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The increasing use of diary methods calls for the development of appropriate statistical methods.
For the resulting panel data, latent Markov models can be used to model both individual differences
and temporal dynamics. The computational burden associated with these models can be overcome by
exploiting the conditional independence relations implied by the model. This is done by associating a
probabilistic model with a directed acyclic graph, and applying transformations to the graph. The structure
of the transformed graph provides a factorization of the joint probability function of the manifest and latent
variables, which is the basis of a modified and more efficient E-step of the EM algorithm. The usefulness of
the approach is illustrated by estimating a latent Markov model involving a large number of measurement
occasions and, subsequently, a hierarchical extension of the latent Markov model that allows for transitions
at different levels. Furthermore, logistic regression techniques are used to incorporate restrictions on the
conditional probabilities and to account for the effect of covariates. Throughout, models are illustrated
with an experience sampling methodology study on the course of emotions among anorectic patients.

Key words: graphical models, latent Markov model, hierarchical latent Markov model, junction tree al-
gorithm.

In behavioural and social sciences, there is an increasing use of so-called diary methods. In
diary studies, people are asked to report regularly on events and experiences as they are occurring
in their daily lives. A first main advantage of these methods over traditional designs is in their
higher ecological validity. Second, the longitudinal data that result from diary studies allow for
investigating how phenomena evolve over time (Bolger, Davis, & Rafaeli, 2003).

Multilevel (random coefficient, mixed) regression models are becoming the standard tool
for the statistical analysis of diary data (Bolger et al., 2003). Extending the multilevel model
with a measurement model even increases its scope (Rabe-Hesketh, Skrondal, & Pickles, 2004;
Skrondal & Rabe-Hesketh, 2005). In multilevel models, temporal dynamics are naturally con-
ceived of as gradual processes, and modelled as a smooth function of time. For example, growth
is typically modelled as a low-order polynomial of time, and individual differences therein are
accounted for by specifying a distribution (over persons) for the trend coefficients.

An alternative framework is offered by latent class models. More in particular, in latent
Markov models (Collins & Wugalter, 1992; Langeheine & van de Pol, 1990; Poulsen, 1990;
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Wiggins, 1973), temporal dynamics are conceived as transitions between latent classes. Whether
changes over time are gradual and smooth or more abrupt is not specified a priori but estimated
from the data. Changes over time are discontinuous to the degree that classes show qualitatively
distinct estimated response profiles. A typical diary study involves many measurement occasions
however, which renders the standard EM algorithm for maximum likelihood estimation of the
parameters of latent Markov (and related) models computationally too demanding.

After presenting a short description of the diary method data set which is a motivating exam-
ple throughout the paper, we present the standard latent Markov model. Subsequently, we show
how an efficient EM algorithm can be constructed by exploiting the conditional independence
relations implied by the model. As we will explain, graphical model theory turns out to be very
useful in this respect because it provides a general procedure by working on the graphical struc-
ture of a probabilistic model. The generality is illustrated by presenting an extension of the latent
Markov model that incorporates latent variables at several levels and is therefore called a hier-
archical latent Markov model. In the remaining part, we discuss how restrictions can be taken
into account and how covariates can be incorporated into the model using logistic regression
techniques. These topics are less well covered in the graphical model literature, and constitute
the innovating part of the paper.

The data: An ecological momentary assessment study on the course of emotions among
anorectic patients.

Ecological momentary assessment is a diary method in which participants have to report
their momentary experiences or behaviours contingent to a signal or to an event. The participants
in this study (Vansteelandt, Rijmen, Pieters, & Vanderlinden, 2007) were 32 female patients from
an inpatient eating disorder unit. At regular time-intervals, they received a signal and were asked
to fill out a behavioural questionnaire. The participants received nine signals a day during one
week (9 beeps × 7 days = 63 beeps), one in each block of 90 minutes between 8.30 and 22.30.
Within each time block, the time of administration was drawn from a uniform distribution (strat-
ified random time sampling, Delespaul, 1995). The mean intersignal time was 1 h 32 min and
the standard deviation was 38 min. At each signal, patients were asked to rate themselves on a
7-point scale with respect to the intensity with which they experienced 12 emotional states. The
choice of emotional states was inspired by the work of Diener, Smith, and Fujita (1995). They
discerned six categories of emotions: anger, shame, fear, sadness, joy, and love. In the present
study, two emotional states were taken from each emotional category: anger and irritation, shame
and guilt, anxiety and tension, sadness and loneliness, happiness and joy, and love and apprecia-
tion, respectively.

Assessments that were reported more than 15 min after the administration of the signal were
excluded. This resulted in a considerable amount of missing data, 24%, but the advantage is that
one has a strong guarantee that data are not contaminated by retrospective bias (Delespaul, 1995).

We work on the dichotomized responses (0–2 vs. 3–6), and, unless mentioned otherwise, we
treat the data as if signals are equally spaced in time, ignoring the random administration within
time blocks.

