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Abstract

We describe a latent variable model for supervised dimensionality reduction
and distance metric learning. The model discovers linear projections of high
dimensional data that shrink the distance between similarly labeled inputs
and expand the distance between differently labeled ones. The model’s
continuous latent variables locate pairs of examples in a latent space of
lower dimensionality. The model differs significantly from classical factor
analysis in that the posterior distribution over these latent variables is not
always multivariate Gaussian. Nevertheless we show that inference is com-
pletely tractable and derive an Expectation-Maximization (EM) algorithm
for parameter estimation. We also compare the model to other approaches
in distance metric learning. The model’s main advantage is its simplicity:
at each iteration of the EM algorithm, the distance metric is re-estimated
by solving an unconstrained least-squares problem. Experiments show that
these simple updates are highly effective.

1 Introduction

In this paper we propose a simple but new model to learn informative linear projections
of multivariate data. Our approach is rooted in the tradition of latent variable modeling,
a popular methodology for discovering low dimensional structure in high dimensional data.
Two well-known examples of latent variable models are factor analyzers (FAs), which recover
subspaces of high variance [1], and Gaussian mixture models (GMMs), which reveal clusters
of high density [2]. Here we describe a model that we call latent coincidence analysis (LCA).
The goal of LCA is to discover a latent space in which metric distances reflect meaningful
notions of similarity and difference.

We apply LCA to two problems in distance metric learning, where the goal is to improve
the performance of a classifier—typically, a k-nearest neighbor (kNN) classifier [3]—by a
linear transformation of its input space. Several previous methods have been proposed for
this problem, including neighborhood component analysis (NCA) [4], large margin neighbor
neighbor classification (LMNN) [5], and information-theoretic metric learning (ITML) [6].
These methods—all of them successful, all of them addressing the same problem—beg the
obvious question: why yet another?

One answer is suggested by the different lineages of previous approaches. NCA was conceived
as a supervised counterpart to stochastic neighborhood embedding [7], an unsupervised
method for dimensionality reduction. LMNN was conceived as a kNN variant of support
vector machines [8]. ITML evolved from earlier work in Bregman optimizations—that of
minimizing the LogDet divergence subject to linear constraints [9]. Perhaps it is due to
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Figure 1: Bayesian network for latent coincidence analysis. The inputs x,x′ ∈ ℜd are
mapped into Gaussian latent variables z, z′ ∈ ℜp whose statistics are parameterized by the
linear transformation W ∈ ℜp×d and noise level σ. Coincidence in the latent space at length
scale κ is detected by the binary variable y ∈ {0, 1}. Observed nodes are shaded.

these different lineages that none of these methods completely dominates the others. They
all offer improvements in kNN classification, yet arguably their larger worth stems from
the related work they have inspired in other areas of pattern recognition. Distance metric
learning is a fundamental problem, and the more solutions we have, the better equipped we
are to solve its myriad variations.

It is in this spirit that we revisit the problem of distance metric learning in the venerable
tradition of latent variable modeling. We believe that LCA, like factor analysis and Gaussian
mixture modeling, is the simplest latent variable model that can be imagined for its purpose.
In particular, the inference in LCA (though not purely Gaussian) is tractable, and the
distance metric is re-estimated at each iteration of its EM algorithm by a simple least-
squares update. This update has stronger guarantees of convergence than the gradient-
based methods in NCA; it also sidesteps the large number of linear inequality constraints
that appear in the optimizations for LMNN and ITML. For all these reasons, we believe
that LCA deserves to be widely known.

2 Model

We begin by describing the probabilistic model for LCA. Fig. 1 shows the model’s repre-
sentation as a Bayesian network. There are three observed variables: the inputs x,x′ ∈ ℜd,
which we always imagine to be observed in pairs, and the binary label y ∈ {0, 1}, which
indicates if the inputs map (or are desired to be mapped) to nearby locations in a latent
space of equal or reduced dimensionality p≤d. These locations are in turn represented by
the Gaussian latent variables z, z′ ∈ ℜp.

