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1. INTRODUCTION
With huge growth of online text data, it is becoming of

vital importance for social scientists to have reliable meth-
ods for fast automated analysis of such data. Among other
things, researchers are interested in methods able to track
agendas, topics, opinions, and sentiments in user-generated
content that can later be used for the goals of political sci-
ence, sociology, marketing, and other disciplines. However,
a vast gap can be observed between approaches to reliability,
validity, and more general concepts related to the quality of
a method in social science, on the one hand, and mathemat-
ics and computer science, on the other. One of the methods
aimed at detecting topical structure in large text collections
is a class of probabilistic models called Latent Dirichlet Allo-
cation (LDA); these models have become the de facto stan-
dard in the field of topic modeling. However, comprehensive
investigations of the quality of these models for qualitative
studies are very scarce, and some indicators of quality, such
as reproducibility, have hardly been researched at all. In-
stead, complex extensions of the algorithm are proliferating
rapidly [2, 9, 18, 4], as well as applications of topic model-
ing to specific datasets and applied goals, e.g., qualitative
studies, without comprehensive prior testing [7].

In the most general terms, quality for social scientists
means that the algorithm is able to show the topics“that are
really there”. In particular, a social scientist would expect a
topic modeling algorithm to detect all “existing” topics, not
detect any “non-existing” topics, and show their “true” pro-
portion. One important criterion for such an understanding
of quality is the algorithm’s stability: if a model gives dif-
ferent output each time it is run on the same data, it means
that the algorithm is unable to draw the “true” picture of
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social reality. As a result, a researcher cannot conclude, say,
whether the online public is currently talking more about
elections than about popstars (in sociological context), or
more about one brand than another (in marketing context).

LDA models each document as expressing multiple top-
ics at once; a document is said to express each topic with
a certain affinity. Likewise, each topic is a distribution on
words. Thus, from the mathematical point of view each
document is a mixture of distributions. To find the word-
topic and topic-document matrices (probabilities of words
appearing in topics and topics appearing in documents), one
has to approximate the initial set of documents by these
distributions. Two most popular approaches are based on
variational approximations [1, 3] and Gibbs sampling [5] re-
spectively. These algorithms find a local maximum of the
joint likelihood function of the dataset; this is accepted as
a solution for the topic modeling problem. Moreover, the
LDA approach has been further developed by offering more
complex model extensions with additional parameters and
additional information [2, 9, 18, 4].

However, from the end user’s point of view a local max-
imum does not necessarily represent a satisfactory solution
for the topic modeling problem. In the case of LDA, there
are plenty of local maxima [5], which may lead to instability
in the output. Therefore, before using any LDA training al-
gorithm social scientists have to understand how stable the
output will be; this, in turn, leads to the need for an instru-
ment of comparison between different solutions. A metric
used in such comparisons should be able to capture similar-
ity between topics as sets of words with descending proba-
bilities. One problem related to this task is the huge “long
tail” of words with low probabilities that are mostly irrele-
vant for qualitative analysis but may contribute much to the
level of similarity between topics. Therefore, we may need
additional criteria for reducing these sets of words.

In this work, we investigate the instability of the LDA
algorithm, and for that purpose we propose a new metric
of similarity between topics and a criterion of vocabulary
reduction. We show the limitations of the LDA approach for
the goals of qualitative analysis in social science and sketch
some ways to improvement.

2. RELATED WORK AND OUR CONTRI-
BUTIONS

2.1 LDA
The basic latent Dirichlet allocation (LDA) model [3, 5]



Figure 1: LDA graphical model.

is depicted on Fig. 1. In this model, a collection of D docu-
ments is assumed to contain T topics expressed with W dif-
ferent words. Each document d ∈ D is modeled as a discrete
distribution θ(d) over the set of topics: p(zw = j) = θ(d),
where z is a discrete variable that defines the topic for each
word w ∈ d. Each topic, in turn, corresponds to a multi-

nomial distribution over the words, p(w | zw = j) = φ
(j)
w .

