.75 2.13 1.88 .00 1.00 2.00
g 1.38 2.38 1.13 .oo 1.00 2.00
4 1.38 1.88 Z.25 .oo 1.00 Z.00
5 1.38 1.25 1.88 .oo 1.00 2.00
& 2.13 2.00 2.00 .oo 1.00 2.00
7 Z.75 1.25 1.58 .oo 1.00 Z.00
g 1.38 1.00 1.25 .oo 1.00 2.00
El 1.88 1.25 1.13 .oo 1.00 2.00
10 Z2.38 1.25 1.75 .00 1.00 Z2.00
11 1.388 1.13 1.00 .oo 1.00 2.00
1z Z2.13 1.13 1.13 .oo 1.00 Z.00
13 1.75 2.88 3.25 .oo 1.00 2.00
14 2.25 1.25 2.00 .oo 1.00 2.00
15 Z.25 Z.88 Z.50 .oo 1.00 Z.00
16 2.13 2.00 2.00 .oo 1.00 2.00
17 2.50 2.63 2.13 .oo 1.00 2.00
13 1.50 Z.00 Z2.75 .00 1.00 Z2.00
19 1.50 1.78 2.78 .oo 1.00 2.00
z0 Z2.63 Z.50 1.63 .oo 1.00 Z.00
21 .03 2.88 2.50 .oa 1.00 2.00 hs
4 ¥
output - {Untitled) E] Log - (Untitled) | & disen_1_tin *
NOTE: 119 Lines Submitked, = CAWINDOWSisystem32  Ln 2, Col 28

Figure1. Syntax window with the associated data set.

matches his or her profile of change. A maximum-probability
assignment rule is then used to assign each individual
membership to the trajectory to which he or she holds the
highest posterior membership probability. An example
demonstrating the use of the maximum probability
assignment rule is presented below. Table 1 displays a
data with
developmental course on a variable are modelled by three

hypothetical set six individuals whose
trajectories, thus resulting in three posterior probability
values for each individual. Using the maximum probability
assignment rule, participants 1 and 5 would be assigned
group membership to Trajectory 3, participants 2 and 3
would be considered as members of Trajectory 2, and
participants 4 and 6 would be regrouped into Trajectory 1.
The average posterior probability of group membership is
calculated for each trajectory identified in the data. The
average posterior probability of group membership for a

trajectory is an approximation of the internal reliability for

each trajectory. This can be calculated by averaging the
posterior probabilities of individuals having been assigned
group membership to a trajectory using the maximum
probability assignment rule. Average posterior probabilities
of group membership greater than .70 to .80 are taken to
indicate that the modelled trajectories group individuals
with similar patterns of change and discriminate between
individuals with dissimilar patterns of change. Returning to
the hypothetical data set displayed in Table 1, the posterior
probabilities of participants 4 and 6 with Trajectory 1 are
averaged to obtain the average posterior probabilities of
group membership for Trajectory 1 [(0.93+1.00) +2=0.97]
as are the posterior probabilities of participants 2 and 3 with
Trajectory 2 [(1.00+.86)+2:0.93 ], and the posterior
probabilities of participants 1 and 5 with Trajectory 3
[(1.00+.76)+2=0.88].

Table 1. Hypothetical data set with six participants and three trajectories

Posterior Probability
Participants Trajectory 1 Trajectory 2 Trajectory 3
1 .10 .10 .80
2 .00 1.00 .00
3 .04 .86 .10
4 .93 .02 .05
5 .20 .03 .76
6 1.00 .00 .00




Performing LCGM using SAS

For illustration purposes, a data set obtained with
permission from Louvet, Gaudreau, Menaut, Genty, and
Deneuve (2007) will be used to demonstrate how to perform
the LCGM analyses (see Appendix A). This data set, labelled
DISEN, includes a measure of disengagement coping at
three time points for 107 participants. Typically, a data set of
at least 300 to 500 cases is preferable for running LCGM,
although the analysis can be applied to data sets of at least
100 cases (Nagin, 2005). It should be noted that performing
LCGM with smaller sample sizes limits the power of the
analysis as well as the number of identifiable trajectories
(Nagin, 2005). In such instances, as in the example presented
in this tutorial, the researcher may adopt a more liberal
significance criterion (e.g., p <.10; Tabachnick & Fidell, 2007)
which is then applied consistently throughout the analysis.