Each node in the Bayesian network is conditionally dependent on its parents. The con-
ditional distributions P (z|x) and P (z′|x′) are parameterized by a linear transformation
W ∈ ℜp×d (from the input space to the latent space) and a noise level σ2. They take the
simple Gaussian form:

P (z|x) = (2πσ2)−p/2 e
− 1

2σ2
‖z−Wx‖2

, (1)

P (z′|x′) = (2πσ2)−p/2 e
− 1

2σ2
‖z′−Wx

′‖2

. (2)

Finally, the binary label y ∈ {0, 1} is used to detect the coincidence of the variables z, z′ in
the latent space. In particular, y follows a Bernoulli distribution with mean value:

P (y=1|z, z′) = e
− 1

2κ2
‖z−z

′‖2

. (3)

Eq. (3) states that y=1 with certainty if z and z′ coincide at the exact same point in the
latent space; otherwise, the probability in eq. (3) falls off exponentially with their squared
distance. The length scale κ in eq. (3) governs the rate of this exponential decay.
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2.1 Inference

Inference in this model requires averaging over the Gaussian latent variables z, z′. The
required integrals take the form of simple Gaussian convolutions. For example:

P (y=1|x,x′) =

∫

dzdz′P (y=1|z, z′)P (z|x)P (z′|x′) (4)

=

(

κ2

κ2+2σ2

)p/2

exp

(

−
‖W(x−x′)‖2

2 (κ2+2σ2)

)

. (5)

Note that this marginal probability is invariant to uniform re-scalings of the model param-
eters W, σ, and κ; we will return to this observation later. For inputs (x,x′), we denote
the relative likelihood, or odds, of the event y=1 by

ν(x,x′) =
P (y=1|x,x′)

P (y=0|x,x′)
. (6)

As we shall see, the odds appear in the calculations for many useful forms of inference. Note
that the odds ν(x,x′) has a complicated nonlinear dependence on the inputs (x,x′); the
numerator in eq. (6) is Gaussian, but the denominator (equal to one minus the numerator)
is not.

Of special importance for learning (as discussed in section 2.2) are the statistics of the
posterior distribution P (z, z′|x,x′, y). We obtain this distribution using Bayes rule:

P (z, z′|x,x′, y) =
P (y|z, z′)P (z|x)P (z′|x′)

P (y|x,x′)
. (7)

We note that the prior distribution P (z, z′|x,x′) is multivariate Gaussian, as is the posterior
distribution P (z, z′|x,x′, y = 1) for positively labeled pairs of examples. However, this is
not true of the posterior distribution P (z, z′|x,x′, y = 0) for negatively labeled pairs. In
this respect, the model differs from classical factor analysis and other canonical models with
Gaussian latent variables (e.g., Kalman filters).

Despite the above wrinkle, it remains straightforward to compute the low-order moments
of the distribution in eq. (7) for both positively (y=1) and negatively (y=0) labeled pairs1

of examples. In particular, for the posterior means, we obtain:

E[z|x,x′, y=0] = W

[

x−

(

νσ2

κ2 + 2σ2

)

(x′−x)

]

, (8)

E[z|x,x′, y=1] = W

[

x+

(

σ2

κ2 + 2σ2

)

(x′−x)

]

, (9)

where the coefficient ν in eq. (8) is shorthand for the odds ν(x,x′) in eq. (6). Note how the
posterior means E[z|x,x′, y] in eqs. (8–9) differ from the prior mean

E[z|x,x′] = Wx. (10)

Analogous results hold for the prior and posterior means of the latent variable z′. Intuitively,
these calculations show that the expected values of z and z′ move toward each other if the
observed label indicates a coincidence (y=1) and away from each other if not (y=0).

For learning it is also necessary to compute second-order statistics of the posterior distribu-
tion. For the posterior variances, straightforward calculations give:

E

[

‖z− z̄‖2
∣

∣

∣

∣

x,x′, y=0

]

= pσ2

[

1 +
νσ2

κ2 + 2σ2

]

, (11)

E

[

‖z− z̄‖2
∣

∣

∣

∣

x,x′, y=1

]

= pσ2

[

1−
σ2

κ2 + 2σ2

]

, (12)

1For the latter, the statistics can be expressed as the differences of Gaussian integrals.
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where z̄ in these expressions denotes the posterior means in eqs. (8–9), and again the coef-
ficient ν is shorthand for the odds ν(x,x′) in eq. (6). Note how the posterior variances in
eqs. (11–12) differ from the prior variance

E

[

‖z−Wx‖2
∣

∣

∣

∣

x,x′

]

= pσ2. (13)

Intuitively, we see that the posterior variance shrinks if the observed label indicates a coin-
cidence (y=1) and grows if not (y=0). The expressions for the posterior variance of the
latent variable z′ are identical due to the model’s symmetry.