The model also introduces Dirichlet priors α for the distri-
bution over documents (topic vectors) θ, θ ∼ Dir(α), and
β for the distribution over the topical word distributions,
φ ∼ Dir(β). The inference problem in LDA is to find hid-
den topic variables z, a vector spanning all instances of all
words in the dataset. There are two approaches to inference
in the LDA model: variational approximations and MCMC
sampling which in this case is convenient to frame as Gibbs
sampling. In this work, we use Gibbs sampling because it
generalizes easily to semi-supervised LDA considered below.
In the LDA model, Gibbs sampling after easy transforma-
tions [5] reduces to the so-called collapsed Gibbs sampling,
where zw are iteratively resampled with distributions

p(zw = t | z−w,w, α, β) ∝ q(zw, t, z−w,w, α, β) =

=
n
(d)
−w,t + α∑

t′∈T

(
n
(d)

−w,t′ + α
) n

(w)
−w,t + β∑

w′∈W

(
n
(w′)
−w,t + β

) ,
where n

(d)
−w,t is the number of times topic t occurs in docu-

ment d and n
(w)
−w,t is the number of times word w is generated

by topic t, not counting the current value zw.

2.2 Evaluating LDA quality with perplexity
One well established method for numerical evaluation of

topic modeling results is to measure perplexity. Perplexity
shows how well topic-word and word-document distributions
predict new test samples; for a set of held-out documents
Dtest one computes

p(w | D) =

∫
p(w | Φ, αm)p(Φ, αm | D)dαdΦ

for each held-out document w and then normalizes the result
as

perplexity(Dtest) = exp

(
−
∑

w∈Dtest
log p(w)∑

w∈Dtest
Nd

)
.

To compute p(w | D), various algorithms have been pro-
posed, the current standard being the left-to-right algorithm
proposed and recommended in [17, 16].

The smaller the perplexity, the better (less uniform) is the
LDA model and the more it differs from the starting distri-
bution. However, an important drawback of evaluating the
quality of a parametric LDA model with perplexity is the
fact that the value of perplexity drops as the number of top-
ics grows, so perplexity does not really yield a way to find
the optimal number of topics either numerically or qualita-
tively. In general, topic modeling is in essence a variation
on the clustering problem, so it inherits certain problems
of clustering, including the problem of finding the optimal
number of clusters (model selection). Moreover, perplexity
depends on the dictionary size which further complicates the
comparison of different results. In a comparison by de Waal
and Barnard [15], the value of perplexity was studied as a
function of dictionary size (for a fixed number of topics and
documents), and the authors show that when the dictionary
was reduced by 70%, the perplexity dropped by a factor of
three. Unfortunately, the authors did not analyze how this
reduction in the dictionary affects the final result of topic
modeling, i.e., how well the topics represent the actual con-
tents of the dataset.

In general, perplexity is a good measure to estimate con-
vergence of the iterative process but it is unclear how to
use it to evaluate the quality of topic modeling, especially
from the point of view of human interpretation necessary in
qualitative studies.

2.3 Evaluating LDA quality with Kullback–
Leibler divergence and topic correlation

Steyvers and Griffiths [6] propose to evaluate LDA qual-
ity with a symmetric Kullback–Leibler divergence. This ap-
proach is based on pairwise comparisons of two solutions
to the topic modeling problem. The pairwise comparison is
computed as

KL =
1

2

∑
w

φ1
w log

φ1
w

φ2
w

+
1

2

∑
w

φ2
w log

φ2
w

φ1
w

,

where φ1
w is the word distribution for the first topic; φ2

w, for
the second topic. This metric shows similarity between two
topics, but further analysis that would analyze the stability
of topic reproduction in multiple topic modeling experiments
on the same dataset has not been performed. Besides, the
Kullback–Leibler divergence only gives an estimate of the
similarity of two topics while detailed analysis would have
to take into account some evaluation of the dissimilarity
between two topics.