1. Latent Markov Model

The multiple indicator latent Markov model (Collins & Wugalter, 1992; Langeheine & van
de Pol, 1994) is defined as follows. Let yitj denote the categorical response of person i at occa-
sion t on item j , i = 1, . . . , n; j = 1, . . . , J ; t = 1, . . . , T . yit = (yit1, . . . , yitj , . . . , yitJ )′ denotes
the response vector of person i at occasion t , and yi = (y′

i1, . . . ,y′
it , . . . ,y′

iT )′ the complete re-
sponse pattern of person i. zit , zit = 1, . . . , s, . . . , S, is the categorical latent state of person i at
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occasion t , and thus zi = (zi1, . . . , zit , . . . , ziT )′ is the trajectory of person i through the latent
space over time. Finally, xi = (z′

i ,y′
i )

′ denotes the “complete” data vector of person i. Corre-
sponding random variables are denoted by capitals.

Assuming a first-order Markov chain for the latent variable, the latent state at occa-
sion t + 1 depends on the past latent states through the latent state at occasion t only,
Pr(zit+1|zi1, . . . , zit ) = Pr(zit+1|zit ). Assuming conditional independence between responses,
given the latent state, the marginal probability of a response pattern yi is then

Pr(yi ) =
∑

zi

Pr(xi ) =
∑

zi

Pr(zi1)

J∏

j=1

Pr(yi1j |zi1)

T −1∏

t=1

Pr(zit+1|zit )

J∏

j=1

Pr(yit+1j |zit+1), (1)

where the summation is over the ST possible latent trajectories zi . The parameter vector θ of the
latent Markov model consists of three subsets:

• τrs , r, s = 1, . . . , S, the time homogeneous transition probabilities between latent states,
Pr(Zit+1 = s|Zit = r) = τrs for t = 1, . . . , T − 1;

• α1s , s = 1, . . . , S, the marginal state probabilities at occasion 1 (initial state probabilities);
• πcjs , c = 2, . . . ,C, j = 1, . . . , J , s = 1, . . . , S, the state-conditional response probabili-

ties, Pr(Yitj = c|Zit = s) = πcjs . C is the number of response categories. The conditional
response probability for the first category is π1js = 1 − ∑C

c=2 πcjs .

Marginal state probabilities at occasion 2, . . . , T are given by the recursive formula αt+1 = α′
tτ ,

t = 1, . . . , T − 1, where αt = (αt1, . . . , αtS)′ and τ = (τrs).
The latent Markov model was applied to the diary data set. We treated each person-by-day

combination as a separate case, measured at nine occasions. This comes down to assuming that
the data stemming from different days were independent and that parameters were constant over
days. Further on, we will relax the “tomorrow is another day” assumption and model dependen-
cies between days as well.

A model with four latent states was estimated. The model contained 63 free parameters
and the deviance (−2 × log likelihood) amounted to 17623.3. Figure 1 displays the maximum
likelihood estimates (MLEs) of the state-conditional probabilities for experiencing each of the
emotions. State 1 is characterized by high probabilities of experiencing positive emotions (joy,
happiness, appreciation, love) and low probabilities for negative emotions (sadness, anger, lone-
liness, shame, anxiety, tension, guilt, irritation). We can interpret state 1 as “positive mood”. The
reverse pattern holds for state 3 (“negative mood”). The probabilities are low for all emotions in
state 2, except for “tension”. In state 4, as in state 1, positive emotions tend to have a higher prob-
ability than negative emotions (except “tension”), but both categories of emotions are less well
separated. State 4 can be considered to be a neutral to moderately positive mood. The estimated
initial state and state transition probabilities are shown in Table 1, as well as the marginal state
probabilities at occasion 9. The probabilities of staying in the same state are high for all states.
Transitions are most likely to occur between states 2 and 1 (τ21 = .14), between states 3 and 4
(τ34 = .18), and between states 4 and 3 (τ43 = .14). To a smaller degree, there are transitions as
well between states 1 and 2 (τ43 = .08), and between states 4 and 1 (τ43 = .07). It is interesting
to see that the two states with an opposite pattern of conditional probabilities, states 1 and 3,
do barely communicate directly, but that there is an indirect transition from state 3 (“negative
mood”) to state 1 (“positive mood”) via the emotionally more neutral state 4. Over the day, the
marginal state probabilities of states 1 and 4 increase (from .27 to .33, and .16 to .24, respec-
tively) at the expense of state 3 (from .34 to .22). So, the mood of patients tends to become better
later on in the day.
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FIGURE 1.
Estimated state-conditional probabilities for the latent Markov model with four states. Days are assumed to be indepen-
dent.

TABLE 1.
Estimated initial state probabilities, state probabilities at occasion 9, and state transition
probabilities for the latent Markov model with four states. Days are assumed to be inde-
pendent.

Initial state probabilities: α1s .27 .22 .34 .16

State probabilities at occasion 9: α9s .33 .22 .22 .24

State transition probabilities: τrs .85 .08 .02 .05
.14 .81 .04 .01
.03 .04 .75 .18
.07 .03 .14 .76

2. Computational Burden of the Standard EM Algorithm

In the standard EM algorithm, the E-step would consist of calculating, for each person i,
the posterior probabilities Pr(zi |yi ) for all ST possible trajectories zi through the latent space in
order to obtain the expected complete data log likelihood given the observed data and a set of
provisional parameter estimates θ̂

p
,

Q(θ |θ̂p
) =

n∑

i=1

∑

zi

Pr(zi |yi; θ̂p
) log Pr(xi; θ).