In order to perform the analysis using SAS, the user has
to install the PROC TRA]J application (Jones et al., 2001)
which
http://www.andrew.cmu.edu/user/bjones/. Complete
tructions for downloading and installing the PROC TRA]J
application are available on the website (Jones, 2005).

is freely available at the following website:

ins-

Before running the analysis using the PROC TRA]J
application in SAS, the data set to be analyzed will need to
be imported from the computer program on which it was
prepared (e.g., Excel). The variables from the data set should
be labelled before being imported into SAS. As seen in
Figure 1, the first column in our data set is labelled “ID” and
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identifies each case in the data set. Each row should contain
the data of one individual, or case. The next columns are the
dependent variable scores. In this data set, there are three
measures of disengagement coping, one at each time point.
Thus, in this example, the second column is disengagement
coping at Time 1, the third column is disengagement coping
at Time 2, and the fourth column is disengagement coping at
Time 3. The next columns in the data set are variables
representing the time points at which the dependent
variable was measured; in this example, columns 5, 6, and 7
represent Time 1, Time 2, and Time 3, respectively. In this
data set, each measurement point is separated by the same
amount of time; therefore, Time 1 is coded as “0”, Time 2 is
coded as “1”, and Time 3 is coded as “2”. However, LCGM
can be performed even when the measurement points are
separated by different time intervals that are relevant to the
data analysis (e.g., Time 1 = baseline, Time 2 = 1 month,
Time 3 = 6 months). In these instances, the user can code the
time variable to represent the age or time of each
measurement point (e.g., 5, 7, 13 [years old] or 1, 6, 18
[months since baseline]). The specific age/time can also vary
across individuals to account for the fact that it is often
impossible to measure each case at the exact same time. For
this reason, the time variable is entered individually for each
case in the database. Also, it is important to note that SAS
uses an imputation procedure to assign values for missing
data which may not be suitable for every data set
(McKnight, McKnight, Sidani, & Figueredo, 2007). Given
this, it is recommended that any missing data be treated

% SAS - [disen,_1_lin *]

EEX

@ Eile Edit Wew Tools Run Solutions ‘Window Help
| - DEd 8 o e kX O@
a7 Z.25 Z.50 Z.38 .ao 1.00 2.00 ~
95 1.75 1.88 3.00 .ao 1.00 2.00
99 Z2.25 Z2.75 Z.88 .oo 1.00 Z.00
100 Z.38 Z.00 Z.63 .ao 1.00 2.00
101 Z.88 Z.75 Z.50 .ao 1.00 2.00
10& 1.58 Z.63 3.13 .oo 1.00 Z.00
103 Z.00 Z.50 Z.88 .ao 1.00 2.00
104 Z.63 1.38 1.50 .ao 1.00 2.00
105 Z.E5 Z2.63 1.88 .oo 1.00 Z.00
106 1.75 1.88 1.88 .ao 1.00 2.00
107 1.50 1.50 Z.25 .ao 1.00 2.00
RUH:
=/PROC TRAJ DATAL=DISEN OUT=0F OQUTPLOT=0FP OUTITAT=03 OUTE3IT=0E ITDETAIL ALTSTART:
I ID; WAR DIZE1-DISE3; INDEP T1-T3:
MODEL CMORM; MAX 5; MNGROUPZ 1; CRDER 2
RUH:
='PROC PRIHT DATAL=CP:
RUH:
s TRAJPLOT (0P, 05, 'Disengage vs. Time', 'CHNorm Model', 'Disengage', 'Scaled Time')

e
£ >
output - [Untitled) El Log - {Untitled) ||@ disen_1_lin *

=) CAWINDOWSsystem32  |Ln 115, Col 1

Figure2.