A different approach to pairwise comparisons between top-
ics was proposed by de Waal and Barnard [15]. Instead of
Kullback–Leibler divergence, they propose a method to com-
pute correlation between documents from two topic model-
ing experiments. The method consists of the following steps:

(1) construct a bipartite graph based on two topical solu-
tions;

(2) compute the minimal distance between topics in this
bipartite graph;

(3) compare topics between two cluster solutions based on
the minimal distance.

This means that two topics are similar if they have the small-
est distance between them as compared to the distance from



these two topics to other topics. To compute minimal dis-
tances in the bipartite graph, the authors use the so-called
Hungarian method, also known as Kuhn’s method [8]. The
authors show that correlation between documents does not
depend on dictionary size as much as perplexity.

2.4 Our contributions
In this work, we propose several new metrics for evaluating

different aspects of topic modeling. Namely, we introduce
the notions of document and word ratios that show the frac-
tion of words and documents that are actually relevant to
specific topics. This lets us drastically cut the vocabulary in
our novel topic similarity metric based on Kullback–Leibler
divergence; we show that this metric matches qualitative ex-
pectations of the notion of similar topics quite well. Armed
with this metric, we study the stability of Gibbs sampling
for LDA inference and discover that modeling results are
unstable, and sociological analysis based on topic modeling
should proceed with extra care. We conclude with recom-
mendations for further studies.

In numerical experiments, we used a popular LDA infer-
ence implementation based on Gibbs sampling, GibbsLDA++
[10]. The dataset for experiments consists of Russian lan-
guage LiveJournal posts for October 2013 that we have col-
lected for the purposes of qualitative sociological and me-
dia studies. There are 298,967 posts in the dataset with
35,049,514 instances of 153,536 unique words.

3. EVALUATING SPARSITY

3.1 Word and document ratios
LDA inference algorithms based on Gibbs sampling rely

upon random sampling used to generate topic variables z
for document instances on each iteration. Thus, topic mod-
eling by itself is influenced by random noise: topic variables
for both documents and topics fluctuate randomly during
modeling. However, the LDA inference algorithm guaran-
tees that the iterative process converges to a certain value
of perplexity with some noise, which means that the number
of words and documents used in modeling also converge to
a certain value.

To estimate the number of high probability words and
documents, we introduce the notion of ratio. Ratio is closely
related to the notion of perplexity. The initial distribution
for words and documents is uniform, so the probability of
each topic in each document starts from 1/K, where K is the
number of topics, and the probability of each word in each
topic starts from 1/V , where V is the dictionary size. During
inference, probabilities of words and topics in documents
change, but they still, obviously, sum up to one; some words
and topics rise above the average values of 1/K and 1/V ,
and the others sink below it.

We introduce document ratio as the parameter that char-
acterizes the ratio of the total number of topics with prob-
ability greater than 1/K over all documents:

DR =
1

K|D|
∑
d∈D

∑
k

[
θ
(d)
k >

1

2

]
.

At the beginning of the first iteration, DR = 1; over Gibbs
sampling iterations, DR begins to drop and then, at some
point, it stabilizes and converges to some value; we can stop
the Gibbs sampling as fluctuations of DR attenuate. Sim-
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Figure 2: Sample word ratio (%) as a function of
iteration index.
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Figure 3: Sample document ratio (%) as a function
of iteration index.

ilarly, we formulate the notion of words ratio which is the
ratio of the number of words in all topics with probability
higher than 1/V to the total number of words in all topics:

WR =
1

KW

∑
w

∑
k

[
φk
w >

1

2

]
.

Note that the same document (resp., word) may participate
in the computation of document ratio (resp., word ratio)
several times.

Figure 2 shows the behaviour of word ratio for a sample
run of LDA inference with 120 topics; Fig. 3, the behaviour
of document ratio. In this case, the word ratio stabilized af-
ter 150–200 iterations around 3.2%; document ratio, around
11.5%. One can also introduce the average word ratio over
a set of samples as AWR = 1

n

∑n
i=1 WRi, where WRi is the

word ratio measured at the ith sample; similarly. the aver-
age document ratio is introduced as ADR = 1

n

∑n
i=1 DRi.