The E-step becomes computationally too demanding when there are more than a few measure-
ment occasions, because the number of possible trajectories increases exponentially with the
number of measurement occasions. For example, for the latent Markov model applied to the di-
ary data set, ST equals 262144. The crucial quantities to update the parameters in the M-step,
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however, are not the joint posterior probabilities of all latent variables, but the posterior marginal
and pairwise consecutive state probabilities:

Pr(Zit = s|yi ), s = 1, . . . , S; t = 1, . . . , T and

Pr(Zit = r,Zit+1 = s|yi ), r, s = 1, . . . , S; t = 1, . . . , T − 1.

For example, the update equation for a conditional response probability πcjs is

π̂
p+1
cjs =

∑
t

∑
i:yitj =c Pr(Zit = s|yi )

∑
t

∑
i Pr(zit = s|yi )

.

Baum, Petrie, Soules, and Weiss (1970) described how the posterior marginal and pairwise suc-
cessive state probabilities can be calculated efficiently, that is, without calculating the posterior
probabilities of all possible trajectories through the latent space, by a set of forward–backward
recursions that exploit the conditional independence relations of the latent Markov model. Be-
fore describing a generalization of the Baum–Welch algorithm, we shortly present some notions
from graphical model theory. We limit ourselves to those concepts and results that are essential
for an understanding of the modified EM algorithm to be presented later. The interested reader is
referred to Cowell, Dawid, Lauritzen, and Spiegelhalter (1999).

3. Local Computation Based on the Junction Tree

Many statistical models can be represented graphically with a directed acyclic graph (in the
context of latent class models, see Hagenaars, 1998; and Humphreys & Titterington, 2003) in
which each node corresponds to a (manifest or latent) random variable. In latent class models,
all variables are discrete and so we will restrict our attention to discrete variables, but note in
passing that many of the stated results have been extended to continuous variables and mixed
sets of discrete and continuous variables (Lauritzen, 1996). Figure 2 shows a directed acyclic
graph for the latent Markov model for two items that are administered at three occasions. The
(absence of) directed edges between nodes represent conditional (in)dependence relations. For
example, the directed edge between Zi2 and Zi3 (Zi2 is called a “parent” of Zi3) represents the
conditional dependence of Zi3 on Zi2, whereas the conditional independence between Zi1 and
Zi3, given Zi2 (the first-order Markov assumption), is represented by Zi2 being situated on the
single directed path between Zi1 and Zi3.

A directed acyclic graph associated with a probabilistic model for a set of discrete random
variables X1, . . . ,XM admits a recursive factorization of the joint probability function

Pr(x) =
M∏

m=1

Pr
(
xm|pa(xm)

)
, (2)

where pa(xm) denotes the realization of the random variables that are parents of Xm. Applying
equation (2) to the directed acyclic graph in Figure 2, one indeed obtains the same factorization
of the probability of a complete data vector xi as in equation (1).

The core of the construction of efficient computational schemes relies on the transformation
of a directed acyclic graph into a junction tree. For a detailed account of the algorithms for
transforming a directed acyclic graph into a junction tree, see Cowell et al. (1999). We suffice by
saying that the nodes of the junction tree correspond to sets of variables, called cliques, and that
the intersection between two neighbouring cliques Ck and Cl is called a separator, Skl = Ck ∩Cl .
Furthermore, a junction tree constructed from a particular direct acyclic graph is not necessarily
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FIGURE 2.
Directed acyclic graph for the latent Markov model with three measurement occasions and two items per occasion.

FIGURE 3.
Schedule of flows on the junction tree of cliques for the latent Markov model. Three measurement occasions and two
items per occasion.

unique. Figure 3 shows a junction tree that is obtained from the directed acyclic graph in Figure 2.
The cliques are the sets

{Zit , Yitj }, t = 1, . . . , T , j = 1, . . . , J, and {Zit ,Zit+1}, t = 1, . . . , T − 1.

A crucial result is that a junction tree offers an alternative factorization of the joint probabil-
ity function. More, in particular, the joint probability function of all variables can be factorized
as the product of all marginal clique probabilities over the product of all marginal separator
probabilities:

Pr(x) =
∏

C Pr(xC)∏
S Pr(xS)

. (3)

The factorization of equation (3) serves as the basis for an efficient computational scheme
using local computations. A first step is to associate nonnegative functions or potentials � to each
clique and separator of the junction tree. The domain of � is the set of all possible realizations of
the random variables in the clique or separator. All potentials are initialized with value 1. Then,
each factor of equation (2) is multiplied into a clique that contains all the nodes corresponding
to the random variables in the factor. The way a junction tree is constructed implies that there is
always such a clique; if there is more than one, it does not matter which one is chosen. Then,

Pr(x) =
∏

C ψ(xC)∏
S ψ(xS)

. (4)
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Next, a schedule of flows is passed along the edges of the junction tree. Let Ck and Cl be
two consecutive nodes of the junction tree, with separator Skl . New potentials are defined as

ψ∗(xSkl
) =

∑

Ck\Skl

ψ(xCk
),

and

ψ∗(xCl
) = ψ(xCl

)λ(xSkl
),

where

λ(xSkl
) = ψ∗(xSkl

)

ψ(xSkl
)

, λ(xSkl
) ≡ 0 if ψ(xSkl

) = 0,

and
∑

Ck\Skl
denotes marginalization over all random variables whose corresponding nodes are

in Ck\Sk.