Syntax for the analysis of a model with one quadratic trajectory.
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g Maximum Likelihood E=ztimates
Model: Censored Normal (CHORM)
Standard T for HO:
Group Parameter Eztimate Error Parameter=0 Prob > ITi
1 Intercept 2.08570 0.05992 34 .806
Linear 0.02794 0.15278 0.183
Quadratic 0.00776 0.07339 0.106
Sigma 0.61695 0.02446 25.219 0.0000
Group membership
1 (%) 100.00000 0.00000

BIC= =311.99 (N=321){BIC= =309.79 (N=107)3 AIC= -304.45 L= =300.45

Figure 3. Output from the analysis of a model with one quadratic trajectory.

prior to importing the data set into the PROC TRAJ
application.

To import the data into SAS, four steps must be
followed. First, the user selects Import Data from the File
drop-down menu. A window will open where the location
of the data on the computer is entered. Second, the user
clicks on the syntax window and enters the following three
lines of syntax (please note, the colour of the text will change
automatically as it is entered):

The syntax “PROC PRINT DATA=OP” provides a table
of the predicted value of the dependent variable at each
measurement point for each trajectory. These values are
used to create a figure depicting the shape of each trajectory.
SAS provides a figure with low resolution that may need to
be recreated using an alternative statistical program such as
SPSS if the graphs are to be used in publication or modified
in any way. Figure 2 illustrates the syntax window at this
point.

To run the analysis, the user clicks the icon of the person

DATA <NAME OF DATABASE>;

INPUT ID <DEPENDENT VARIABLES> <INDEPENDENT VARIABLES>;

CARDS;

running in the top right hand corner of the
syntax window. The analysis will run and

the graph of the trajectory will open in a

Third, once the syntax has been entered, the data set can
be copied and pasted into the syntax window from a
program like Excel. Finally, on the next line after the data
set, the syntax “RUN;” is entered. Figure 1 provides an
example of the syntax window at this point.

After adding the data set to the syntax window, the user
enters the syntax to run the analysis. In this case, given that
there are three time points, the first model tests the
quadratic parameters for one trajectory (defined in the
syntax as NGROUPS 1) using the following syntax. For a
more complete description of each of the syntax items,
please refer to Appendix B.

new window. To view the actual output of
the analysis, the user clicks on the Output window located in
the bar at the bottom of the screen. The output for this one
quadratic trajectory model is displayed in Figure 3. In each
output, statistics are provided for each estimated parameter
including the intercept ( ﬂn) , the linear parameter ( ﬂl), and
the quadratic parameter ( ,Bz) for each trajectory. The
intercept (ﬂn) corresponds to the value of the dependent
variable when the value of the independent variable is equal
to zero. A t-test for the intercept provided in the output
indicates whether the value of the dependent variable
significantly differs from zero when the independent
variable is equal to zero. The linear slope parameter estimate
( ,BI) represents the amount of increase/decrease on the

PROC TRAJ DATA=<DATABASE> OUT=0OF OUTPLOT=0P OUTSTAT=0S

OUTEST=0E ITDETAIL ALTSTART;

ID ID; VAR <DEPENDENT VARIABLES>; INDEP <INDEPENDENT

VARIABLES>;

MODEL CNORM; MAX <MAX SCORE OF DEP. VAR.>; NGROUPS 1; ORDER 2;

RUN ;

PROC PRINT DATA=0P;
RUN ;

dependent variable for each unit of
increase on the independent variable
(e.g., Time 1 to Time 2). The quadratic
(4)

amount of

slope parameter estimate
represents the
increase/decrease on the dependent
variable for each unit of increase on
the squared independent variable. The
in the data

accounted for by the model and its

amount of variance

significance is given by Sigma. The above information is



read from the Output for each model. The Group column
labels the number of trajectories tested and the Parameter
column labels the estimated parameters. The test statistic,
standard error, and significance for each parameter are
displayed in the Estimate column, the Standard Error column,
the Prob > |T| column, respectively. The T for Ho: Parameter =
0 column provides a value for the test of the null hypothesis
that determines whether the parameter is significant or not.
The value of the t-test has to be higher than 1.96 (p < .05) or
2.58 (p < .01). Two BIC values are also provided in each
output and the second BIC value is interpreted as the index
of fit for the model. In this analysis modelled with one
quadratic trajectory, the results can be summarized as
follows: Bo = 2.09, p = .000; $1=.028, p = 0.86; and 2= .01, p =
.92; Sigma = .62, p = .000; BIC = -309.79 (see Figure 3). The
user can also scroll down in this window to view the
predicted values of the dependent variable at different
values of the independent variable for each point on the
graph.