Our experiments with different number of topics (from 50 to
280) have shown that the word ratio stabilizes around 3.5%
and document ratio stabilizes around 11.5% in all experi-
ments, with standard deviation of the results being about
0.5-1%.

3.2 KL-based similarity metric
The Kullback–Leibler divergence is a widely accepted dis-

tance measure between two probability distributions. How-
ever, directly computing KL divergence to measure similar-
ity between two topics in a topic modeling result does not
lead to a good result since the KL value is dominated by the
long tail of low probability words that do not define the topic
in any qualitative way and are mostly random. Therefore,
in this section we devise a modification for the KL metric to
measure similarity between topics.

As we have shown above, the number of words with above
average probabilities in our experiments was about 3.5% of
the total number of unique words in all topics. Therefore,



tree 0.03195 tree 0.03321
forest 0.021 forest 0.01918

garden 0.01527 green 0.01631
mushroom 0.015 mushroom 0.01563

leaf 0.01389 garden 0.01478
plant 0.01291 leaf 0.01453
grow 0.01146 plant 0.0135
green 0.00873 grow 0.01277

collect 0.00779 color 0.01045
rose 0.00764 flower 0.00809

flower 0.00744 rose 0.00809
color 0.00701 collect 0.00766

Table 1: A pair of topics with similarity measure 0.9.

our first optimization for the KL divergence was to reduce
the dictionary from the entire set of 153,536 tokens (words)
to 8000 words (about 5.2%). This also makes KL diver-
gence computations faster since computing KL divergences
between two sets of topics has complexity O(K2W ), where
K is the number of topics and W is the dictionary size.

Another deficiency of the“vanilla”Kullback–Leibler diver-
gence is that it significantly depends on the dictionary size
[15]. This means that while the KL divergence is always
zero (or very close to zero) when two distributions coincide
almost exactly, it may have values all over the [0, 1] for two
very distinct topics if we consider different dictionaries and
different pairs of topics, so it is hard to find a good general
threshold for KL divergence. To get such a threshold, we
propose to normalize KL divergence by making the distance
between two least similar topics artificially equal to 1. Thus,
we introduce the normalized KL similarity measure as

NKLS(t1, t2) =

(
1− KL(t1, t2)

maxt′1,t
′
2

KL(t′1, t
′
2)

)
,

where KL denotes the regular KL divergence. In the NLKS
measure, 1 corresponds to a perfect match and 0 corresponds
to the furthest possible distributions among given sets of
topics.

3.3 Topic similarity thresholds
Kullback–Leibler divergence takes into account the long

tail of topic-word distributions, and it may happen (and
often does) that large deviations in KL-based metrics do
not really correspond to significant differences in top words,
i.e., the words that a qualitative researcher would use to
define and understand a topic. To estimate this effect, we
need to study how similarity between top words relates to
the NLKS similarity measure.

Our studies have shown that in topics with similarity
0.93− 0.95 and higher, the 30-50 most probable words coin-
cide almost exactly, and the sequences in which they appear
in the list sorted by probability are also very similar; thus,
similarity levels of 0.93 and higher indicate that a qualita-
tive researcher would almost certainly treat these topics as
the same. Similarity level about 0.9 usually corresponds to
the situation when the first 30-50 words in the ranked list
do match, but they have different probabilities and go in a
different order; Table 1 shows a sample pair of such topics.
The similarity level of 0.85 usually corresponds to a situa-
tion when two topics have a completely different set of top
words.

Therefore, our experiments indicate that the proposed
NLKS metric does correspond well to a qualitative estima-
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Figure 4: Topic similarity sorted in decreasing order;
lines correspond to different test run comparisons.

tion of topic similarity, and the similarity threshold for“truly
similar” topics appears to be around 0.9. In the next sec-
tion, we apply this metric to study the stability of Gibbs
sampling.