Jensen, Lauritzen, and Olesen (1990) proposed the following two-phase schedule: First, se-
lect an arbitrary clique of the junction tree as the root-clique. In the collection, phase flows are
passed along the edges towards the root-clique. In the distribution-phase, flows are passed in the
reverse direction. See Figure 3 for a scheduling of flows. After applying the two-phase schedule,
equilibrium is reached and the clique and separator potentials correspond to the marginal proba-
bility functions of the cliques and separators, respectively. Numerical underflow can be avoided
by normalizing the potentials of each clique after updating the potentials of that clique, for exam-
ple, by dividing each potential by the sum of the clique potentials. After applying the two-phase
schedule, the clique and separator potentials then become proportional to the marginal probabil-
ity functions of the cliques and separators, respectively. The proportionality constant equals the
product of the clique normalizing constants.

When some of the variables are observed, posterior probability distributions of the unob-
served variables can be obtained along similar lines. The only change is that, for each observed
variable, some arbitrary clique that contains the variable is selected, and the potentials of all
realizations of the clique variables involving a different state for the observed variable than the
observed one are set to 0. This step is called “entering the evidence”. After applying the two-
phase schedule, the clique and separator potentials now are proportional to the posterior marginal
probability functions of the cliques and separators, respectively. Normalizing the potentials of a
clique or separator so that they sum to one yields its posterior probability distribution. Posterior
distributions for individual variables are obtained by marginalizing over all other variables in the
clique or separator.

4. Modified EM Algorithm

In the previous section we assumed the conditional probabilities of the factorization ac-
cording to the directed acyclic graph (equation (2)) to be known. Let P denote the set of these
conditional probabilities, with elements p(xm|pa(xm)). If these conditional probabilities have to
be estimated from (partially) observed data, MLEs can be obtained by applying the following
EM algorithm (Lauritzen, 1995):

1. Start with some initial estimates p̂0(xm|pa(xm)).

E-step:

2. Initialize the junction tree with the current estimates for the conditional probabilities
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3. Enter the evidence xi obs for each case. Each case may have a different set of observed vari-
ables.

4. Apply the two-phase propagation schedule for each case to obtain posterior probabilities of
the latent variables.

M-step:

5. Update the conditional probabilities:

p̂new(
xm|pa(xm)

) =
∑n

i=1 Pr(xim,pa(xim)|xi obs; P̂ old)
∑n

i=1 Pr(pa(xim)|xi obs; P̂ old)
. (5)

Pr(xim,pa(xim)|xi obs; P̂ old) can always be obtained easily because there is always a clique
that contains a variable and its parents. When a variable and its parents are observed for all
cases, the updated conditional probability is the observed proportion. When a variable has no
parents, the denominator is replaced by n.

Repeat Steps 2 to 5 until convergence. The obtained solution corresponds to a stationary
point of the log likelihood (McLachlan & Krishnan, 1997). The contribution of each case to the
log likelihood is obtained by summing the potentials of any arbitrary clique over its clique space,
logging it, and adding the sum of the logged normalizing constants (the constants that resulted
from normalizing the clique potentials to avoid numerical underflow).

If some variables share the same conditional probability distribution (e.g., transition proba-
bilities that are assumed to be equal over time), the updated probabilities are obtained by sum-
ming the numerator and denominator in equation (5) over the variables sharing the same condi-
tional probability distribution.

The complexity of the E-step of the modified EM algorithm scales with the sum of the clique
state spaces. Hence, the smaller the clique state spaces, the more gain in efficiency is obtained
by using the modified instead of the standard EM algorithm.

The Baum–Welch algorithm for the latent Markov model with a single item administered
at each measurement occasion is a special case of the modified EM algorithm (Smyth, Heck-
erman, & Jordan, 1997). Its complexity is O(S2T ), which is substantially less than the O(ST )

complexity of the standard EM algorithm, except for very small T .

5. Merging Terminal Observed Nodes Sharing the Same Parents

Common to the presented models and most latent class and latent Markov models described
in the literature is the existence of sets of observed variables that share the same parent(s) and
appear as terminal nodes in the directed acyclic graph. This stems from the fact that, in latent
class models, it is typically assumed that all dependencies between a set of observed variables are
explained by a smaller set of discrete latent variables. For example, in the latent Markov model
that we applied to the illustrative data set (and also in the model to be discussed next), we had 63
sets of observed variables sharing the same parents, each set consisting of 12 variables. Including
them all as nodes of the associated directed acyclic graph renders the latter needlessly complex.
Instead, we can merge the nodes belonging to the same set into one node, and construct a junction
tree for the reduced graph. The effective state space of such a node is only of size one and equals,
for each case, the observed response pattern on the corresponding set of observed variables. This
is because, when entering evidence, the potentials of all configurations other than the observed
one are set to zero. Including these configurations would only result in a needless propagation
of zeros (Huang & Darwiche, 1996). Initialization is done in the same way as described before,
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except for the fact that we now, for each case, use the conditional probabilities of the observed
response patterns on the sets of terminal nodes sharing the same parent(s). These conditional
probabilities are computed over all data that are not missing (assuming ignorable missingness,
Little & Rubin, 1987). If all data on such a set of observed variables are missing, this probability
is set to 1, leaving the potentials unaltered.