As a general rule, for data sets with three time points, a
single quadratic trajectory model is tested first. If the
quadratic component of this model is not significant, the
model for one linear trajectory is run to determine the BIC
value for this model. If the quadratic component of the
model for one trajectory is significant, the analysis for the
quadratic model for two trajectories is performed. Following
these analyses, the BIC value of the appropriate two-
trajectory model will be compared to the BIC value of the
appropriate one-trajectory model. This process is repeated
with an increasing number of trajectories until the model of

Disengage v=.
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best fit is obtained, as determined by comparing the BIC
values.

Coming back to our example, since the quadratic
component of the one trajectory model was not significant,
the model for one linear trajectory is run by changing the
order of the model from 2 (for quadratic) to 1 (for linear) in
the syntax window. The rest of the syntax remains the same.
After running this analysis, a new graph and a new output
with the required BIC value is also generated.

To run the analysis for the quadratic model for two
trajectories the user changes the syntax from “NGROUPS 1”
to “NGROUPS 2” to estimate two trajectories. The syntax for
the order is also changed to “ORDER 2 2”. When using the
ORDER syntax, the first number represents the first
trajectory and the second number represents the second
trajectory. Further, a “2” indicates the trajectory should be
modelled on a quadratic trend whereas a “1” indicates a
linear trend. This analysis can now be run. If neither of the
quadratic components of the two-trajectory model is
significant, the linear model can be run (syntax “ORDER 1
1”). Likewise, if only one component is significant, a model
with one quadratic component and one linear component
can be run (syntax “ORDER 1 2” or “ORDER 2 1”).

In our example, given that both quadratic components of
the two-trajectory model are significant, the BIC value
obtained from this analysis is compared to the BIC value
from the previous analysis to test for improvement of fit.
Using this data set as an example, the model with two
quadratic trajectories (BIC = -289.05) is compared to the
model with one linear trajectory (BIC = -307.79) using the

Time
CNorm Model

Maximum Likelihood Estimates
Model: Censored Hormal (CHORM)

Standard T for HO:
Group Parameter E=timate Error Parameter=0 Prob > IT!
1 Intercept 1.78076 0.06816 26.127 0. 0000
L inear =0.33513 0.17409 =1.925 0,055]
Quadratic 0.16754 0.08295 2.020 0. 0442
2 Intercept 2.30806 0.07786 29.645 0. 0000
L inear 0.28371 0.16913 1.677 0. 0944
Quadratic -0.10033 0.08264 -1.214
3 Intercept 2.17624 0.26002 12.215 0. 0000
L inear 1.46432 0.64282 2.278 0. 0234
Quadratic -0.69299 0. 30563 -2.267 0.0240
Signa 0.43853 0.01937 22 .645 0. 0000
Group membership
1 (%) 47 .45755 6.99427 b.785 0. 0000
2 (%) 49.33060 6.91892 7.130 0. 0000
3 (%) 3.21185 1.89869 1.692 0.0917
BIC= -290.22 (N=321) BIC= -283.63 (N=107) AIC= -267.59 L= -255.59

Figure4. Output from the analysis of a model with three quadratic trajectories.
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& CHorm Model
Haximum Likelihood Estimates
Model: Censored Normal (CNORM)
Standard T for HO:
Group Parameter Estimate Error Parameter=0 Prob > IT!
1 Intercept 1.77588 0.06911 25.696 0.0000
L inear -0.31826 0.17634 =1.805 0
Ouadratic 0.15650 0.08398 1.864
2 Intercept 2.32836 0.07798 29.858 0.000
L inear 0.08646 0.04698 1.840 0.0667
3 Intercept 3.15938 0.25398 12.440 0.0000
L inear 1.46784 0.63005 2.330 00204
Quadratic =0.69657 0.29978 -2.324 0.0208
Sigma 0.44030 0.01948 22.608 0.0000
Group membership
1 (%) 46.45634 7.19716 6.455 0.0000
2 (%) 50.19029 7.12964 7.040 0.0000
3 (%) 3.35337 1.92957 1.738 0.0832
BIC= -288.10 (N=321) BIC= -282.06 (N=107) aAIC= -267.36 L= -256.36