4. TOPIC STABILITY

4.1 Experimental setting
In topic modeling, the posterior distribution which is max-

imized during inference may have a very complex and cer-
tainly nonconvex shape. This leads to multiple local max-
ima; in practical terms, it means that different runs of the
same software may lead to different results, in particular, dif-
ferent word-topic distributions. Therefore, it becomes of pri-
mary importance to test the stability of topic reproduction.
We propose the following method to estimate the stability of
reconstructing topical solutions for given (unchanged) α and
β parameters and a fixed number of topics. We perform sev-
eral runs of the LDA inference software GibbsLDA++ [10]
with the same parameters, getting several word-topic and
topic-document distributions. Since these distributions re-
sult from the same dataset with the same vocabulary and
model parameters, any differences between them are entirely
due to the randomness in Gibbs sampling. This randomness
affects perplexity variations, word and document ratios, and
the reproducibility of the qualitative topical solution. Words
may change their probabilities in topics, and it makes sense
to use a KL-based measure to compare topical solutions. We
use the normalized measure NLKS introduced above.

In our experiments, we performed six runs with K = 120
topics with model parameters α = β = 0.5 on our dataset
with 298,967 documents and a vocabulary of 153,536 unique
words. Then we performed pairwise comparisons of the re-
sults with the NLKS metric, computing how similar the top-
ics are across different runs, for each pair of models getting a
K ×K matrix whose elements represent the similarity met-
ric between topics. Then, for each topic of one model (each
row of the similarity matrix) we find the most similar topic
in the second model (column of the similarity matrix).

4.2 Results
Fig. 4 shows topics sorted according to similarity in three

comparisons between different runs of LDA inference. It
shows that less than half of the topics are reproduced with
reliable stability (similarity > 0.9); this share would be even



1 2 3 4 25 26 27 28 93 94 95 96 97 98 11
8

11
9

12
0

0.6

0.7

0.8

0.9

1

Topics

Figure 5: Sample topic similarities across test runs.

smaller if we required more than two matches. Fig. 5 shows
several sample similarities between specific topics. It shows
that some topics, (e.g., topics 25–28) fluctuate very little
across the runs, with NLKS similarity of 0.95-1.0, while oth-
ers (e.g., 1 and 97) have large deviation, with fluctuations
around 40%; in practice this means that in some runs, these
topics are simply not found at all. On average, fluctuations
amount to 0.2065 per topic.

5. CONCLUSION
In automated analysis of user-generated content on the

Web, topic modeling provides unparallelled possibilities for
sociological analysis by allowing the researcher to quickly
evaluate the topical map of a corpus of texts, draw conclu-
sions on what topics are discussed there and how intensively.
However, in this work we show that classical implementa-
tions of inference in LDA models should be applied with
care, since the algorithms contain inherent uncertainty in
regard to which local maximum they arrive to, and unlike
some other nonconvex optimization problems, in the case of
LDA this does in fact matter. We show that even topics
that can be easily interpreted qualitatively and appear to
be full of meaning for a sociologist may be in fact unstable,
showing up only in a fraction of LDA inference runs.

Therefore, to be able to draw specific sociological con-
clusions we recommend researchers to run topic modeling
multiple times (even with the same parameters), then dis-
tinguish stable topics that reappear across multiple runs and
analyze only those. We have proposed a new topic similarity
measure based on Kullback–Leibler divergence.

LDA has already been critiqued for lack of stability and
similar faults [11]. Our results show that further work is re-
quired to solve the underlying problem, namely to improve
stability of topic modeling. One recently initiated direc-
tion of studies that we believe to be promising in this re-
gard deals with regularized topic models. It appears that
instead of Bayesian regularization it may be better to use
more general Tikhonov regularizers [12]; however, Tychonoff
regularization in application to topic modeling is a research
direction still in its infancy [14, 13], and further work is
required.
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