6. A Hierarchical Latent Markov Model

Before discussing the incorporation of constraints on the conditional probabilities and how
to incorporate covariates, we go back to the motivating example and present an extension of the
latent Markov model. In this extension, we drop the assumption that the latent states of consec-
utive days are independent. Although the assumption of independent days may be reasonable
within a person, it is unrealistic to assume that the data of a person on two consecutive days are
not more alike than the data of two different persons, given the well-established finding that sta-
ble individual differences in emotional experiences do exist (Feldman, 1995; Watson, Clark, &
Tellegen, 1988). Therefore, we included an additional latent variable at the day-level. Transitions
between the latent states at both levels (day- and signal-) were modelled as first-order time ho-
mogeneous Markov chains. The initial state and state transition probabilities of the latent Markov
chain at the signal-level were specific for each state at the day-level. That is, the latent variables
at the signal-level conditionally depended on the latent variables at the day-level. The response
probabilities were specific for each day- and signal-state. The hierarchical latent Markov model
contains five sets of parameters:

• τ
day
rdaysday , rday, sday = 1, . . . , Sday, the time homogeneous transition probabilities between

latent day-states;
• α

day
1sday , sday = 1, . . . , Sday, the initial day-state probabilities;

• τ
sig
rsigssigsday , rsig, ssig = 1, . . . , Ssig, sday = 1, . . . , Sday, the time homogeneous transition

probabilities between latent signal-states within day-states;
• α

sig
1ssigsday , ssig = 1, . . . , Ssig, sday = 1, . . . , Sday, the initial signal-state probabilities within

day-states;
• πcjssigsday , c = 2, . . . ,C, ssig = 1, . . . , Ssig, sday = 1, . . . , Sday, the parameters for the con-

ditional response probabilities within day- and signal-states.

When there are no transitions between states at the day-level allowed (τ day
rdaysday = 1 if rday =

sday, τ
day
rdaysday = 0 otherwise), the mixed latent Markov model is obtained (Langeheine & van de

Pol, 1990; except that the state at the signal-level for the first signal of a day is independent of
the last signal-state of the previous day, given the day-state). Figures 4 and 5 show the directed
acyclic graph and its transformation into a junction tree for a hierarchical latent Markov model for
items that are administered at three occasions during two days. All items administered at a given
measurement occasion are represented with a single node, the motivation for which was given
in the previous section. In general, the cliques of the hierarchical latent Markov model are the
sets {Zday

itday ,Z
day
itday+1

}, tday = 1, . . . , T day − 1; {Zday
itday ,Z

sig
itdaytsig ,Z

sig
itdaytsig+1

}, tday = 1, . . . , T day,

t sig = 1, . . . , T sig − 1; and {Zday
itday ,Z

sig
itdaytsig ,Yitdaytsig}, tday = 1, . . . , T day, t sig = 1, . . . , T sig. The

superscripts refers to the level of the latent variables (day- vs. signal-level).
The model was estimated with two latent states at the day-level, and two signal-states within

each day-state, resulting in a total of four signal-states (number of parameters = 57). The de-
viance amounted to 17843.4. Figure 6 displays the MLEs of the state-conditional probabilities
for experiencing each of the emotions. For the first day-state, signal-state 1 is characterized by
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FIGURE 4.
Directed acyclic graph for the hierarchical latent Markov model. Two days and three measurement occasions per day.
Items administered at the same measurement occasion are represented by a single node. The subscripts refer to person,
day, and signal, respectively.

FIGURE 5.
Junction tree for the hierarchical latent Markov model. Two days and three measurement occasions per day. Items ad-
ministered at the same measurement occasion are represented by a single node. The subscripts refer to person, day, and
signal, respectively.

high probabilities of experiencing positive emotions and low probabilities for negative emotions.
We can interpret state 1 as “positive mood”. The probabilities are low for all emotions in state 2,
except for “tension”. With respect to the second day-state, the first signal-state is characterized
by low probabilities of experiencing positive emotions and high probabilities for negative emo-
tions (“negative mood”). In signal-state 2 positive emotions are not well separated from negative
emotions, but the probabilities are lower for negative emotions, except for “tension”. The state
can considered to be an emotionally neutral to moderately positive state. So, overall, day-state 1
is emotionally more positive than day-state 2. The signal-states closely resemble the states of the
latent Markov model (compare Figures 1 and 6).

The estimated initial state and state transition probabilities are shown in Table 2, as well as
the marginal state probabilities of the day-states at day 7, and the marginal state probabilities of
the signal-states at signal 9. Over days and signals, there is a tendency to experience more positive
emotions. That emotions tend to become more positive at the end of the day was also found in
the latent Markov analysis. That we find the same tendency over days is somewhat puzzling,
however. Transitions between states at the signal-level are more likely to occur in day-state 2.
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FIGURE 6.
Estimated state-conditional probabilities for the hierarchical latent Markov model with two states at signal- and day-level.

TABLE 2.
Estimated initial state probabilities, beep-state probabilities at occasion 9, and state transition probabilities for the hier-
archical latent Markov model with two states at both signal- and day-level.