Figure 5. Output from the analysis of a quadratic model for Trajectories 1 and 3 and linear model for Trajectory 2.

estimate of the log Bayes factor. The estimate of the log
Bayes factor is calculated as follows:

2 (-289.05)-(-307.79) | = 37.48

Using the guidelines for interpreting the estimate of the
log Bayes factor (Jones et al., 2001), these results provide
very strong evidence for the model with two quadratic
trajectories compared to a model with one trajectory.
However, it is necessary to continue testing more complex
models with an increasing number of trajectories in order to
determine if the model with two trajectories provides the
best fit to the data.

Next, a model with three quadratic trajectories is run by
changing the syntax from “NGROUPS 2” to “NGROUPS 3”
and by changing the order to read “ORDER 2 2 2”. The
output of this model, displayed in Figure 4, shows that the
quadratic terms of Trajectory 1 and Trajectory 3 are
significant whereas the quadratic parameter of Trajectory 2
is not significant. Given this, the user can test a model with
two quadratic trajectories and one linear trajectory with the
following syntax codes indicating that Trajectory 2 is linear:
“NGROUPS 3; ORDER 2 1 2”. As shown in Figure 5, the
of this that all modelled
components of the trajectories can be considered significant

results analysis indicate
as the small sample size warrants a more liberal significance
criterion (p = 0.10; Tabachnick & Fidell, 2007). Comparing
this three-trajectory model to the two-trajectory model
2x [(—282.06) - (—289.05)] =13.98 provides very strong
evidence for the three-trajectory model.

The addition of trajectories continues until there is no

significant improvement in model fit compared to the
previously tested model. For this example, an analysis for
four quadratic trajectories is run, followed by a model
deleting the non-significant components of each of the four
trajectories. Comparing this model with the three-trajectory
model 2x [(—285.89) - (—282.06)] =-7.66 reveals a decrease
in fit for the four-trajectory model.

As a result, the three-trajectory model is retained as the
final and most parsimonious model. The output for this final
model is displayed in Figure 5 and the parameters presented
in the output will be interpreted. Figure 6 displays the graph
for this final model with Trajectory 1 shown on the bottom,
Trajectory 2 in the middle, and Trajectory 3 on top. Trajec-
tory 1 follows a quadratic trend in which disengagement
coping decreases from Time 1 to Time 2 and returns to its
initial level by Time 3. The participants whose profiles of
change are best represented by Trajectory 1 tended to report
low levels of disengagement coping which decreased from
Time 1 to Time 2 and then returned to the initial level by
Time 3 (Bo=1.78, p < 0.001; f1=-.032, p = 0.07; p2=0.16, p =
0.06). Trajectory 2, which follows a linear trend, represents
the profile of change of the participants who reported
moderate levels of disengagement at Time 1 followed by a
marginally significant linear increase across time (o= 2.33, p
< 0.001; B1=0.09, p = 0.07). Trajectory 3 follows a quadratic
trend in which disengagement coping increases from Time 1
to Time 2 and then decreases by Time 3. The participants
whose profiles of change are best represented by Trajectory
3 tended to report high levels of disengagement coping (o =
3.16, p <0.001; B1=1.47, p = 0.02; B2 =-0.70, p = 0.02).



Table 2. Upper and lower limits of the 95% confidence intervals
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Time 1 Time 2 Time 3
Trajectory  Lower Value Upper Lower Value Upper Lower Value  Upper
1 1.64 1.78 1.91 1.46 1.61 1.77 1.60 1.77 1.93
2 2.18 2.30 2.48 2.30 247 2.53 2.37 247 2.64
3 2.66 3.16 3.66 3.36 3.93 2.64 2.79 3.31 3.83

After the selection of the most suitable model, the
posterior probabilities (i.e., the likelihood of each case
belonging to each trajectory) are calculated. This is done by
running the syntax “PROC PRINT DATA=OF” which will
generate a tabular output that identifies each case and the
likelihood of each case belonging to each trajectory.
Participants are then assigned group membership to a
trajectory based on the maximum probability assignment
rule. Finally, the posterior probabilities of the individuals
assigned membership to a given trajectory are averaged to
the
membership for each trajectory and can be examined to

obtain average posterior probability of group

assess the reliability of the trajectory. For the final model, the

second trajectory and 3% of the sample is categorized within
the third trajectory (see Figure 5).