2.2 Learning

Next we consider how to learn the linear projection W, the noise level σ2, and the length
scale κ2 from data. We assume that the data comes in the form of paired inputs x,x′,
together with binary judgments y ∈ {0, 1} of similarity or difference. In particular, from
a training set {(xi,x

′
i, yi)}

N
i=1

of N such examples, we wish to learn the parameters that
maximize the conditional log-likelihood

L(W, σ2, κ2) =

N
∑

i=1

logP (yi|xi,x
′
i) (14)

of observed coincidences (yi = 1) and non-coincidences (yi = 0). We say that the data is
incomplete or partially observed in the sense that the examples do not specify target values
for the latent variables z, z′; instead, such target values must be inferred from the model’s
posterior distribution.

Given values for the model parameters W, σ2, and κ2, we can compute the right hand side of
eq. (14) from the result in eq. (5). However, the parameters that maximize eq. (14) cannot
be computed in closed form. In the absence of an analytical solution, we avail ourselves
of the EM algorithm, an iterative procedure for maximum likelihood estimation in latent
variable models [10]. The EM algorithm consists of two steps, an E-step which computes
statistics of the posterior distribution in eq. (7), and an M-step which uses these statistics
to re-estimate the model parameters. The two steps are iterated until convergence.

Intuitively, the EM algorithm uses the posterior means in eqs. (8–9) to “fill in” the missing
values of the latent variables z, z′. As shorthand, let

z̄i = E[z|xi,x
′
i, yi], (15)

z̄′i = E[z′|xi,x
′
i, yi] (16)

denote these posterior means for the ith example in the training set, as computed from the
results in eq. (8–9). The M-step of the EM algorithm updates the linear transformation W
by minimizing the sum of squared errors

E(W) =
1

2

N
∑

i=1

[

‖z̄i −Wxi‖
2
+ ‖z̄′i −Wx′

i‖
2
]

, (17)

where the expected values z̄i, z̄
′
i are computed with respect to the current model parameters

(and thus treated as constants in the above minimization). Minimizing the sum of squared
errors in eq. (17) gives the update rule:

W ←

[

N
∑

i=1

(

z̄ix
⊤
i + z̄′ix

′
i
⊤
)

][

N
∑

i=1

(

xix
⊤
i + x′

ix
′
i
⊤
)

]−1

, (18)

where the product in eq. (18) is understood as a vector-matrix multiplication. The EM
update for the noise level σ2 takes an equally simple form. As shorthand, let

ε2i = E

[

‖z− z̄‖2
∣

∣

∣

∣

xi,x
′
i, yi

]

(19)

4



MNIST BBC Classic4 Isolet Letters Seg Bal Iris

# train 60000 1558 4257 6238 14000 210 438 105
# test 10000 667 1419 1559 6000 2100 187 45
# classes 10 5 4 26 26 7 3 3
# features (D) 784 9635 5896 617 16 19 4 4
# inputs (d) 164 200 200 172 16 19 4 4
LCA dim (p) 40 4 32 40 16 18 4 4
Euclidean 2.83 30.10 7.89 8.98 4.73 13.71 18.82 5.33
PCA 2.12 11.90 9.74 8.60 4.75 13.71 18.07 5.33
LMNN 1.34 3.40 3.19 3.40 2.58 8.57 8.98 5.33
LCA 1.61 3.41 3.54 3.72 2.93 8.57 4.06 2.22

Table 1: Summary of data sets for multiway classification. For efficiency we projected data
sets of high dimensionality D down to their leading d principal components. MNIST [11] is
a data set of handwritten digits; we deslanted the images to reduce variability. BBC [12]
and Classic4 [13] are text corpora with labeled topics. The last five data sets are from
the UCI repository [14]. The bottom four rows compare test error percentage using 3-NN
classification. For data sets without dedicated test sets, we averaged across multiple random
70/30 splits.

denote the posterior variance of z for the ith example in the training set, as computed from
the results in eqs. (11–12). Then the EM update for the noise level is given by:

σ2 ←
1

pN

[

min
W

E(W) +

N
∑

i=1

ε2i

]

. (20)

The minimum of E(W) in this update is computed by substituting the right hand side of
eq. (18) into eq. (17).

The EM updates forW and σ2 have the desirable property that they converge monotonically
to a stationary point of the log-likelihood: that is, at each iteration, they are guaranteed
to increase the right hand side of eq. (14) except at points in the parameter space with
vanishing gradient. A full derivation of the EM algorithm is omitted for brevity.

We have already noted that the log-likelihood in eq. (14) is invariant to uniform rescaling
of the model parameters W, σ, and κ. Thus without loss of generality we can set κ2=1 in
the simplest setting of the model, as described above. It does become necessary to estimate
the parameter κ2, however, in slightly extended formulations of the model, as we consider
in section 3.2. Unlike the parameters W and σ2, the parameter κ2 does not have a simple
update rule for its re-estimation by EM. When necessary, however, this parameter can be
re-estimated by a simple line search. This approach also preserves the property of monotonic
convergence.