Day-state 1 Day-state 2

Signal-state 1 Signal-state 2 Signal-state 1 Signal-state 2

Initial day-state probabilities: α
day
1sday .41 .59

Initial signal-state probabilities .46 .54 .63 .37

within day-states: α
sig
1ssigsday

Day-state probabilities at day 7: α
day
7sday .49 .51

Signal-state probabilities at signal 9

within day-states: α
sig
9ssigsday

.57 .43 .49 .51

Day-state transition probabilities: .92 .08

τ
day
rdaysday .09 .91

Signal-state transition probabilities .90 .10 .81 .19

within day-states: τ
sig
rsigssigsday .14 .86 .18 .82

7. Modelling the Conditional Probabilities with Logistic Regression Models

Hitherto, we estimated a separate set of conditional probabilities for each configuration of
the parent variables without imposing any restrictions on these conditional probabilities, except
for equality restrictions (i.e., the transition and conditional response probabilities were assumed
equal over time). However, out of a substantive hypothesis or for reasons of parsimony, one might
want to model these conditional probabilities as a function of a limited number of parameters.



178 PSYCHOMETRIKA

A straightforward choice is modelling the conditional probabilities under a logistic regression
model and restricting the linear predictor to contain, for example, only the main effects of the
parents. Logistic regression models can be specified for both manifest and latent variables. For
categorical variables with more than two categories, multinomial (nominal variables) or ordered
(ordinal variables) logistic regression techniques can be used.

Estimation proceeds along similar lines: the E-step remains the same as described above
and, in the M-step, new parameter values are obtained using standard routines to fit generalized
linear models such as Fischer scoring (Fahrmeir & Tutz, 2001). The conditional probabilities of
the next E-step are computed from the new parameter estimates.

In a next model fitted to the diary method data set, we restricted the conditional response
probabilities of experiencing the emotions using a multinomial logistic regression model with
main effects for the items, interactions between day-states and positive versus negative emotions,
and interactions between signal-states and positive versus negative emotions:

logit(πjssigsday) = βj + βpos ssig + βpos sday ,

logit(πkssigsday) = βk + βneg ssig + βneg sday ,

where j and k are item indices for the positive and negative emotions, respectively. These restric-
tions imply that both day- and signal-states only differed in terms of a shift (on the logit-scale)
common to all positive emotions and a shift common to all negative emotions and, in addition,
that the shifts for day- and signal-states were additive.

We estimated a model with two latent states at both the signal- and day-levels. The model
contained 25 parameters: 12 item main effects; four interaction terms for the interactions be-
tween day-state and positive emotions, signal-state and positive emotions, day-state and negative
emotions, and signal-state and negative emotions (there are eight interaction terms in total, but
four of them were put to zero to identify the model); and nine initial state and state transition
probabilities. The deviance of the estimated model amounted to 18195.8. The model is nested
within the hierarchical latent Markov model without restrictions on the conditional probabilities,
so that a likelihood-ratio test can be used to test the restrictions on the conditional probabilities
(see the section on model selection). The model with restrictions on the conditional probabilities
was rejected, LR = 352.4, df = 32, p < .001.

A second advantage of modelling the conditional probabilities with logistic regression mod-
els is that covariates W1, . . . ,WP can be taken into account without much complication. Instead
of factorizing Pr(x) according to the junction tree (see equation (3)), we now factorize Pr(x|w).
The covariates then appear in the linear predictor of the logistic regression models for the differ-
ent sets of conditional probabilities. Covariates may vary over cases and/or items. Covariates can
be discrete or continuous.

Alternatively, one could include the covariates in the network, and use the junction tree to
factorize their joint probability function Pr(x,w). Apart from rendering the graph and thus the
process of constructing the junction tree needlessly complex, one will run into problems with
continuous covariates. Probabilistic graphical models for mixed sets of discrete and continuous
variables can be formulated, but the junction tree propagation requires that the continuous vari-
ables are (conditionally) Gaussian (Lauritzen, 1996). In addition, in a directed acyclic graph,
continuous variables should have no discrete children (Cowell et al., 1999), which is the case
when one wants to include a continuous covariate to model the conditional probabilities of a
discrete random variable.

As an illustration, we included the time interval between two consecutive signals as a covari-
ate for the probabilities of making a transition between signal-states. This way, we could test the
appropriateness of our treatment of the data as if the signals were equally spaced in time, ignor-
ing the random administration of the signals within time strata. The time interval was included
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as a covariate for the hierarchical latent Markov model with no restrictions on the conditional
response probabilities. The time interval was included as a linear and quadratic effect. More
specifically, the transition probabilities between signal-states were, respectively, modelled as

logit
(
τ

sig
rsigssigsday

) = βrsigssigsday + βtime rsigssigsday × time,

and

logit
(
τ

sig
rsigssigsday

) = βrsigssigsday + βtime rsigssigsday × time + βtime2 rsigssigsday × time2

for rsig = 1, 2; ssig = 2, and sday = 1, 2.
The analysis revealed no linear or quadratic trend for the time interval between two consec-

utive signals, LR = 7, df = 4, p = .14 and LR = 12.4, df = 8, p = .14, respectively.

8. Software

The models fitted to the diary data set were estimated with a Matlab program. The program
proceeds in two steps. In the first step, the directed acyclic graph of a model for categorical
variables is constructed from the specification of its edges, and transformed into a junction tree.
Cliques and separators are constructed, as well as a two-phase schedule for local computations
on the junction tree. This step is based on the Bayes Net Toolbox of K. Murphy (2001), which
can be downloaded for free at http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html.