Recent Extensions of LCGM

A recent extension to the PROC TRAJ application allows
to calculate the 95%
surrounding each trajectory to determine if the trajectories

researchers confidence interval
are overlapping at any of the measurement points (Jones &
Nagin, 2007). This is done by adding “CI95M” to the first
line of syntax and “%TRAJPLOTNEW” after the very last
line of syntax. Below is an example of the syntax used to
calculate the 95% confidence intervals surrounding each

trajectory in the sample data set:

average  posterior  probabilities  for

Trajectory 1, Trajectory 2, and Trajectory 3
were .88, 93, and .88, respectively. In

addition, the group membership INDEP T1-T3;
probabilities are provided in an output for NGROUPS 3:
each model (provided by the syntax | gtart
OUT=0F), but only the group membership | ORDER212 ;
probabilities for the final model are

RUN;

interpreted in this example. Based on these
probabilities, it is estimated that 47% of the
sample is categorized within the first

RUN;

trajectory, 50% is categorized within the | 'Scaled Time’)

PROC TRAJ DATA=DISEN OUT=0F OUTSTAT=0S OTEST=0E ITDETAIL
ALTSTART OUTPLOT=0P CI95M;
ID ID; VAR DISE1-DISES;

MODEL CNORM; MAX5;

PROC PRINT DATA=0P;

%TRAJPLOTNEW (OP,0S,'Disengage vs. Time', 'CNorm Model', 'Disengage’,

Disengage vs. Time
CNorm Model

Disengage

4,00 4

3.00 4

200

100 1

o0no

T 1T 465

Group Percants

Figure 6. Graph of the final model.
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This syntax yields a new graph of the trajectories that
includes the upper and lower confidence interval for each
trajectory. It also provides an output with the numerical
values of the confidence intervals for each trajectory at each
time point, as shown in Table 2. For a more detailed
description of this extension and several others, including
performing LCGM with covariates, please refer to Jones and
Nagin (2007) and Gaudreau, Amiot, and Vallerand (in
press).

Another extension allows researchers to test whether the
intercept and the slopes are significantly different across the
trajectories using equality constraints, also known as
invariance testing (Jones & Nagin, 2007). The Wald test is
the statistical test used to compare the intercepts (ﬁu) as
well as the linear (ﬂl) and quadratic (ﬂz) growth com-
ponents of the trajectories to determine whether they are
significantly different across trajectories. Using the sample
data set, it is possible to compare if there is a significant
difference between the intercepts of any two trajectories. As
an example, to compare the intercepts of Trajectories 1 and 3
the following syntax is added to the line following the
ORDER command:

20

indicates that the quadratic slope of Trajectory 3 is steeper
than that of Trajectory 1.

Conclusion

LCGM is a useful technique for analyzing outcome
variables that change over age or time. This method
provides a number of advantages over standard growth
modelling procedures. First, rather than assuming the
existence of a particular type or number of trajectories a
priori, this method uses a formal statistical procedure to test
whether the hypothesized trajectories actually emerge from
the data (Nagin, 2005). As such, the method permits the
discovery of unexpected yet potentially meaningful
trajectories that may have otherwise been overlooked
(Nagin, 2005). LCGM also bypasses a host of other
challenges (e.g., over- or under-fitting the data, trajectories
reflecting only random variation) associated with
assignment rules sometimes used in conjunction with
standard growth modelling approaches (Nagin, 2002).
Although not presented in detail here, extensions of the
basic LCGM model also allow the researcher to estimate the

probability that an individual will belong to a particular

RUN;

PROC TRAJ DATA=DISEN OUT=0F OUTPLOT=0P OUTSTAT=0S OUTEST=0E

ITDETAIL ALTSTART;

ID ID; VAR DISE1-DISE3; INDEP T1-T3;

MODEL CNORM; MAX 5; NGROUPS 3; ORDER 21 2;
%TRAJTEST (‘intercl=interc3')

[*intercept equality test*/

RUN;