3 Applications

We explore two applications of LCA in which its linear transformation is used to preprocess
the data for different models of multiway classification. We assume that the original data
consists of labeled examples {(xi, ci)} of inputs xi∈ℜ

d and their class labels ci∈{1, 2, . . . , c}.
For each application, we show how to instantiate LCA by creating a particular data set of
labeled pairs, where the labels indicate whether the examples in each pair should be mapped
closer together (y=1) or farther apart (y=0) in LCA’s latent space of dimensionality p≤d.
In the first application, we use LCA to improve a parametric model of classification; in the
second application, a nonparametric one. The data sets in our experiments are summarized
in Table 1.

3.1 Gaussian mixture modeling

Gaussian mixture models (GMMs) offer perhaps the simplest parametric model of multiway
classification. In the most straightforward application of GMMs, the labeled examples in
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each class c are modeled by a single multivariate Gaussian distribution with mean µc and
covariance matrix Σc. Classification is also simple: for each unlabeled example, we use
Bayes rule to compute the class with the highest posterior probability.

Even in these simplest of GMMs, however, challenges arise when the data is very high
dimensional. In this case, it may be prohibitively expensive to estimate or store the covari-
ance matrix for each class of the data. In this case two simple options are: (i) to reduce
the input’s dimensionality using principal component analysis (PCA) or linear discriminant
analysis (LDA) [15], or (ii) to model each multivariate Gaussian distribution using factor
analysis. In the latter, we learn distributions of the form:

P (x|c) ∼ N (µc,Ψc +ΛcΛ
⊤
c ) (21)

where the diagonal matrix Ψc ∈ ℜ
d×d and loading matrix Λc ∈ ℜ

d×p are the model param-
eters of the factor analyzer belonging to the cth class. Factor analysis can be formulated as
a latent variable model, and its parameters estimated by an EM algorithm [1].

GMMs are generative models trained by maximum likelihood estimation. In this section,
we explore how LCA may yield classifiers of similar form but higher accuracy. To do so, we
learn one model of LCA for each class of the data. In particular, we use LCA to project
each example xi into a lower dimensional space where we hope for two properties: (i) that
it is closer to the mean of projected examples from the same class yi, and (ii) that it is
farther from the mean of projected examples from other classes c 6=yi.

More specifically, we instantiate the model of LCA for each class as follows. Let µc ∈ ℜ
d

denote the mean of the labeled examples in class c. Then we create a training set of labeled
pairs {µc,xi, yic} over all examples xi where yic = 1 if yi = c and yic = 0 if yi 6= c. From
this training set, we use the EM algorithm in section 2.2 to learn a (class-specific) linear
projection Wc and variance σc. Finally, to classify an unlabeled example x, we compute
the probabilities:

P (yc=1|x) =

(

1

1+2σ2
c

)p/2

exp

{

−
‖Wc(x−µc)‖

2

2 (1+2σ2
c )

}

. (22)

We label the example x by the class c that maximizes the probability in eq. (22). As
we shall see, this decision rule for LCA often makes different predictions than Bayes rule
in maximum likelihood GMMs. Conveniently, we can train the LCA models for different
classes in parallel.

We evaluated the performance of LCA in this setting on the first four data sets in Table 1.
Over a range of reduced dimensionalities p < d, we compared the classification accuracy of
three approaches: (i) GMMs with full covariance matrices after projecting the data down
to p dimensions with PCA or LDA, (ii) GMMs with p-dimensional factor analyzers, and
(iii) p-dimensional models of LCA. Fig. 2 shows that LCA generally outperforms these
other methods; also, its largest gains occur in the regime of very aggressive dimensionality
reduction p≪d. To highlight the results in this regime, Fig. 3 contrasts the p=2 dimensional
representations of the data discovered by PCA and LCA. Here it is visually apparent that
LCA leads to much better separation of the examples in different classes.

3.2 Distance metric learning

We can also apply LCA to learn a distance metric that improves kNN classification [4, 5, 6].
Our approach draws heavily on the ideas of LMNN [5], though differs in its execution. In
LMNN, each training example has k target neighbors, typically chosen as the k nearest
neighbors in Euclidean space with the same class label. LMNN learns a metric to shrink
the distances between examples and target neighbors while preserving (or increasing) the
distances between examples from different classes. Errors in kNN classification tend to
occur when differently labeled examples are closer together than pairs of target neighbors.
Thus LMNN seeks to minimize the number of differently labeled examples that invade the
perimeters established by target neighbors. These examples are known as impostors.