In the second step, parameters are estimated with an EM algorithm in which the E-step is car-
ried efficiently through local computations on the junction tree following the two-phase schedule
obtained in the first step. For this, a separate set of Matlab functions was written. All condi-
tional probabilities are modelled through a logistic regression model as a function of its parents.
For categorical variables with more than two categories, three link functions are available: the
multinomial link function for nominal variables, and the cumulative- and adjacent-categories link
functions for ordinal variables. Unrestricted conditional probabilities are modelled with a satu-
rated multinomial logistic regression model. Additional covariates can be included. Covariates
may vary over items, persons, and/or measurement occasions. The program allows for merging
sets of terminal nodes corresponding to observed variables that share the same parents. Parame-
ters can be restricted to specific values.

In the M-step, the free parameters are updated using Fischer scoring. The information matrix
is approximated by numerical differentiation of the score function of the complete data in the
maximum likelihood solution (the score function of the complete data equals the score function
of the incomplete data; this can be shown along similar lines as presented in Fahrmeir and Tutz
(2001, sect. 7.4)).

The program is not tied to the specific models presented in this paper, and can be used for
a wide variety of models for discrete variables. For models of the latent Markov family, models
that can be fitted include, the multiple group latent Markov model (Collins & Wugalter, 1992),
the mixed latent Markov model (Langeheine & van de Pol, 1990), latent Markov models incorpo-
rating covariates (Vermunt, Langeheine, & Böckenholt, 1999), and higher-order latent Markov
models (Langeheine & van de Pol, 2000). The set of Matlab functions can be downloaded at
www.mathworks.com/matlabcentral/fileexchange/loadauthor.doiobjectid=1095467.

9. Discussion

In this paper we illustrated how latent class models can be used in modelling multiwave
multivariate categorical data, such as data stemming from diary method studies. MLEs are ob-
tained from an efficient EM algorithm in which the conditional independence relations of the

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.mathworks.com/matlabcentral/fileexchange/loadauthor.doiobjectid=1095467
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model are exploited during the E-step. Such efficient EM algorithms have already been proposed
for specific models, with the Baum–Welch algorithm for the standard latent Markov model as
the most notorious example (Baum et al., 1970; the Baum–Welch algorithm is actually a pre-
cursor of the EM algorithm). Vermunt (2003) established a similar algorithm for the estimation
of multilevel latent class models. The basic algorithm we described (Lauritzen, 1995) originates
from graphical model theory and operates on a junction tree that is constructed from the directed
acyclic graph associated with a probabilistic model. The main advantage of relying on graphical
model theory is that it offers a general approach that is not tied to the context of a specific model.
A junction tree and a corresponding schedule of flows for local computation can be constructed
automatically from any directed acyclic graph by applying available algorithms (Cowell et al.,
1999).

The junction tree can be used in a similar way to construct efficient schemes for finding
the most probable configuration of the hidden variables, given the observed data. The procedure
comes down to replacing the sum-operator by the max-operator when propagating messages
between cliques (Dawid, 1992). In the context of the illustrating data set on the course of emo-
tions among anorectic patients, a thus applied computational scheme would offer insight in the
sequences of emotional states of individual patients.

The innovative part of the paper is mainly situated in the use of logistic regression to model
the conditional probability distributions. This way, conditional probabilities can be modelled as
a function of a more limited set of parameters. Consequently, the cost of adding an edge in the
graph in terms of additional parameters to be estimated can be kept low. For example, suppose
that all random variables are binary. In a model with unrestricted conditional probabilities, adding
a parent for a random variable results in a doubling of the conditional probabilities to be estimated
for that variable. In a restricted model, the number of additional parameters can be reduced by
only incorporating a main effect for the new parent, or a main effect and lower-order interaction
effects between the new parent and the other parents. An additional advantage of modelling the
conditional probabilities using logistic regression is that covariates can be taken into account
without increasing the complexity of the associated graph. Finally, even if one is not interested in
restricting the conditional probabilities, or in taking into account the effect of covariates, it can be
advantageous to model them with a saturated logistic regression model. Unlike probabilities, the
logistic regression weights are not bounded between zero and one, so that the distribution of the
MLEs will sooner approach normality with increasing sample size, and the asymptotic standard
errors obtained from the information matrix will be a better approximation to the true standard
errors.

The extension of the scope of latent class models towards more complex data structures and
models calls for good model testing and model selection techniques. Unfortunately, model testing
for latent class models is complicated by sparseness of data when it comes to testing the global
goodness-of-fit of a model, and by the parameters of the restricted model being a nonidentifiable
subset of the parameters of the unrestricted model when determining the number of latent states
(McLachlan & Peel, 2000). In both cases, one has to rely on the computationally demanding
bootstrap technique to approximate the proper reference distribution of the test statistics under
the null hypothesis (Aitkin, Anderson, & Hinde, 1981; Collins, Fidler, Wugalter, & Long, 1993;
Langeheine, Langeheine, & van de Pol, 1996).