PROC PRINT DATA=0P;
RUN;

%TRAJPLOT (OP,0S,'Disengage vs. Time', 'CNorm Model', 'Disengage’, 'Scaled Time")

%TRAJTEST (‘intercl=interc3')
[*intercept equality test*/

trajectory based on their score on a
covariate. Other extensions allow the
researcher to obtain estimates of
whether a turning point event (such as
an intervention or important life
transition) can alter a developmental
trajectory (see Nagin, 2005; Jones &
Nagin, 2007). In addition, LCGM
serves as a steppingstone to growth
mixture modelling analyses in which
the precise number and shape of each
trajectory must be known a priori in

order for the researcher to impute the

requisite start values for the model to

This analysis revealed that the intercepts of these two
trajectories were significantly different ( x? (1) =27.68, p <
.0001), thus indicating that Trajectory 3 had a greater
disengagement score at the time point on which the
independent variable was centered (i.e., Time 1 was coded
as 0; see Figure 1) .To compare the slopes of Trajectories 1
and 3, the “%TRAJTEST” syntax is changed to read:

%TRAJTEST('linear1=linear3,quadra3=quadral’)
[*linear&quadratic equality test*/

The rest of the syntax remains the same and this analysis
reveals that the slopes of these two quadratic trajectories are
also significantly different, x?> (2) =7.64 p < .05, which

converge in software packages such as
Mplus (Jung & Wickrama, 2008). Finally, the method lends
itself well to the presentation of results in graphical and
tabular format, which can facilitate the dissemination of the
findings to wide-ranging audiences (Nagin, 2005).
Notwithstanding the numerous advantages of LCGM,
one limitation concerns the number of assessments needed
to run the analysis. As with all growth models, a minimum
of three time points is required for proper estimation and
four or five time points are preferable in order to estimate
more complex models involving trajectories following cubic
or quadratic trends (Curran & Muthén, 1999). Given the
need for numerous repeated assessments, greater attrition
rates are expected (Raudenbush, 2001). Attrition can weaken
statistical precision and potentially introduce bias if the data



are not missing at random (MAR) or missing completely at
random (MCAR; McKnight et al., 2007).

In sum, the aim of this tutorial was to introduce readers
to LCGM and to provide a concrete example of how the
analysis can be performed using the SAS software package
and accompanying PROC TRAJ application. With the
aforementioned advantages and limitations in mind, readers
are encouraged to consider LCGM as an alternative to raw
and residualized change scores as well as to standard
growth approaches whenever multiple and somewhat
contradictory patterns of change are part of a research
question. This introduction should serve as a helpful guide
to researchers and graduate students wishing to use this
technique to explore multinomial patterns of change in
longitudinal data.
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Appendix A : Sample data set

Participant ~ Disengagement coping  Disengagement coping  Disengagement coping

(Time 1) (Time 2) (Time 3)
1 3.00 3.00 2.50
2 1.75 2.13 1.88
3 1.38 2.38 1.13
4 1.38 1.88 2.25
5 1.38 1.25 1.88
6 2.13 2.00 2.00
7 2.75 1.25 1.88
8 1.38 1.00 1.25
9 1.88 1.25 1.13
10 2.38 1.25 1.75
11 1.88 1.13 1.00
12 2.13 1.13 1.13
13 1.75 2.88 3.25
14 2.25 1.25 2.00
15 2.25 2.88 2.50
16 2.13 2.00 2.00
17 2.50 2.63 2.13
18 1.50 2.00 2.75
19 1.50 1.75 2.75
20 2.63 2.50 1.63
21 3.13 2.88 2.50
22 1.25 1.75 1.13
23 1.63 1.25 1.00
24 2.13 2.50 2.00
25 1.63 2.00 2.00
26 1.88 3.13 2.00
27 1.88 1.63 1.63
28 2.00 2.50 3.25
29 1.50 1.13 1.50
30 1.75 2.38 2.25
31 2.25 1.63 1.50
32 2.00 1.63 1.25
33 1.63 1.25 3.00
34 2.13 1.50 2.50
35 2.00 3.25 2.75
36 1.38 2.63 1.75
37 2.13 1.25 2.00
38 2.63 2.38 2.25
39 2.13 2.75 1.50
40 2.63 2.00 2.50
41 2.00 2.63 2.25
42 1.88 1.13 1.25
43 2.38 2.75 2.13
44 1.50 1.50 1.88
45 1.63 1.38 2.63
46 2.63 2.13 2.38
47 1.75 1.13 1.38
48 1.88 2.25 1.88
49 2.38 4.25 4.63
50 1.50 2.13 1.88
51 1.63 1.38 1.63
52 3.25 2.13 2.38
53 2.75 2.25 2.13
54 2.00 3.00 2.63
55 2.13 1.38 2.38
56 2.13 2.63 2.75