In LCA, we can view the matrix W⊤W as a Mahalanobis distance metric for kNN classifi-
cation. The starting point of LCA is to create a training set of pairs of examples. Among
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Figure 2: Comparison of dimensionality reduction by principal components analysis (PCA),
factor analysis (FA), linear discriminant analysis (LDA), and latent coincidence analysis
(LCA). The plots show test set error versus dimensionality p.

P
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Figure 3: Comparison of two-dimensional (p=2) representations of data discovered by PCA
and LCA. The examples are color-coded by class label.

these pairs, we wish the similarly labeled examples to coincide (y = 1) and the differently
labeled examples to diverge (y = 0). For the former, it is natural to choose all pairs of
examples and their target neighbors. For the latter, it is natural to choose all pairs of
differently labeled examples. Concretely, if there are c classes, each with m examples, then
this approach creates a training set of ckm pairs of similarly labeled examples (with y=1)
and c(c− 1)m2 pairs of differently labeled examples (with y=0).

Unfortunately it is clear that this approach does not scale well with the number of examples.
We therefore adopt two pruning strategies in our implementation of LCA. First, we do
not include training examples without impostors. Second, among the pairs of differently
labeled examples, we only include each example with its current or previous impostors.
A complication of this approach is that every few iterations we must check to see if any
example has new impostors. If so, we add the example, its target neighbors, and impostors
into the training set. This strategy was used in all the experiments described below. Our
short-cuts are similar in spirit to the optimizations in LMNN [5] as well as more general
cutting plane strategies of constrained optimization [16].

The use of LCA for kNN classification also benefits from a slight but crucial extension of
the model in Fig. 1. Recall that the parameter κ2 determines the length scale at which
projected examples are judged to coincide in the latent space. For kNN classification, we
extend the model in Fig. 1 to learn a local parameter κ2 for each input in the training set.
These local parameters κ2 are needed to account for the fact that different inputs may reside
at very different distances from their target neighbors. In the graphical model of Fig. 1,
this extension amounts to drawing an additional plate that encloses the parameter κ2 and
the model’s random variables, but not the parameters W and σ2.

Note that the σ2 and κ2 parameters of LCA, though important to estimate, are not ul-
timately used for kNN classification. In particular, after a model is trained, we simply
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Figure 4: Comparison of dimensionality reduction by principal components analysis (PCA)
and latent coincidence analysis (LCA). The plots show kNN classification error (training
dotted, test solid) versus dimensionality p.
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Figure 5: Comparison of kNN classification by PCA, LMNN, and LCA. We set k=3 for all
experiments. Training error is computed using leave-one-out cross-validation. The values
of p used for LCA are given in Table 1.

perform kNN classification using the Mahalanobis distance metric parameterized by the
linear transformation W.

For comparison, we measure kNN classification accuracy using Euclidean distance, PCA,
and LMNN. We report all three along with LCA in Table 1, but we focus on PCA in Fig. 4 to
illustrate the effect of dimensionality reduction. LCA consistently outperforms PCA across
all dimensionalities. Additionally, we hold out a validation set to search for an optimal
dimensionality p. In Fig. 5, we compare LCA to PCA and LMNN. Again, LCA is clearly
superior to PCA and generally achieves comparable performance to LMNN. Advantageously,
we often obtain our best result with LCA using a lower dimensionality p<d.

4 Discussion

In this paper we have introduced Latent Coincidence Analysis (LCA), a latent variable model
for learning linear projections that map similar inputs closer together and different inputs
farther apart. Inference in LCA is entirely tractable, and we use an EM algorithm to learn
maximum likelihood estimates of the model parameters. Our approach values simplicity,
but not at the expense of efficacy. On problems in mixture modeling and distance metric
learning tasks, LCA performs competitively across a range of reduced dimensionalities.

There are many directions for future work. One challenge that we observed was slow conver-
gence of the EM algorithm, an issue that may be ameliorated by the gradient or second-order
methods proposed in [17]. To handle larger data sets, we plan to explore online strategies
for distance metric learning [18], possibly based on Bayesian [19] or confidence-weighted
updates [20]. Finally, we will explore hybrid strategies between the mixture modeling in
section 3.1 and kNN classifiction in section 3.2, where multiple (but not all) examples in
each class are used as “anchors” for distance-based classification. All these directions should
open the door to implementations on larger scales [21] than we have considered here.
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