Model diagnostics can be used to assess specific aspects of the model. For the latent Markov
and hierarchical latent Markov models, without restrictions on the conditional probabilities and
no incorporation of covariates, model diagnostics based on pairwise log-odds ratios revealed
that both models underestimated to some degree the associations within the sets of positive and
negative emotions. Disadvantages of model diagnostics are that their reference distribution is
usually not known, and that they can be chosen “a la tête du client”. To conclude, model testing
and model selection should be a concern of future research.



F. RIJMEN, K. VANSTEELANDT, AND P. DE BOECK 181

References

Aitkin, M., Anderson, D., & Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal
Statistical Society, Series A, 144, 419–461.

Baum, L.E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of
probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 164–171.

Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology,
54, 579–616.

Collins, L.M., & Wugalter, S.E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate
Behavioral Research, 27, 131–157.

Collins, L.M., Fidler, P.L., Wugalter, S.E., & Long, S.E. (1993). Goodness-of-fit testing for latent class models. Multi-
variate Behavioral Research, 28, 375–389.

Cowell, R.G., Dawid, A.P., Lauritzen, S.L., & Spiegelhalter, D.J. (1999). Probabilistic networks and expert systems. New
York: Springer.

Dawid, A.P. (1992). Applications for a general propagation algorithm for probabilistic expert systems. Statistics and
Computing, 2, 25–36.

Delespaul, P. (1995). Assessing schizophrenia in daily life: The experience sampling method. Maastricht: Maastricht
University Press.

Diener, E., Smith, H., & Fujita, F. (1995). The personality structure of affect. Journal of Personality and Social Psychol-
ogy, 69, 130–140.

Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models (2nd ed.). New
York: Springer.

Feldman, L.A. (1995). Valence-focus and arousal-focus: Individual differences in the structure of affective experience.
Journal of Personality and Social Psychology, 69, 153–166.

Hagenaars, J.A. (1998). Categorical causal modeling: Latent class analysis and directed log-linear models with latent
variables. Sociological Methods and Research, 26, 436–486.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide. International Journal of Approxi-
mate Reasoning, 15, 225–263.

Humphreys, K., & Titterington, D.M. (2003). Variational approximations for categorical causal models with latent vari-
ables. Psychometrika, 68, 391–412.

Jensen, F.V., Lauritzen, S.L., & Olesen, K.G. (1990). Bayesian updating in causal probabilistic networks by local com-
putation. Computational Statistics Quarterly, 4, 269–282.

Langeheine, R., & van de Pol, F. (1990). A unifying framework for Markov modeling in discrete space and discrete time.
Sociological Methods and Research, 18, 416–441.

Langeheine, R., & van de Pol, F. (1994). Discrete time mixed Markov latent class models. In A. Dale & R.B. Davies
(Eds.), Analyzing social and political change. A casebook of methods (pp. 170–197). London: Sage.

Langeheine, R., & van de Pol, F. (2000). Fitting higher order Markov chains. MPR-online 2000, 5. Downloaded at
http://www.mpr-online.de/issue9/ on 18/08/2005.

Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data
analysis. Sociological Methods and Research, 24, 492–516.

Lauritzen, S.L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics
and Data Analysis, 19, 191–201.

Lauritzen, S.L. (1996). Graphical models. Oxford, UK: Clarendon Press.
Little, R.J.A., & Rubin, D.B. (1987). Statistical analysis with missing data. New York: Wiley.
McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. New York: Wiley.
McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Murphy, K. (2001). The Bayes net toolbox for Matlab. Computing Science and Statistics, 33, 331–350.
Poulsen, C.S. (1990). Mixed Markov and latent Markov modeling applied to brand choice data. International Journal of

Marketing, 7, 5–19.
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modelling. Psychome-

trika, 69, 167–190.
Skrondal, A., & Rabe-Hesketh, S. (2005). Generalized latent variable modeling: Multilevel, longitudinal and structural

equation models. Boca Raton, FL: Chapman & Hall/CRC.
Smyth, P., Heckerman, D., & Jordan, M.I. (1997). Probabilistic independence networks for hidden Markov probability

models. Neural Computation, 9, 227–269.
Vansteelandt, K., Rijmen, F., Pieters, G., & Vanderlinden, J. (2007). Drive for thinness, affect regulation and physical

activity in eating disorders: a daily life study. Behavior Research and Therapy, 45, 1717–1734.
Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213–239.
Vermunt, J.K., Langeheine, R., & Böckenholt, U. (1999). Discrete-time discrete-state latent Markov models with time-

constant and time-varying covariates. Journal of Educational and Behavioral Statistics, 24, 178–205.

http://www.mpr-online.de/issue9/


182 PSYCHOMETRIKA

Watson, D., Clark, L.A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative
affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070.

Wiggins, L.M. (1973). Panel analysis: Latent probability models for attitude and behavior processes. Amsterdam: Else-
vier.

Manuscript received 26 OCT 2005
Final version received 31 OCT 2006
Published Online Date: 4 OCT 2007


	Latent Class Models for Diary Method Data:  Parameter Estimation by Local Computations
	Abstract
	The data:

	Latent Markov Model
	Computational Burden of the Standard EM Algorithm
	Local Computation Based on the Junction Tree
	Modified EM Algorithm
	Merging Terminal Observed Nodes Sharing the Same Parents
	A Hierarchical Latent Markov Model
	Modelling the Conditional Probabilities with Logistic Regression Models
	Software
	Discussion
	References