23

Appendix A (continued)

Participant ~ Disengagement coping  Disengagement coping  Disengagement coping

(Time 1) (Time 2) (Time 3)
57 1.88 1.75 2.25
58 1.63 1.25 1.13
59 1.50 1.63 1.25
60 1.88 2.13 2.00
61 1.50 1.50 1.88
62 2.13 1.50 1.75
63 2.75 3.63 2.75
64 1.38 1.13 2.38
65 2.25 2.50 2.50
66 2.13 1.88 1.75
67 1.38 2.00 2.25
68 1.88 2.00 2.25
69 1.75 2.00 1.38
70 3.50 4.50 2.63
71 3.25 2.50 2.38
72 1.38 1.25 1.25
73 2.88 2.88 2.88
74 2.25 2.75 2.25
75 2.38 2.38 2.25
76 3.25 2.13 2.38
77 2.13 2.13 2.50
78 1.75 2.00 2.63
79 2.38 3.13 3.00
80 1.25 2.13 1.75
81 2.63 2.13 3.00
82 1.25 2.00 1.50
83 2.13 2.00 1.75
84 1.75 2.38 3.00
85 2.00 3.00 2.75
86 2.25 2.75 2.63
87 2.88 1.75 2.13
88 3.88 3.25 3.00
89 3.13 2.75 3.00
90 2.25 2.00 2.25
91 2.38 3.25 2.00
92 2.25 2.13 3.13
93 2.38 2.00 2.63
94 1.38 1.88 2.38
95 1.63 1.00 1.75
96 2.00 2.63 2.00
97 2.25 2.50 2.38
98 1.75 1.88 3.00
99 2.25 2.75 2.88
100 2.38 2.00 2.63
101 2.88 2.75 2.50
102 1.88 2.63 3.13
103 2.00 2.50 2.88
104 2.63 1.38 1.50
105 2.25 2.63 1.88
106 1.75 1.88 1.88

107 1.50 1.50 2.25
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Appendix B : Documentation of Syntax

(reprinted with permission from Jones, 2005)

INPUT NAME:

Specify DATA= data for analysis, e.g. DATA=ONE.

OUTPUT NAMES::

OUT= Group assignments and membership probabilities, e.g. OUT=OF.

OUTSTAT= Parameter estimates used by TRAJPLOT macro, e.g. OUTSTAT=0S.

OUTPLOT= Trajectory plot data, e.g. OUTPLOT=OP.

OUTEST= Parameter and covariance matrix estimates, e.g. OUTEST=0OE.

ADDITIONAL OPTIONS:

ITDETAIL displays minimization iterations for monitoring model fitting progress.

ALTSTART provides a second default start value strategy.

ID; Variables (typically containing information to identify observations) to place in the output (OUT=) data set, e.g. ID IDNG;
VAR; Dependent variables, measured at different times or ages (for example, hyperactivity score measured at age t,)

e.g. VAR V1-V§;

INDEP; Independent variables (e.g. age, time) when the dependent (VAR) variables were measured, e.g. INDEP T1-T8;
MODEL; Dependent variable distribution (CNORM, ZIP, LOGIT) e.g. MODEL CNORM;

MIN; (CNORM) Minimum for censoring, e.g. MIN 1; If omitted, MIN defaults to zero.

MAX; (CNORM) Maximum for censoring, e.g. MAX 6; If omitted, MAX defaults to +infinity.

ORDER; Polynomial (O=intercept, 1=linear, 2=quadratic, 3=cubic) for each group, e.g. ORDER 2 2 2 0; If omitted, cubics are
used by default.
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